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Abstract

Synthetic glucocorticoids, such as dexamethasone, have been used as treatment for many immune
conditions, such as asthma and more recently severe COVID-19. Single cell data can capture more
fine-grained details on transcriptional variability and dynamics to gain a better understanding of
the molecular underpinnings of inter-individual variation in drug response. Here, we used single
cell RNA-seq to study the dynamics of the transcriptional response to glucocorticoids in activated
Peripheral Blood Mononuclear Cells from 96 African American children. We employed novel statistical
approaches to calculate a mean-independent measure of gene expression variability and a measure of
transcriptional response pseudotime. Using these approaches, we demonstrated that glucocorticoids
reverse the effects of immune stimulation on both gene expression mean and variability. Our novel
measure of gene expression response dynamics, based on the diagonal linear discriminant analysis,
separated individual cells by response status on the basis of their transcriptional profiles and allowed us
to identify different dynamic patterns of gene expression along the response pseudotime. We identified
genetic variants regulating gene expression mean and variability, including treatment-specific effects,
and demonstrated widespread genetic regulation of the transcriptional dynamics of the gene expression
response.


https://doi.org/10.1101/2021.09.30.462672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462672; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

The immune system exerts its function through a delicate and timely balance of pro- and anti-inflammatory
processes. An effective response of the immune cells ensures that pathogens are neutralized; yet, it is equally
crucial that inflammatory processes are timely modulated to avoid pathological states, such as systemic
inflammation [108], cytokine storm [23], and sepsis [93]. Specificity in recognizing potential pathogens
and mounting a proportionate response is important to prevent or resolve infectious diseases; importantly,
dysregulation of these processes leads to chronic conditions, including autoimmune, allergic diseases, and
asthma. The hypothalamic-pituitary-adrenal axis plays a central role in the balance between pro- and anti-
inflammatory processes through regulation of glucocorticoids in the bloodstream. Because of their potent
anti-inflammatory effects, synthetic glucocorticoids have widespread pharmacological applications. Steroid
anti-inflammatory drugs are used to treat asthma (budesonide) [36], autoimmune diseases (budesonide,
dexamethasone, prednisone, methylprednisolone) [33, 67, 68, 98, 99, 110], and several other inflammatory
conditions. Dexamethasone is a potent synthetic glucocorticoid that is used to treat leukemia because of its
ability to inhibit lymphocyte proliferation [79]. Most recently, dexamethasone has been recognized as the
first effective drug to prevent severe complications from COVID-19 [31]. Severe COVID-19 is thought to
be a consequence of an exaggerated response of the immune system to SARS-CoV-2 infection [4]. Elevated
production of pro-inflammatory cytokines results in tissue damage in severe COVID-19 patients and can
ultimately be fatal. By activating anti-inflammatory processes, dexamethasone can prevent this “cytokine
storm” and dramatically improve disease outcome [31].

Despite an obviously large contribution of environmental exposures (e.g. allergens, pathogens), genetic
and gene-environment interaction effects have a major role in immunological phenotypes [61]. GWAS have
successfully identified hundreds of variants associated with autoimmune and allergic diseases risk. For
example, genetic associations from GWAS explain up to 33% of the heritability of childhood asthma [78].
Common genetic variants also explain a large fraction of inter-individual variation in the response to
pathogens [90]. In addition to large-scale GWAS, in vitro studies of the immune transcriptional response
to pathogens have identified thousands of variants that contribute to inter-individual variation [2, 6, 10,
34, 73, 80, 88]. These studies have mostly focused on molecular phenotypes, including gene expression,
RNA processing, and chromatin accessibility. Interestingly, the same molecular quantitative trait locus
(QTL) mapping approaches, have also identified genetic variants that modify an individual’s response to
glucocorticoids [58, 60], thus highlighting how genetic variation can regulate the important balance between
pro- and anti-inflammatory processes.

A key component of the immune system function is the molecular signaling between the different
cell types that compose it. This communication is crucial to enable an accurate response to pathogens.
However, it is only with the advent of single cell technology that we can deeply characterize transcriptional
responses of individual cell types, while preserving their cross-talk through stimulation of the entire PBMC
fraction. Single cell technology also enables the analysis of cell-to-cell transcriptional variability. Gene
expression variability plays an important role in biological systems. It has been suggested that in the
immune system gene expression variability increases the ability to respond to immune stimuli [28]. In
vitro studies demonstrate that immune stimuli can modify expression variability in CD4+ T cells [18] and
variation of gene expression variability is also observed across individuals in human populations [70, 91].

With the great heterogeneity of function between the different cell types comprising the immune sys-
tem, it is expected that the genetic effects on gene expression will vary across cell types as well. Indeed,
multiple studies have leveraged scRNA-seq technologies to map cell-type-specific eQTLs across the dif-
ferent subpopulations comprising complex tissues. Studies in peripheral blood mononuclear cells [107],
fibroblasts [72], tumor samples [54], and pluripotent and differentiating cells [13, 20, 37, 72| found sev-
eral eQTLs that would have been missed in bulk sequencing approaches due to being active in only one
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or a few cell types. While in many single-cell studies most of the detected eQTLs were only found in
a single cell type [39, 51, 72], this likely overestimates the overall cell-type specificity of genetic effects
on gene expression due to incomplete power of eQTL discovery in these datasets [75]. Previous ap-
proaches have successfully mapped the genetic determinants of responses to infection, drugs, and other
stimuli [2, 6, 10, 22, 32, 34, 42, 43, 44, 46, 56, 57, 59, 71, 73, 80, 88, 95, 112] using bulk RNA-seq. How-
ever, these genotype-by-environment (GxE) effects are also likely to be cell-type-specific [25], especially
in the context of highly-specialized immune responses, as investigated in recent studies of response eQTL
mapping using single cell technology in immune cells exposed to pathogens, bacteria and yeast [75], and
influenza A [83]. While different immune stimuli have been studied at single cell resolution; the response
to glucocorticoids has not been previously examined.

Here, we used single cell RNA-seq to study the dynamics of the transcriptional response to glucocorti-
coids in activated PBMCs from 96 African American youths with asthma and the genetic basis of variation
in gene expression mean and variability across individuals.

Results

Identification of major cell types and gene expression patterns

To systematically characterize genetic determinants of transcriptional response to glucocorticoids at single
cell resolution, we studied peripheral blood mononuclear cells (PBMCs) of 96 African American children
with asthma. We stimulated the PBMCs with phytohemagglutinin (PHA, a T cell mitogen) or lipopolysac-
charide (LPS, a component of the bacterial membrane), and treated with the glucocorticoid dexamethasone
for a total of 5 conditions (including the unstimulated control, Figure 1A). We generated a total of 292,394
high quality cells and detected 46,384 expressed genes from 96 individuals across 5 conditions (Table S1
and Figure S9)

We clustered the cells and identified four major clusters (Figure 1B): B cells, Monocytes, NK cells and
T cells. T cells formed the largest cluster with 183,289 cells (about 63%), followed by NK cells (47,824,
about 16%), B cells (30,888, about 11%) and Monocytes (30,393, 10%). We confirmed the cell identity
using gene expression for cell type-specific genes (Figure S7) While cells are clustered primarily by cell
types in the UMAP plot, we did observe partial separation by treatment when analyzing each major cluster
separately (Figure S10).

Cell-type specific gene expression response

To identify genes differentially expressed in response to the treatments in each cell type, we first aggregated
the count data for each cell type-treatment-individual combination. We considered 4 contrasts in each
cell type (Figure S11), (1) LPS versus CTRL; (2) LPS+DEX versus LPS; (3) PHA versus CTRL; (4)
PHA+DEX versus PHA. We detected a total of 6,571 differentially expressed genes (DEGs) (¢ < 0.1
and fold change >1.41 (Figure 2A)). Monocytes showed the strongest gene expression response compared
to the other cell types across all treatments (4,460 DEGs). LPS induced the weakest gene expression
response in all cell types except monocytes. This was expected because LPS stimulates myeloid cells
preferentially [49, 105]. Glucocorticoids induced stronger responses than LPS and PHA across most cell
types. To further test whether immune treatments preferentially increased or decreased gene expression,
we ran a binomial test to compare the numbers of up-regulated and down-regulated genes across cell types.
We identified more down-regulated genes in monocytes across all the different contrasts, whereas both NK
cells and T cells tended to have more up-regulated genes (Figure 2A). In B cells (Figure 2A), immune
stimuli (LPS and PHA) had largely a repressive effect on gene expression, while glucocorticoids activated
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more genes. In general, we observed that the transcriptional response to glucocorticoids and immune
stimuli was highly cell type-specific, such that the majority of DEGs were identified in only one cell type
across the four conditions (86% in LPS, 63.7% in LPS+DEX, 66.7% in PHA and 69.6% in PHA+DEX,
Figure S12).

When we considered the global patterns of treatment effects on gene expression, we observed that effect
sizes of dexamethasone and immune stimuli on gene expression were negatively correlated (Figure 2B),
which indicated, as expected, that glucocorticoids reversed the gene expression effects induced by immune
stimuli (Figure S13 and Figure S14). The antagonistic effect of glucocorticoids compared to the im-
mune stimuli was observed also at the pathway level using gene ontology enrichment analysis (Figure S15,
Figure S16) [e.g., the type I interferon signaling pathway, the response to LPS, the cytokine-mediated
signaling pathways, and innate immune response (Figure 2C, Figure S17A-C)]. These immune-related
pathways shared across cell types appeared to be the molecular basis of how immune stimuli and gluco-
corticoids affect the immune system transcriptome in opposite directions. To better characterize these
gene expression shifts at the pathway level, we calculated a pathway-specific score. Here, we considered
type I interferon signaling pathway as an example (Figure 2C). This pathway was only enriched in genes
upregulated for immune stimuli (LPS or PHA) and downregulated for the dexamethasone conditions. We
also observed that the score of IFN increased after LPS or PHA stimulation, while the score in the DEX
condition was similar to those of unstimulated cells. Type I interferons (IFNs) play important roles in the
innate and adaptive immune responses not only to viruses but also to bacterial pathogens[8, 35, 63]. Genes
enriched in the type I interferon signaling pathway include JAKI1, STAT1, STAT2, IRF1, IRF7, IRFS8 and
OAS1. Treatment with LPS or PHA significantly increased expression of genes in the IFN I pathway, while
dexamethasone counter-acted this effect. We also observed that genes upregulated in response to immune
stimuli or downregulated in response to dexamethasone were enriched in the COVID-19 pathway, and that
this enrichment was shared across cell types except monocytes (Figure 2D).

Moreover, we revealed some dexamethasone-specific pathways, such as the cellular response to glu-
cocorticoid stimulus pathways (Figure 2E | FDR< 0.1) and the stress response to copper ion pathways
(Figure S17D, FDR< 0.1), which are both enriched in genes upregulated in response to treatment with dex-
amethasone and confirm previous findings that glucocorticoids can modulate ion channel activity [29, 103].
In addition, we found that dexamethasone repressed gene expression of the asthma pathway with high cell
type-specificity, mainly in B cells (Figure 2F, FDR< 0.1). B cells play an important role in the induction
of asthma by releasing IgE molecules [87].

Gene expression variability is modified by glucocorticoids and immune stimuli

Beyond looking at the transcriptional response to immune stimuli for each cell-type separately, single cell
data provide an unprecedented opportunity to study gene expression dynamics (mean and variability) in
response to treatments. Here, we aimed to investigate changes in gene expression variability induced by
treatments. We implemented a new method based on the negative binomial distribution to calculate two
gene dynamics-related parameters: gene expression mean (u) and dispersion (¢), similar to the work of
Sarkar et al. [91].

To avoid the mean-variability dependency and detect treatment effects that affect solely variability,
we regressed out any residual mean effects on dispersion and used this mean-corrected dispersion as the
measure of gene expression variability in the following analyses (Figure S8). Similar to the above differential
expression analysis, we compared gene expression variability in four paired contrasts (i.e., LPS, LPS+DEX,
PHA and PHA+DEX) (Figure S18). We detected a total of 1,409 differentially variable genes (DVGs,
q <0.1 and fold change >1.41) across cell types and conditions (Figure 3A). We identified the most DVGs
in monocytes (910) followed by T cells, NK cells, and B cells. Dexamethasone induced changes in gene
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expression variability for 50 to 351 genes, with the most DVGs in Monocytes treated with PHA and
dexamethasone. To test whether immune treatments altered gene variability directionally, we performed
a binomial test to compare numbers of up-regulated and down-regulated DVGs. We observed significantly
more genes with decreased variability in monocytes treated with LPS+DEX and PHA, NK cells with
LPS+DEX and PHA+DEX, and B cells with PHA. By contrast, more genes had increased variability in
T cells under the PHA and PHA+DEX conditions and B cells under the PHA+DEX condition. When
considering gene expression variability, we also observed negative correlations between differential effects
of immune stimuli (LPS or PHA) and those of dexamethasone, similar to the findings from differential
gene expression analysis (Figure 3B, Figure S19). These findings indicate that dexamethasone dampens
the immune response not only by changing gene expression mean but also by altering gene expression
variability.

We then considered the effects of the treatments on mean and variability estimated from the same
model. Among the genes only undergoing changes of mean expression levels, TAPI was overexpressed in
T cells after LPS and PHA stimulation while its expression levels in the DEX conditions were similar to
those of unstimulated cells (Figure 3D). In contrast, we did not observe any changes in gene expression
variability of TAP1 across the immune treatments. The TAP1 and TAP2 proteins form a protein complex,
called transporter associated with antigen processing (TAP), helping transfer peptides from pathogens into
the endoplasmic reticulum (ER) [16]. One example of a gene where the treatment modifies expression
variability without changes in mean expression was RPL23A in T cells following immune stimulation
(Figure 3E). This gene encodes a ribosomal protein, which may be one of the target molecules involved in
mediating growth inhibition by interferon [38].

When comparing the effect size of treatments on gene expression mean and variability, we observed
genes following two major patterns: independent effect on the mean and the variability, or a negative
correlation between the effects on the mean and variability. This last pattern was more pronounced in
monocytes (Figure 3C, Figure S20 and Figure S21), for 16%—23% genes across contrasts. One such gene
is CCL3L1 which encodes a cytokine involved in many inflammatory and immunoregulatory processes,
such as inhibiting HIV entry by binding to a protein of CCR5 [14] (Figure 3F). Nevertheless, DEGs and
DVGs were largely enriched for similar biological pathways, especially in monocytes and in response to
glucocorticoids in all cell types (Figure S22). However, in NK cells and T cells, DEGs in response to LPS are
enriched mostly in different pathways compared to DVGs in response to the same treatment (Figure S22).
Shared enriched pathways included cytokine-mediated signaling, type I interferon signaling and response
to LPS (Figure 523). We also identified several pathways that only appeared to be enriched in DVGs,
including mRNA catabolic process, translation and protein localization to the ER, protein targeting to the
membrane and the ER (Figure S24).

Characterizing dynamic responses

Single-cell transcriptomics can also be used to study heterogeneous cell states during important biological
processes, such as cell-type differentiation during development [13, 69]. Most algorithms developed to study
cell-type differentiation rely on finding a path (i.e. lower dimensional manifold) with cells connecting
the initial and final states that can be summarized with a trajectory. The gene expression changes of
each cell over the trajectory can be mapped to time, or pseudo-time. Methods to study gene expression
dynamics have focused on cell cycle, differentiation trajectory and long duration treatments [11, 13]. To
investigate treatment effects in a short time span, we have employed a novel approach based on the
diagonal linear discriminant analysis (DLDA) to construct a robust low dimensional representation of the
transcriptional response dynamics for each cell-type and treatment. For each cell type, we calculated 4
DLDA axes corresponding to 4 contrasts as follows: LPS (compared to unstimulated), PHA (compared
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to unstimulated), LPS+DEX (compared to LPS) and PHA+DEX (compared to PHA). As expected,
we observed that the first two DLDA axes were able to distinguish cells treated with immune stimuli
(LPS or PHA) from the unstimulated group across all cell types (Figure 4A,B and Figure S25). We
observed the clearest separation in monocytes, in line with the strongest gene expression response to stimuli
found in monocytes. The latter two DLDA axes clearly divided the cells into two groups (Figure 4A B
and Figure S25): one treated with DEX and the other treated with immune stimuli. Based on these
observations, we defined the first two DLDA axes as immune-stimuli pseudotime and the third and fourth
axes as the dexamethasone response pseudotime.

We next sought to analyze gene expression dynamic changes along the response pseudotime within
each treatment for each cell type separately and identified different dynamic patterns of gene expression.
For example, in T cells treated with PHA+DEX, four distinctive gene expression dynamic patterns were
identified among 1,617 DEGs that were differentially expressed in PHA+DEX (Figure 4C). Expression
of genes within clusters 1 and 2 decreased along dexamethasone pseudotime while genes in cluster 1 are
relatively lower expressed than those of cluster 2. Most of them were downregulated in the DEX condition
compared to PHA (Figure 4D). By contrast, the genes within clusters 3 and 4 tended to first slightly
decrease in expression and then burst at a later point. Most of the genes constituting these clusters were
upregulated. In line with above enrichment analysis for DEGs, the genes within cluster 1 and 2 were
mostly enriched in immune-related pathways, such as, response to LPS (Figure S26), while genes from
cluster 4 were preferentially enriched in metal ion-related pathways, such as stress response to copper ion,
cellular response to zinc ion, and cell response to cadmium ion (Figure 526). Cluster 4 thus captures the
dynamic response that is specific to dexamethasone. Collectively, this novel supervised approach (DLDA)
provides a more fine-grained resolution of the dynamics of gene expression response to immune stimuli.

Genetic effects on gene expression across cell types and treatments

To dissect the genetic contributions to the diversity of immune response dynamics, we mapped the cis
regulatory variants affecting gene expression response to immune stimuli across cell types and treatment
conditions. First, we performed cis-eQTL mapping using FastQTL [76] in each cell type-condition com-
bination separately, and discovered 5,190 unique genes with genetic effects on gene expression (eGenes,
10% FDR, Table S11 S2, Figure S27). Genetic effect sizes discovered across cell types and conditions were
significantly correlated with those discovered in bulk leukocyte gene expression data on a larger sample
that included the same individuals analyzed here [84] (Figure S28A). Expectedly, genetic effects on gene
expression best correlated with those from bulk data from T cells as these are the most abundant leukocyte
cell type, thus contributing most to the eQTL signal discovered in bulk data.

We next sought to investigate if the genetic effects were shared or context-specific in PBMCs. For this
analysis, we used multivariate adaptive shrinkage (mash) method [106] on eQTL summary statistics. This
method takes advantage of parallel measures of genetic effects across the different cell types and conditions,
thus improving the power of eQTL discovery. Indeed, we found approximately an order of magnitude more
eGenes in each condition at 10% LFSR (Figure 5A, Figure S29, Table S2, S12, S13) compared to condition-
by-condition analysis at 10% FDR using FastQTL. The increase in power is due to a high degree of sharing
of genetic effects across conditions. Borrowing information across conditions also allows us to increase the
precision of genetic effect size estimation. Correlations between genetic effects estimated in each condition
and in bulk leukocyte gene expression data are all close to 0.6 (Spearman correlation, p-value< 0.01,
Figure S28B), which is a marked improvement over correlations between FastQTL estimates in single-cell
and bulk data (Figure S28A). Additionally, 41% of the eGenes we discovered were novel compared to
eGenes discovered in the bulk leukocyte dataset (Figure S36).

Genetic effects on gene expression were in the same direction across all 20 conditions for the majority
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of eGenes (2,832) (Figure 5B, Figure S32, Figure S33). A subset of eGenes (84) shared genetic effects in
the same direction across ten conditions, representing a subdivision between NK cells and T cells in one
group and monocytes and B cells in the other group. We observed higher correlations of genetic effect
sizes across treatment conditions within the same cell type than across cell types for the same treatment
condition (Figure 5C, Figure S30, Figure S31), with higher within cell-type correlations for monocytes and
B cells (Spearman p > 0.99) compared to NK cells (Spearman p > 0.95) and T cells (Spearman p > 0.97).
A similar result was observed when considering eGenes that were shared across pairs of conditions, with
the cell-type specific eGenes (6-51%) representing a larger fraction than the treatment-specific eGenes
(1-5%) in the pairwise comparisons (Figure S34). This result highlights the stronger contribution of cell
type effects compared to environmental perturbations on genetic regulation of gene expression, which we
have observed previously in other cell types [25].

We analyzed pairs of treatment and control conditions within each cell type to discover response eQTLs
(reQTLs). Overall, we found 328 genes with reQTLs (reGenes, Figure 5D). For the treatments including
DEX the number of reQTLs was roughly similar across cell-types. In contrast, among the different cell
types stimulated with LPS or PHA, the largest number of reGenes were found in monocytes(LPS and
PHA) and T-cells (PHA). eGenes were enriched for differentially expressed genes across all contrasts and
for differentially variable genes in 14/16 contrasts (Fisher’s test p< 0.05, Table S3). reGenes were enriched
for differentially expressed genes only in B cells treated with LPS+DEX and for differentially variable
genes in three conditions (B cell LPS+DEX, Monocyte PHA+DEX and NK cell PHA+DEX, Fisher’s test
p< 0.05, Table S4).

Dexamethasone reGenes varied between 33 in B cells treated with PHA+DEX and 83 in Monocytes
treated with LPS+DEX. For example, we found a reQTL for the SEC61G gene in NKcells, where the
A alleles associated with higher expression after dexamethasone treatment.(Figure 5EF, Figure S37).
SEC61G is a subunit of the SEC61 translocon responsible for translocation of newly-synthesized proteins
into the ER. This complex is required for replication of flaviviruses in human cells [92]. While SEC61G is
primarily known as a proto-oncogene in several types of cancers [26, 50, 53, 66], it has previously been found
to be upregulated in NK cells upon IL2 stimulation [15]. To understand the phenotypic relevance of the
reGenes, we considered genes associated with diseases in TWAS and found that 61 reGenes have previously
been implicated in immune diseases. (Table S14) For example, rs142470489 is a reQTL for the RBMS1 gene
which encodes a member of a small family of proteins that bind single stranded DNA/RNA| involved in
the process of DNA replication, gene transcription, cell cycle progression and apoptosis. TWAS implicated
RBMS? in inflammatory bowel disease [116]. The G allele at rs142470489 increases the dexamethasone
immunomodulatory effect on expression of RBMS! in T cells treated with PHA+DEX (Figure 5G,H,
Figure S38).

Genetic effects on gene expression variability

Single cell data combined with our new modeling approach allowed us to quantify changes across contexts
and individuals in gene expression variability independently of the changes in the mean gene expression.
To identify genetic effects on gene expression variability that account for inter-individual variation, we
used a QTL mapping approach to discover variability QTLs (vQTLs). We discovered 123 genes with
variability QTLs (vGenes), with highest numbers of vQQTLs detected in T cells across all conditions (2,989-
3,230, corresponding to 98-107 genes) (10% LFSR, Figure 6A, Figure S39A, Table S15, S5, S16, S17).
vGenes were highly enriched for ribosomal proteins (GO enrichment for “cytosolic ribosome” p-value=
1.6 x 107%3). However, overall genetic effects across contexts for vQTLs were less correlated than for
eQTLs (Figure S48). We observed the highest correlations of genetic effects across treatment conditions
within monocytes compared to the other cell types (Figure S40A), and an overall decrease in pairwise
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correlations across cell types in treatment conditions compared to the control (Figure S44B). Similarly to
eGenes, genetic effects on gene expression variability were shared in the same direction for most of the
vGenes (98) across all cell types and treatment conditions (Figure 6B, Figure S41). In contrast to eGenes,
for vGenes we observed similar correlations of genetic effect sizes across treatment conditions within the
same cell type than across cell types for the same treatment condition (Figure 6C). This is confirmed also
when considering sharing of genetic effects across conditions (0.05-0.32 for cell-type specific vGenes and
0.06-0.34 for treatment-specific vGenes) (Figure S42).

To identify response vQTLs, we performed a direct comparison of genetic effect sizes across conditions in
each cell type. We discovered 61 unique variability response genes (rvGenes, Figure 6D), including a total
of 47 for dexamethasone response. We identified 16 rvGenes that were previously implicated in immune
diseases via TWAS. For example, ARL6IP/ is associated with multiple sclerosis and allergic rhinitis, and
we found the T allele at rs7296418 to decrease gene expression variability of this gene in T cells treated
with PHA+DEX, but not in PHA condition (Figure 6E, Fig S35). ARL6IP4 may have a role in splicing
regulation [77], and was reported to inhibit splicing of the preemRNA of Herpes singlex virus (HSVI) [48].

Comparison between genetic effects on gene expression mean and variability

To compare eQTLs and vQTLs, we considered the genetic effects on mean and variability estimated from
the same model (Table S18, S6, S19, S20). We identified three distinct patterns (Figure 6F, Figure S43):
genetic variants affecting gene expression levels only (7155-11314 gene-SNP pairs), genetic variants affecting
gene expression variability only (1709-2128 gene-SNP pairs), and genetic variants affecting both gene
expression levels and variability (669-1207 gene-SNP pairs). Genetic effects in this last category were
negatively correlated with opposite signs for eQTLs and vQTLs (Pearson correlation —0.25 - —0.8, p-
value< 0.05).

For example, rs2071464is an eQTL for the PSMB9 gene in B cells stimulated with LPS+DEX, but
we found no genetic effect of this variant on gene expression variability (Figure 6G, Figure S44). The
PSMB9 located in the MHC class II region encodes a member of the proteasome B-type family, which is
a 20S core beta subunit of the proteasome. Several studies indicated the proteasome plays a critical role
in cardiovascular diseases [89, 111], inflammatory response and autoimmune diseases [40]. The subunit
of proteasome encoded by PSMB9 was found to be involved in the process of infectious diseases [96],
autoimmune diseases [41] and oncology [109]. Previous TWAS study revealed that expression of PSMB9
has also been implicated in a number of autoimmune disorders including asthma [116]. We found the C
allele at the genomic position Chr6:33226163 to increase the gene expression variability of RPSI18 gene
in monocytes treated with PHA+DEX, without any effect on mean gene expression levels (Figure 6H,
Figure S45). This gene encodes a ribosomal protein that is a component of the 40S subunit, and its
expression has been implicated in rheumatoid arthritis, multiple sclerosis, and psoriasis [116]. In wvitro
silencing of this gene leads to decreased rate of viral infection [97, 101]. Genetic polymorphism at rs400063
confers effects on both gene expression mean and variability of the RNASET?2 gene in the T cells treated
with PHA+DEX, but in opposite directions (Figure 6E, Figure S46). RNASET?2 plays a crucial role in
innate immune response by recognizing and degrading RNAs from microbial pathogens that are sensed
by TLRS [27]. Expression of RNASET2 has been implicated in Crohn’s disease, inflammatory bowel
disease, and rheumatoid arthritis [116] via TWAS. eQTLs were likely to be also vQTLs (OR=10.45, p-
value< 2.2 x 10716); however, for the majority of vQTLs, we did not detect significant genetic effects on
gene expression levels. vGenes were significantly enriched for genes with differential mean expression for
six of the 16 conditions considered (LPS, LPS+DEX and PHA in B cells and T cells, Fisher’s test p-
value< 0.05, Table S7). vGenes were also enriched for genes with differential variability for seven contrasts
(LPS and PHA in B cells and T cells; LPS and PHA+DEX in NK cells; and PHA+DEX in Monocytes;
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Fisher’s p-value < 0.05).

Mapping of dynamic eQTL using response pseudotime

While reQTLs represent genetic variants that modulate the average response to treatments across cells,
our dynamic analysis uncovered more complex cellular response trajectories which we have quantitatively
analyzed through DLDA. Through the characterization of the dynamic response patterns above, we ob-
served that cluster 4, representing late response genes, in T cells treated with PHA+DEX was enriched
for genes with genetic effects on gene expression (OR= 2.53, Fisher’s exact test p-value=3.5 x 1073). This
indicated the potential role of genetic effects in the regulation of dynamic gene expression changes. We
therefore systematically investigated genetic variants that modulate these response trajectories (dynamic
eQTLs) (Figure S49) and discovered a total of 3,899 dynamic eQTLs corresponding to 588 eGenes across
all the conditions (Table S8). The largest number of dynamic eGenes were identified in T cells, with
dynamic eGenes in the immune-stimuli pseudotime (244 for LPS and 225 PHA) and for dexamethasone
response pseudotime (18 LPS+DEX and 54 for PHA+DEX). We also observed that dynamic eQTLs are
enriched among eGenes and response eGenes (Figure S50, Figure S51); yet a large number of them are
novel. This pattern is particularly noticeable in T cells (Figure S52A, B, Fisher’s exact test p-value< 0.01).
To investigate whether these dynamic eGenes are potentially causal genes for immune diseases, we tested
their overlap with immune-related genes identified from TWAS ( [116]) and revealed a total of 92 dynamic
eGenes (Table S8) in T cells which have previously been implicated in 22 immune-related diseases in
TWAS [116].

To illustrate genetic effects on dynamic response patterns along pseudotime, we focused on T cells
treated with PHA+DEX. We showed a dynamic eQTL for ABO, which was previously reported to be
associated with Allergic Rhinitis in TWAS [116]. This gene encodes an enzyme responsible for glyco-
syltransferase activity to determine the blood group in an individual. This gene has been identified as
the strongest signal for severe coronavirus disease 2019 (COVID-19) by genome-wide association study
[74, 94]. We discovered a dynamic eQTL modulating ABO gene expression along dexamethasone response
pseudotime such that ABO expression undergoing the most rapid increasement in heterozygous individuals
along DEX pseudotime while having the least changes for individuals with homozygous alternate allele
(Figure 7A). As a result, we observed a negative genetic effect on ABO gene expression in the mid and late
pseudotime. Another example was a dynamic eQTL for the HLA-DRB5 gene which has been implicated
in 14 immune-related diseases, including asthma. The protein product of HLA-DRBYS formed into MHC
IT molecules with an alpha (DRA), which plays a crucial role in the immune system by presenting peptides
derived from extracellular proteins. MHC II molecules are used by antigen-presenting cells to display
foreign peptides to the immune system to trigger the body’s immune response, but have also been found
on activated T cells where they function as signal-transducing receptors [30]. We observed the divergent
genetic regulation effects on this gene across the three pseudotime tertiles: negative genetic effects on
this gene for early pseudotime, no genetic effects for mid and positive genetic effects for late pseudotime
(Figure 7B). We indeed revealed very distinct patterns of dynamic changes in HLA-DRBS gene expression
along pseudotime for the three genotype classes such that the gene expression was sharply decreasing in in-
dividuals homozygous for A allele at rs116611418, showing the least gene expression changes heterozygous
individuals throughout the pseudotime and individuals with homozygous alternate allele rapidly increasing
in the late pseudotime (Figure 7B). Additionally, we discovered a dynamic eQTL modulating GADD/5G
expression along dexamethasone response pseudotime such that GADD45G expression appeared to be
extinguished most rapidly in individuals homozygous for the G allele at rs11265809, with heterozygous
individuals following an intermediate slope, and carriers of two A alleles displaying the least changes to
GADD45G expression along the pseudotime (Figure 7C). As a result, we observed a genetic effect on
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GADD45G expression only in the first tertile of the dexamethasone response pseudotime. The protein
encoded by this gene responds to environmental stresses. This gene was reported to be associated with
asthma and systemic lupus erythematosus in the TWAS studies [116].

Discussion

Single-cell technologies allow the study of all aspects of the gene expression response to stimuli — mean,
variability and dynamics — across different cell types. Here, we used single cell RNA-seq to study the
dynamics of the transcriptional response to glucocorticoids in activated PBMCs. Using this system, we
demonstrated that both gene expression mean and variability can be modified by glucocorticoids and
immune stimuli. Further, we identified the genetic variants regulating gene expression mean and variability
across treatments. We introduced a novel computational approach which allowed us to track the short-term
transcriptional response dynamics to treatments at single-cell resolution. Using this method, we identified
different dynamic patterns of gene expression along the response pseudotime and demonstrated widespread
genetic regulation of these dynamics.

Studies of glucocorticoid response in tightly-controlled experimental settings of individual cell types
found varied effects of glucocorticoids on different cells [47, 55, 81, 82, 102, 104, 114]. However, glucocor-
ticoid response could not be studied in the context of the cellular complexity of the immune system prior
to the advent of single-cell technologies. Here, we studied the gene expression response of four cell types
to glucocorticoids within activated PBMCs. We revealed an opposite pattern of effect on gene expression
between immune stimuli and dexamethasone in all cell types analyzed, which was evident both at the gene
level and pathway level. These pathways with antagonistic patterns mainly contained immune-related
pathways, such as IFN, response to lipopolysaccharide, cytokine-mediated signaling, and innate immune
response, mostly shared across cell types, in line with previous findings [75]. Our study also highlighted
the specialization in immune response of the different cell types as the majority of DEGs were identified
within only one cell type. Lastly, we observed these cell-type-specific patterns on the pathway level, such
as asthma pathway mainly enriched in B cells and T cells, and granulocyte activation mostly enriched in
monocytes.

Previous studies implied the important role of gene expression variability in many aspects, such as
developmental states [12, 85], T cell differentiation [18], and aging [62]. Our systematic study of gene
expression variability in response to immune treatments revealed major effects of immuno-modulators on
gene expression variability, with a total of 1,409 DVGs across cell types and contrasts. We observed the
same pattern of negative correlation of effects of immune stimuli and dexamethasone on gene expression
variability as for gene expression mean levels. Similarly, these DVGs tended to be enriched in immune-
related pathways in an antagonistic way similar to the expression analysis. These findings demonstrated
that immune treatments affected not only gene expression but also altered the transcriptional variability
of genes involved in the immune system. Although we regressed out the effect of mean on gene expression
variability, for a subset of genes, we observed a negative correlation between the effects of each treatment on
gene expression variability and mean, respectively. While this negative correlation could be a consequence
of correcting for the mean-variance dependency, our results suggest that for a subset of genes the treatment
affects differently the mean and the variance, thus resulting in different response dynamics. Together, these
findings can enhance our understanding of the molecular basis of how individuals respond to immune stimuli
and suppress the activated immune system in response to drugs at the cell-type level.

Previous single cell studies in human induced pluripotent stem cells (iPSCs) differentiating into neurons
and in response to oxidative stress identified a large fraction (46%) of eQTLs that had not previously been
found in the Genotype-Tissue Expression (GTEx) catalog [37]. Similarly, we found that 44% of the eGenes
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identified in this study were not found in bulk leukocyte data from the same population which also includes
the same individuals and had a larger sample size [85]. These additional discoveries were likely due to
cell-type-specific genetic effects. However, when we consider genes expressed in all conditions (treatments
and cell types) and use a rigorous statistical framework to determine to what extent genetic effects are
shared across conditions we found a high degree of sharing as indicated by the fact that 65% of eGenes
were significant in all 20 conditions. This is similar to the findings of the GTEx consortium that the
majority of eQTLs are shared across all 49 surveyed tissues [1]. However, we found relatively fewer cell-
type-specific eQTLs compared to GTEx data across tissues [76], which indicates higher sharing of genetic
effects across cell types within the same tissues than across different tissues. This finding is in line with the
higher sharing of genetic effects among related brain tissues in GTEx data [76]. We previously explored
the relative contribution of cell type and treatments in modulating genetic effects on gene expression using
allele-specific expression. We found greater variability of genetic effects across three cell types than across
12 treatments [25]. Similarly, here we find more variation of genetic effects on gene expression across the
4 PBMC cell types when compared to the 5 treatment conditions. Importantly, we observed a similar
pattern in gene expression variability and mean, although it was weaker for variability.

After filtering all eGenes with shared genetic effects across treatments, we discovered that 25% of eGenes
have reQTLs. While eGenes were more likely to be differentially expressed and differentially variable in
the majority of conditions, reGenes were not enriched for differentially expressed genes and only enriched
for differentially variable genes in two conditions, PHA-activated monocytes and PHA+DEX treated T
cells. This means that genes responsive to environmental conditions are also more likely to harbor genetic
variants that affect gene expression levels, while genes with GxE effects are less likely to be detected as
differentially expressed or differentially variable.

Identification of the genetic variants underlying inter-individual differences in cell-to-cell gene expression
variability is technically more challenging than detecting genetic effects on mean gene expression. Previ-
ously, researchers have estimated that more than four thousand individuals would be needed to achieve
80% power to detect the strongest genetic effects on gene expression dispersion in induced pluripotent
stem cells [91]. This calculation was based on a different technology, where each cell is processed as an
independent library and the number of cells/individual that can be analyzed is very limited. However,
with the technology available when we started our study, we were able to interrogate a large number of
cells and individuals in the same library, thus reducing technical noise. This likely resulted in greater
power to detect genetic effects on gene expression variability. Other factors that may contribute to our
ability to discover these vQTLs are the cell types used and our study design. We observed that genetic
effects on gene expression variability were most stable across different treatment conditions for monocytes,
despite the strongest gene expression response to treatment in that cell type. We also demonstrated that
treatments decrease the correlation of genetic effects on gene expression variability across the different cell
types, demonstrating that GxE effects on gene expression variability were cell-type-specific. We found high
enrichment for ribosomal protein genes within vGenes, which may be due to higher expression levels of
this class of genes leading to an increased power to detect effects on gene expression variability.

Although we used a measure of gene expression variability that does not have a mean-variance de-
pendency, we found genetic effects affecting both gene expression mean and variability but with opposite
direction of effect for 13 genes. Even though eQTLs were enriched in vQQTLs, we did not detect significant
genetic effects on mean gene expression for most vQTLs. This demonstrates that genetic variants may
increase variability of gene expression across cells, without affecting mean gene expression levels. While
eGenes were enriched for differentially expressed genes, vGenes were depleted for them. This could be
because genes responding to treatments are required to be under tighter genetic control of expression vari-
ability. Interestingly, vGenes were depleted of DVGs within all contrasts in monocytes but enriched for
DVGs in the other cell types following immuno-stimulation and in T cells treated with dexamethasone.
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Additionally, we have demonstrated that effects of genetic variation on gene expression variability could
vary across environmental conditions. Interestingly, these GxE effects on gene expression variability and
the GxE effects on gene expression mean affected genes associated with the same immunological diseases.

Lastly, we introduced a novel computational approach designed to track the short-term transcriptional
response dynamics to treatments at single-cell resolution. Our new method is easy to implement and can
be directly applied to studying the dynamics of transcriptional responses to other treatments at single-cell
level, to facilitate understanding the diversity in response to environmental stimuli across heterogeneous
tissues. Previous studies investigated transcriptional dynamics in experimental designs where individual
cells were sampled at a range of various times [11] or collected from various cell type differentiation
stages [13]. In these studies, pseudotime was inferred from computational methods [7] or directly measured
by experimental design [11]. The pseudotime inferred from our novel approach reflects the transcriptional
dynamics of the immune response. Although our data were sampled at one time point, we still revealed
transcriptional response dynamics using this projection, suggesting initial heterogeneity of cells, probably
arising from diversity in initial cell states. Alternatively, this heterogeneity of response across cells may
be a reflection of the dynamics of the immune system. We purposely used a study design where all the
cell types were cultured together to study immune response, to preserve the natural interactions between
cells that is key to orchestrate the immune response. This is reflected in the observed gene expression
response to stimuli across all the cell types, even though we used immune activators which primarily affect
one cell type. Thus, it is likely that in our study the observed heterogeneity of response across pseudotime
reflects the dynamics of secondary signal propagation (cytokine or direct cell-to-cell interaction) across a
population of cells. Using this method, we identified different dynamic patterns of gene expression along
the response pseudotime and demonstrated widespread genetic regulation of these dynamics. Importantly,
we demonstrated genetic effects on the dynamics of ABO expression response to glucocorticoids, which
strongly correlated with susceptibility to SARS-CoV-2 infection [74, 94].

In summary, our study demonstrates that a full understanding of transcriptional response dynamics
requires investigations beyond changes in mean gene expression, which are enabled by single-cell studies
and robust computational methods. Elucidating gene expression variability and pseudotemporal response
dynamics will contribute to a fuller picture of the heterogeneity within and across cell populations. Studies
of transcriptional response dynamics and genetic contributions to their heterogeneity in future experiments
of treatment response, tumor microenvironment dynamics and cell type differentiation across healthy and
disease states will uncover new disease mechanisms based on altered control of gene expression heterogene-

ity.
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Figure 1: Study overview. (A) PBMCs were collected from 96 African American donors with asthma. Cells were stim-
ulated with phytohemagglutinin (PHA), lipopolysaccharide (LPS), and treated with glucocorticoid dexamethasone (DEX)
for a total of 5 conditions (including a control), for a total of 480 samples. (B) UMAP visualization of the sc-RNA data for
a total of 293,394 high quality cells, colored by five major cell types: B cells (green), Monocytes (purple), NK cells (maroon)
and T cells (orange). (C) Density plot exemplifying changes in mean gene expression between conditions (PHA+DEX vs
PHA). (D) Density plot exemplifying changes in gene variability between conditions (PHA+DEX vs PHA). (E) Scatter plot
representing the low dimensional manifolds obtained by diagonal linear discriminant analysis (DLDA) in the T cells treated
with PHA and PHA+DEX: x axis denoting the PHA+DEX response pseudotime and y-axis denoting the PHA response
pseudotime. (F) Example of a LPS4+DEX response eQTL for DIP2A gene in the T cells. The boxplots depict normalized
gene expression levels for the three genotype classes in the two treatment conditions contrasted to identify the response
eQTL: LPS+DEX (right panel) and LPS (left panel). (G) Example of a variability QTL without an effect on the mean gene
expression for the ARLGIP/ gene in T cells treated with PHA4+DEX. The boxplots depict normalized variability (right) and
mean (left) gene expression for the three genotype classes. (H) Example of a dexamethasone response dynamic eQTL for
the MRII gene in the T cells treated with PHA+DEX.
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Figure 2: Identification of differentially expressed genes (DEGs). (A) Number of DEGs across contrasts and cell
types: B cells (green), Monocytes (purple), NK cells (maroon) and T cells (orange), below axis representing down-regulated
genes and above axis representing up-regulated genes (FDR<10%). A significant difference in the proportion of up- and
down-regulated genes identified by a binomial test is indicated as ***(p <0.001), **(p <0.01) and *(p <0.05). (B) Heatmap
of Spearman correlation of log, fold change (LFC) across 16 conditions (4 cell types x 4 contrasts). (C-F) Pathway analysis
across cell-types and treatment conditions for enrichment in DEG (top) and boxplot for average pathway score (bottom)
for four pathways:(C) Type I interferon signaling,(D) Coronavirus disease-COVID-19,(E) glucocorticoid stimulus, and (F)

asthma.
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Figure 3: Identification of Differentially variable genes (DVGs). (A) Number of DVGs across contrasts and cell
types, below axis representing genes with decreased variability and above axis representing genes with increased variability.
A significant difference in the proportion of genes with increased or decreased variability was identified by a binomial test:
¥ (p < 0.001), ¥(p < 0.01) and *(p < 0.05). (B) Heatmap of Spearman correlation of log, fold change (LFC) of gene
variability across 16 conditions (4 cell types x 4 contrasts). (C) Scatterplot of the z score of differential gene expression
(x axis) and the z score of differential gene variability (y axis) in monocytes treated with PHA+DEX compared to PHA.
Each dot represents a gene with colors indicating significant (FDR<10%) changes on gene mean expression only (green),
gene variability only (blue), both (purple) and neither (grey). (D) Boxplot of gene expression variability (bottom) and mean
expression (top) for the gene (TAP1), an example of a gene that undergoes significant changes only to gene expression in
response to immune treatments in T cells. (E) Boxplot of gene expression variability (bottom) and mean expression (top)
of the gene (RPL23A), which does not show significant changes in gene expression mean but with significant changes in
gene expression variability after immune treatment in T cells. (F) Boxplot of gene expression variability (bottom) and mean
expression (top) of the gene (CCLSL1), which shows changes in both gene expression mean and gene expression variability
(bottom panel) after immune treatment in monocytes.
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Figure 4: Characterization of dynamic changes along immune response pseudotime. (A) Scatterplot of the
DLDA pseudotime for LPS+DEX (x axis) and the DLDA pseudotime for LPS (y axis) in T cells. Each dot represents a
cell, with the color indicating the treatment condition: grey for unstimulated, light red for LPS and dark red for LPS+DEX.
(B) Scatterplot of the DLDA pseudotime for PHA+DEX (x axis) and the DLDA pseudotime for PHA in T cells. Each
dot represents a cell, with the color indicating the treatment condition: grey for unstimulated, light blue for PHA and dark
blue for PHA+DEX. (C) Heatmap of relative gene expression for 1,617 DEGs (rows) averaged over windows containing 10%
of T-cells (columns) sliding at a step of 0.1% of T cells along the PHA+DEX response pseudotime. For each gene, gene
expression is expressed relative to the highest expression across pseudotime. Red color denotes high expression value, yellow
denotes medium expression value and blue denotes low expression value. The LFC column on the right indicates the log,
fold changes for each DEG between PHA and PHA+DEX. (D) Dynamic patterns of relative gene expression averaged across
all genes within each cluster using the same sliding window approach as in C using the same sliding window approach as in

C.
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Figure 5: Genetic effects on gene expression. (A) Barplot of the number of genes with ¢QTLs (eGenes) in each
condition. (B)Boxplot of Spearman correlations between significant genetic effects on gene expression for each pair-wise
comparison of two treatment conditions within each cell type, and for each pair-wise comparison of two cell types within
each treatment condition, color reflects cell types (as in Figure 5A) or treatment: control (grey), LPS (pink), LPS+DEX
(red), PHA (light blue), and PHA+DEX (dark blue). (C) Barplot of the number of eGenes (y axis) with genetic effects
in the same direction across the number of conditions shared (x axis). (D) Barplot of the number of genes with response
eQTLs (reGenes). (E) Boxplot of normalized gene expression for SEC61G gene in NK cells treated with LPS(left panel) and
LPS+DEX (right panel) across the three genotype classes of the reQTL rs1031486 (x axis). (F') Forest plot of the estimated
genetic effect for rs1031486 minor allele on the expression of the SEC61G gene across all conditions (values reflect slopes as
in 5E). Each line represents the 95% confidence interval around the estimate. (G) Boxplot of normalized gene expression
for RBMS1 gene in T cells treated with PHA (left) and PHA+DEX (right), across the three genotype classes of the reQTL
rs142470489 (x axis). (H) Forest plot of the estimated genetic effect of rs142470489 minor allele on the expression of the
IRF'3 gene across all conditions (values reflect slopes as in 5G). Each line represents the 95% confidence interval around the
estimate.
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Figure 6: Genetic effects on gene expression variability. (A) Barplot of the number of genes with eQTLs (eGenes)
for which we did not detect genetic effects on variability (dark shading), number of genes with vQTLs (vGenes) for which
we did not detect any genetic effects on gene expression (medium shading), and genes with both eQTLs and vQTLs (light
shading). (B) Boxplot of the Spearman correlations between significant genetic effects on gene expression variability for
each pair-wise comparison of two treatment conditions within each cell type, and for each pair-wise comparison of two cell
types within each treatment condition, color reflects cell types (as in Figure 6A) or treatment: control (grey), LPS (pink),
LPS+DEX (red), PHA (light blue), and PHA4+DEX (dark blue). (C) Barplot of the number of vGenes (y axis) with genetic
effects in the same direction across the number of conditions shared (x axis). (D) Barplot of the number of genes with response
vQTLs (rvGenes). (E) Boxplot of normalized gene expression variability for ARLGIP4 gene in T cells treated with PHA (left
panel) or PHA+DEX (right panel) across the three genotype classes of the vQTL rs7296418 (x axis). (F) Scatterplot of
genetic effects on mean gene expression (x axis) versus genetic effects on gene expression variability (y axis) for T cells
treated with PHA+DEX; color represents genetic variants with significant effects on mean gene expression only (green), gene
expression variability only (blue), both (purple), and neither (grey). (G) Boxplot of normalized mean gene expression (left
panel) and normalized gene expression variability (right panel) for PSMB9 gene in B cells treated with LPS+DEX with
significant genetic effect of rs2071464 on mean gene expression, but no effect on gene expression variability. (H) Boxplot
of normalized mean gene expression (left panel) and normalized gene expression variability (right panel) for RPS18 gene in
Monocytes treated with PHA+DEX with significant genetic effect of 6:33226163:CA:C on gene expression variability, but no
effect on mean gene expression. (I) Boxplot of normalized mean gene expression (left panel) and normalized gene expression
variability (right panel) for RNASET2 gene in T cells treated with PHA+DEX with significant genetic effect of rs400063 on
both mean gene expression, and on gene expression variability.
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Figure 7: Identification of dynamic eQTLs along immune response pseudotime. For the following genes: (A)
ABO, (B) HLA-DRB5, and (C) GADD/5G; the boxplots on the top represent normalized gene expression in T cells treated
with PHA+DEX for each DLDA pseudotime tertile and genotype; and the bottom plot represents the smoothed dynamic
gene expression changes along response trajectory pseudotime for each genotype separately (trendlines are fit using locally
estimated scatterplot smoothing).
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Methods

Biological samples

Peripheral blood mononuclear cells (PBMCs) used in this study were collected from children aged between
10 and 16 years old as part of the longitudinal study Asthma in the Life of Families Today (ALOFT,
recruited from November 2010 to July 2018, Wayne State University Institutional Review Board approval
#0412110B3F) [84], which was established to explore the effects of family environments on childhood
asthma. The 96 samples included in the current study were randomly selected from a pool of 136 samples
passing the following criteria: donor’s age 10-16 years old, donor’s race self-reported as Black, availability
of at least 3.5 million cryopreserved PBMCs, and to ensure a 50:50 ratio between female and male partic-
ipants. For each participant multiple samples were collected longitudinally, but we included in this study
only the earliest sample passing the filtering criteria. PBMCs collected into two BD Vacutainer™Glass
Mononuclear Cell Preparation Tubes (Becton Dickinson and Co., East Rutherford, NJ) were extracted
using a previously-published Ficoll centrifugation protocol [113], cryopreserved in freezing media (70%
RPMI, 20% CS-FBS, 10% DMSO; 3 — 8 x 10° cells/ml) and stored in liquid nitrogen until the day of the
experiment.

Cell culture and single-cell preparation

Cells were processed in batches of 16. For each batch, PBMCs were removed from liquid nitrogen storage
and quickly thawed in 37°C water bath before diluting with 6 ml of warm starvation media (90% RPMI
1640, 10% CS-FBS, 0.1% Gentamycin) and counting using Trypan blue staining on Countess II (Life
Technologies Corporation, Bothell, WA). Cells were subsequently centrifuged at 400xg for 10 minutes and
resuspended in culture medium at 2 x 10¢ cells/ml. 500 ul of cell suspension was plated in each of 5 wells
of a 96-well round-bottom cell culture plate for each sample. Cells were incubated in starvation media
overnight (approx. 16 hours) at 37°C and 5% CO,. The following morning each of the five wells for each
individuals were treated with either: 1 pg/ml LPS [5] + 1 uM dexamethasone [71], 1 ug/ml LPS + vehicle
control alone, 2.5 pg/ml PHA [71] + 1 uM dexamethasone, 2.5 pg/ml PHA + vehicle control alone, or
vehicle control alone (control). Note that the vehicle control used was 1ul of ethanol in 10 ml of media,
so that the effect of the vehicle control was negligible. After six hours, cells were pooled across individuals
for a total of five treatment-specific pools. The pools were centrifuged at 300 rcf for 5 min at 4°C, washed
with 5 ml ice-cold PBS + 1% BSA and centrifuged again. Each pool was resuspended in 2 ml ice-cold
PBS + 1% BSA and filtered through a 40 pum Flow-Mi™strainer (SP Scienceware, Warminster, PA). Cell
concentration was determined using Trypan blue staining on Countess IT, and adjusted to 0.7x10° cells/ml
to 1.2 x10° cells/ml. Each pool was loaded onto a separate channel of 10XGenomics@®Chromium machine
(10XGenomics, Pleasanton, CA), according to the manufacturer’s protocol, with batches 4, 5 and 6 loaded
on two separate Chromium Chips for a total of 2 wells per treatment pool. Batches 1-4 and one chip of
batch 5 were processed using v2 chemistry, and the other chip of batch 5 and batch 6 were processed using
v3 chemistry. Library preparation was done according to the manufacturer’s protocol.

Sequencing

Sequencing of the single-cell libraries was performed in the Luca/Pique-Regi lab using the Illumina NextSeq
500 and 75 cycles High Output Kit with 58 cycles for R2, 26 for R1, and 8 for I1.
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Genotype data

All individuals in this study were genotyped from low-coverage (~0.4X) whole-genome sequencing and
imputed to 37.5 M variants using the 1000 Genomes database by Gencove (New York, NY). These data
were used for all genetic analyses and to calculate PCs of genotypes to be used as covariates in downstream
statistical analyses. Genotype PCA was run on all biallelic autosomal SNPs with cohort MAF<= 0.1 using
library SNPRelate [117] in R 4.0.

single-cell RN A-seq raw data processing (Alignment and demultiplexing)

The raw FASTQ files were mapped to the GRCh38.p12 human reference genome using the kb tool (a
wrapper of kallisto and bustools) with the argument of workflow setting to be lamanno [64]. Two
procedures were performed in the kb tool. First, we used kallisto to pseudo align reads to the reference
genome and quantify abundances of transcripts [9]. Second, we transformed the kallisto outputs into BUS
(Barcode, UMI, Set) single cell format using bustools [65]. A total of 45 pooled libraries were generated
in our experiment. Among 45 libraries and 6 batches, 3 experiments (LPS+DEX, PHA and PHA+DEX)
in batch 2 and 3 experiments (LPS+DEX, PHA and PHA+DEX) in batch 3, were excluded because of
failure of the 10x Genomics instrument resulting in broken emulsions, for a total of 39 libraries remaining
for all subsequent analyses. We removed debris-contaminated droplets using the DIEM R package [3]. With
this procedure, we obtained a count matrix of 301,637 cells with 116,734 genes features (including spliced
and unspliced) across 39 library pools. The aligned counts matrix were transformed into a Seurat object
for the subsequent functional analysis. To demultiplex the 16 individuals pooled together for each batch,
we used the popscle pipeline (dsc-pileup followed by demuxlet) with the default parameters [39]. Two
input files are required to provide for dsc-pileup, a BAM file and VCF file. The BAM files were generated by
running cellranger (v2.1.1) count function aligned to the GRCh37 human reference genome (downloaded
from 10X genomics, 3.0.0). The VCF file obtained from DNA genotype data (see above) was filtered to
remove any SNP that was not covered by scRNA-seq reads. The resulting VCF contained 935,634 SNPs
after removing SNPs with MAF less than 0.05. After assigning the identity to each cell, we removed
mismatching barcodes between individual identity and batch. A total of 292,394 cells with 116,734 genes
(including spliced and unspliced) were entered into the downstream analysis. For 96 Individuals, we had
both control and LPS conditions, while the other three conditions (LPS+DEX, PHA, PHA+DEX) were
assayed for 64 individuals because of instrument channel failure in batches 2 and 3 for those experimental
conditions. This clean dataset had a median of 7,994 cells (Figure S1), a median of 4,251 UMI counts, and
1,810 genes measured on average in each cell across 39 experiments (Figure S2). In terms of spliced reads,
we detected a median of 2,705 UMIs and 892 genes for each cell across all 39 experiments (Figure S3).

Clustering, UMAP and cell type annotation

Seurat(V3) was employed for preprocessing, clustering, and visualizing the scRNA-seq data [100]. We
performed log-normalization on all the data using NormalizeData with default parameters and selected
2,000 highly variable genes using FindVariableFeatures with variance-stabilizing transformation (vst)
followed by standardization of these highly variable genes for downstream analysis using ScaleData. Lin-
ear dimensionality reduction was carried out by RunPCA on scaled data with 100 principal components
(PCs). We ran RunHarmony with chemistry as covariates to correct chemistry effects (V2 and V3), which
is scalable to a large number of cells and robust [45]. The Harmony-adjusted PCs were then used to
construct a Shared Nearest Neighbor (SNN) graph using FindNeighbors (dims=1:50) and cell clustering
was subsequently implemented by running FindClusters with the resolution set to 0.15. Finally, Uniform
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Manifold Approximation and Projection (UMAP) was applied to visualize the clustering results using the
top 50 Harmony-adjusted PCs. Cells from different chemistries, batches, and treatments shared similar
clustering patterns (Figure S4, Figure S5, Figure S6).

We identified 13 clusters then annotated cell clusters based on the following canonical immune cell type
marker genes (Figure S7), B cells (MS4A1 or CD79A), Monocytes (CD14 or MS4A7), natural killer (NK)
cells (GNLY or NKG7) and T cells (CD3D or CD8A). Clusters 0, 4, 5, and 7-12 were annotated as T
cells with 183,289 cells, clusters 3 and 6 were annotated as monocytes (30,393), cluster 1 was defined as
NK cells (47,824) and cluster 2 as B cells (30,888).

Aggregation of single-cell-level data for differential gene expression and ge-
netic analyses

We generated pseudo-bulk RNA-seq data by summing the spliced counts from kallisto for each gene and
each sample across all cells belonging to each of the four cell types (B cell, Monocyte, NK cell and T cell),
separately. This generated a data matrix of 42,554 genes from autosomes (rows) and 1,536 combinations of
cell type+treatment+individual (columns). Next, we focused on protein coding genes and filtered out genes
with less than 20 reads across cells and removed combinations with less than 20 cells. This last filtering
step resulted in a data matrix of 15,770 protein coding genes (rows) and 1,419 combinations (columns),
which were used for all subsequent differential expression and genetic analyses.

Differential gene expression analysis

We carried out differential gene expression analysis for each of the five batches separately using R DESeq2
package [52] and then combined the results across five batches using meta-analysis. For each batch, we
estimated gene expression effects of the treatments using four contrasts: (1) LPS, LPS vs CTRL; (2)
LPS+DEX, LPS+DEX vs LPS; (3) PHA, PHA vs CTRL; (4) PHA+DEX, PHA+DEX vs PHA. In the
meta-analysis procedure, we first extracted the summary statistics, including estimated effects (/3;) and
standard error (s;). Based on the fixed-effects model of meta-analysis, the weighted average effects are
calculated by f = %ﬁzﬁl and its estimated variance can be expressed by 7 = (3°1/s2)"'. We then
constructed the test statistics z = \% which follows a normal distribution under the null hypothesis. To
correct for multiple hypothesis testing, we used the qvalue function in R 4.0 to estimate false discovery rate
(FDR) from a list of p-values from the above z test statistics for each condition, separately. Differentially
expressed genes (DEG) were defined as those with FDR less than 0.1 and absolute estimated log, fold
change larger than 0.5.

We carried out gene ontology (GO) enrichment analysis [i.e., Biological process (BP), molecular function
(MF), and cellular component (CC)], for these DEGs identified across conditions using R ClusterProfiler
package (V3.16.1) [115].

Estimation of gene expression mean and dispersion

We used a negative binomial (NB) distribution to model the count data for each gene j, using two main
parameters for the mean(p;) and dispersion(¢;). Then, we derived the variance of gene expression by

/jj2q§j. The details on NB model are described as follows,

i, ~ Poisson(.; Ri\ji) W
Ajx ~ Gamma(.; 1, ) 2
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Where 7j; is the number of molecules for k cell, j gene; Ry, is a size factor of each cell, equal to total reads
in each cell divided by median reads across cells, to account for difference in cellular sequencing depth; \jj
is a latent variable, representing gene abundance and further is assumed to be Gamma distribution with
mean value y, variance p?¢. By integrating the latent variable \jz, we derived density function for each
observation as follows,

exp 5 B d(\jr)

— _ ‘71
[ (Ridg) o exp” ) (5 gy )% A\
Pr(rje) = e e
0 (rjr+1) (¢j )
T

. (3)
_ L (rjr. + ij ) (
L (rj, +1)0(6;")

Ry,
Ry + 5 05"

)%

)"

Then, we estimated parameters of u; and ¢; by minimizing the negative log likelihood using the optim
function in R 4.0 using the ”"L-BFGS-B” algorithm. Two filters were applied prior to estimation of gene
expression parameters (mean and dispersion): (1) removing genes with less than 20 reads across cells
(with a total of 30,972 autosomal genes remaining for the analysis); (2) removing the combinations (cell
type+treatment+individual) with less than 20 cells (with a total of 1,419 combinations across all our
data). To guarantee robust parameter estimation, we focused on genes with more than 15 reads that are
expressed across at least 15 cells for each cell type/treatment combination.

Similar to what reported in previous studies [17, 19, 21, 24|, we observed that both gene variance
or dispersion linearly depended on mean parameters (Figure S8A,B). To further correct the dependence
between dispersion and mean, we defined a residual dispersion, capturing the departure from the global
trend. The residual dispersion was calculated by removing the part of dispersion that could be predicted
by the overall trend of gene mean across genes in each cell type separately. This adjusted dispersion was
uncorrelated with the gene mean value (Figure S8C) across genes.

Calculation of pathway specific score

We calculated the score of a specific GO term or pathway using the transcriptional matrices (mean and
dispersion) patterns of genes involved in that term/pathway across all the conditions as follows: (1)
extracted the subset of differentially expressed genes in at least one condition belonging to a specific GO
term or pathway; (2) scaled mean-centered gene matrices values (mean and dispersion) for each gene across
individuals for each cell type and batch separately; (3) subtracted gene expression values of individuals in
the CTRL condition to calculate relative expression changes; and, (4) calculated the average values as a
specific pathway score across genes for each individual.

Differential gene variability analysis

We focused on 15,770 protein-coding genes for differential gene variability analysis. To account for the noise
from the batch, we implemented the same strategy for differential gene expression analysis for differential
gene variability and differential gene mean analyses via fitting models by batch separately and we meta-
analyzed the summary statistics. We first took the log 2 transformation of residual dispersion and mean,
then fitted models using linear regression where treatments were considered for each batch, separately. To
obtain more robust estimation of the gene expression parameters for statistical inference, we only focused
on genes that had at least 3 individuals in the treatment and 3 individuals in the control condition that
was being contrasted. The differentially variable genes (DVG) and differential mean genes (DEG) were
defined as those with FDR less than 0.1 and absolute value of log 2 fold change greater than 0.5. We also
used ClusterProfiler in R to carry out GO enrichment analysis for these identified DVGs.

23


https://doi.org/10.1101/2021.09.30.462672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462672; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Definition of response pseudotime

We constructed a diagonal linear discriminant analysis (DLDA) axis as pseudotime to characterize the
degree to which single cells respond to immune treatments. Four kinds of DLDA axes were calculated by
the following contrasts for each cell type separately, (1) DLDA axis of LPS was estimated in the CTRL
and LPS conditions to infer the response pseudotime to LPS; (2) DLDA axis of LPS+DEX was computed
in the LPS and LPS+DEX conditions to calibrate the response pseudotime to DEX; (3) DLDA axis of
PHA was estimated in the CTRL and PHA conditions to characterize the response pseudotime to PHA
stimuli ; and, (4) DLDA axis of PHA+DEX was estimated in the PHA and PHA+DEX conditions to
characterize the response pseudotime to DEX. To achieve this, we excluded the data from batches 2 and
3, resulting in 264,545 cells. Furthermore, we only used 6,571 genes identified through the differential
gene expression analysis using DESeq2 in any of the treatments or cell-types. Next, to correct chemistry
effects, we performed standard log-normalization for each subset (split by chemistry) followed by integrating
datasets together using seurat (V3) for each cell type, separately. The finalized normalized data were used
to calculate DLDA axes based on the following formula :

g(x)a = i (ﬂA(ﬂCi) éﬂB(ﬁ)) (9% —(f(l"z‘)) ’, ()

i=1 v

Where the subscripts of A and B represent the two conditions considered in each contrast, respectively;
i1; denoting mean gene expression of the i, gene for A, B or across groups and &; meaning standard
deviation of the iy gene across conditions. Here ~; is an indicator variable, assigning to 1 if the i,
gene is a significant DEG in the contrast of A versus B or 0 otherwise. Note that the left term of the
summation is a weight that is exactly a standardized effect size, and the right term evaluates for a given
gene how far it is from the midpoint between all the cells. By ignoring the off-diagonal terms and only
considering genes that are differentially expressed, DLDA achieves a more robust classification performance
when the number of samples available for training is relatively limited. While this approach assumes the
shortest Euclidean distance alignment between the centroids of the treated and untreated cells, it should
be a reasonable assumption for short time-periods (here 6 hours), compared to learning a complex curved
one-dimensional manifold in a high dimensional space. This assumption provides a more robust and
stable trajectory followed by the cells from the control to the treated state when we iteratively repeat the
procedure resampling the data, compared to more complex nonlinear trajectory methods or using a full
covariance matrix LDA approach (results not shown here). After the DLDA representing the trajectory
pseudotime is calculated for each cell-type and treatment, we use a sliding window approach (10% cells in
each window, sliding along the defined pseudotime with a step of 0.1% cells), we analyzed gene expression
dynamic changes along the response pseudotime within each treatment for each cell type separately and
identified different dynamic patterns of gene expression using the k-means algorithm

Data normalization for genetic analyses

For downstream genetic analyses, we first removed all lowly-expressed genes, defined as having less than
0.1 CPM in more than 20% of the samples in each condition, separately. We quantile-normalized the count
data using the voom function in the limma v3.44.3 package [86] in R 4.0 and regressed out the following
confounding factors: experimental batch, sex, age, and top three principal components of genotypes in
each cell type-treatment combination, separately.

For gene expression variability, for each gene-treatment-cell type combination, we discarded data from
batches represented by less than 3 individuals. We considered genes with gene expression variability
measures available for at least 20% of remaining individuals in each treatment-cell type combination.

24


https://doi.org/10.1101/2021.09.30.462672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462672; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We quantile-normalized the data using the voom function in the limma v3.44.3 package [86] in R 4.0.
We regressed out the following confounding factors on the subset of genes with no missing data across
all individuals in each condition: experimental batch, sex, age, and top three principal components of
genotypes processing each cell type-condition combination and performed PCA on variability residuals to
use as covariates in variability-eQTL mapping. Mean gene expression estimates were processed using the
same pipeline as gene expression variability data.

cts-eQTL mapping

We used FastQTL v2.076 [76] to perform eQTL mapping on gene expression residuals calculated for each
cell type and condition as outlined above. For each gene, we tested all genetic variants within 50 kb of
the transcription start site (TSS) and with cohort minor allele frequency (MAF)> 0.1. We optimized
the number of gene expression PCs in the model to maximize the number of eGenes across all conditions
combined. The model that yielded the largest number of eGenes included 4 gene expression PCs. eQTL
discovery for mean and variability data was performed similarly, except we modelled quantile-normalized
data and regressed out the effects of experimental batch, sex, age, and top three principal components
of genotypes and PCs of residuals in the FastQTL model. The model that yielded the largest number of
significant genes at 10% FDR included 5 PCs of residuals for variability and 7 PCs of residuals for mean
data.

Multivariate adaptive shrinkage

To improve power of eQTL discovery by taking advantage of parallel measures of genetic effects across
many cell types and conditions, we employed the multivariate adaptive shrinkage (mash) method using the
mashr package v.0.2.40 in R v4.0 [106]. As input, we provided the genetic effect size estimates from FastQTL
analysis in each cell type-treatment combination, and their corresponding standard errors calculated as
absolute effect size estimates divided by its z-score. We kept the gene-variant pairs with estimates across all
cell types and conditions and eliminated the two genes causing a singular matrix. We fitted mash across
all 20 cell type-condition combinations on a random subset of 200,000 gene-SNP pairs providing both
canonical and data-driven covariance matrices (the latter estimated using mashr in-built cov_ed function
on strong eQTLs from full data set, defined as those with ashr local false sign rate (LFSR)< 0.05). We
considered gene-variant pairs with posterior LFSR< 0.1 to be eQTLs. To analyze sharing of genetic effects
across all conditions, we considered the direction of genetic effect across all conditions. Genetic effects are
shared across conditions if they have the same sign and are significant in at least one of the conditions
considered. To analyze treatment- or cell type-specificity, we focused on pairwise comparisons of genetic
effect sizes. An eQTL is specific to a condition if it is significant at LFSR< 0.1 in either condition and
either the direction of effect differs or the difference in the magnitude of the genetic effects is at least
two-fold. A gene is considered shared/specific if at least one eQTL for that gene is shared/specific across
the given set of conditions. To discover response eQTLs (reQTLs) we considered the pair-wise union of
significant eQTLs in each of the 16 treatment-control combinations. We defined reQQTLs as genetic variants
whose effect size on gene expression differed by at least two-fold between treatment and control conditions.
Mash analyses on mean and variability estimates were conducted following this pipeline.

DLDA-eQTL mapping

For mapping dynamic eQTLs that have genetic effects on gene expression interacting with pseudotime,
we first equally divided cells in one immune treatment into three tertiles of the corresponding DLDA
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pseudotime. The three tertiles denoted 1, 2 and 3, represent early, middle and latter response pseudotime,
respectively. Then, we mapped eQTLs interacting with these representative tertiles as dynamic eQTLs
across cell types in the corresponding immune treatments as follows:(1) eQTLs interacting with LPS
pseudotime were identified in cells treated with LPS; (2) eQTLs interacting with LPS+DEX pseudotime
were identified in cells treated with LPS+DEX; (3) eQTLs interacting with PHA pseudotime were identified
in cells treated with PHA; and (4) eQTLs interacting with PHA4+DEX pseudotime were identified in cells
treated with PHA4+DEX. To do this, we summed gene expression data in each of the three DLDA bins for
individuals with at least two bins containing at least 5 cells for each treatment. We considered genes with
>0.1 CPM for at least 20% of remaining individuals in each treatment-cell type combination. We quantile-
normalized the data followed by regressing out the following confounding factors: experimental batch,
sex, age, and top three principal components of genotypes processing each cell type-condition combination
separately. To identify genetic variants interacting with each DLDA, we fitted a linear model using the
1m function in R 4.0 that included both the genotype dosage and the DLDA bin (numerically encoded as
1-3), as well as their interaction: Expression dosage + DLDA bin + dosage*DLDA bin in each condition
separately. Using the same cis-regions to the above analysis, we perform the interaction analysis for all
genetic variants within 50 kb of the transcription start site (T'SS) in the genes. We then applied Storey’s
g-value method on the p-values for the interaction term using a stratified FDR approach on significant
and non-significant eGenes (from the FastQTL analysis, Figure S50).

Data and code availability

All the data produced in this manuscript is being submitted to dbGAP (accession number phs002182.v2.pl).
Code and scripts used to make the results are available at https://github.com/piquelab/scaip and
https://github.com/piquelab/SCAIP-genetic.
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