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Severe large-scale disease and pest infestations in agricultural regions can cause significant
economic damage. Understanding if and when disease control measures should be taken in
the presence of risk and uncertainty is a key issue. We develop a framework to examine
the economically optimal timing of treatment. The decision to treat should only be under-
taken when the benefits exceed the costs by a certain amount and not if they are merely
equal to or greater than the costs as standard net-present-value (NPV) analysis suggests.
This criterion leads to a reduction in fungicide use. We investigate the effect of the model
for disease progress on the value required for immediate treatment by comparing two stan-
dard models for disease increase (exponential and logistic growth). Analyses show that the
threshold value of benefits required for immediate release of treatment varies significantly
with the relative duration of the agricultural season, the intrinsic rate of increase of the dis-
ease and the level of uncertainty in disease progression. In comparing the performance of the
delay strategy introduced here with the conventional NPV approach, we show how the degree
of uncertainty affects the benefits of delaying control.
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1. INTRODUCTION

Diseases of agricultural crops continue to cause severe
losses and to pose a threat to food security and to the
sustainability of crop production across large regions
of the world (Strange & Scott 2005; Oerke 2006;
Gilligan 2008). Some of these threats involve emerging
or re-emerging pathogens, exemplified by new strains
of cassava mosaic virus in Africa (Strange & Scott
2005) and of wheat stem rust (Strange & Scott
2005; Wanyera et al. 2006) in Africa, Asia and the
Middle East. The risks, however, of severe enough
outbreaks to merit control over large regions often
vary from year to year. Such variability reflects the
inherent stochasticity of epidemics as well as uncer-
tainties associated with weather patterns. For many
crop diseases, chemical control remains the principal
means of disease reduction and eradication (Cook
et al. 1999; Paveley et al. 2008). Chemical control
encompasses a wide range of pesticides and fungicides.
Whereas, routine application of chemical control may
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once have been possible when labour and materials
were comparatively cheap, increasing costs together
with concerns about hazards to non-target organisms
and the risks of selecting for fungicide resistance in
target populations militate against routine use in
many crops (Waard et al. 1993). How and when, if
at all, to deploy expensive methods for disease control
over large regions in the face of uncertainty remains a
major scientific challenge. The problem is important
for individual farmers and for advisory and regulatory
agencies that seek to optimize the deployment of dis-
ease control over large areas. Here, we focus on the
problem from the perspective of a regulator charged
with optimizing the benefit to a population of
growers. The challenge lies in combining epidemiologi-
cal models for disease outbreaks with economic
models in the presence of uncertainty, in order to
identify the optimal timing to apply control. Clearly,
failure to control early enough when an outbreak
occurs can lead to severe crop loss. Unnecessary
deployment also incurs direct losses through costs
for fungicides, pesticides and additional labour; it
may also lead to indirect costs when over-use of a
chemical results in selecting for resistant strains in
the target population.
This journal is q 2010 The Royal Society
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In this paper, we focus on how to optimize the timing
of a single application of a treatment to a regional agri-
cultural monoculture or perennial crop, over which
there is a risk of severe disease. We motivate the ana-
lyses for systems in which a single application of a
fungicide can be used to control diseases such as
rusts, and certain mildews and blights. Typical
examples include, but are not limited to, Phakospora
pachyrizi and Microsphaera diffusa on soybean crops
and Rhizoctonia solani, which causes sheath blight on
rice. We consider fungicidal treatments with protectant
and/or eradicant action (Cook et al. 1999; Leyra et al.
2008; Paveley et al. 2008) that differ in their epidemio-
logical modes of action. Protectant fungicides, typified
by systemic activity, act to protect plants from sub-
sequent infection, while eradicants, typified by
contact fungicides, eliminate existing infections. Typi-
cal examples of fungicides with dual protectant and
eradicant activity are azoxystobin for control of
sheath blight on rice (Groth 2008), and tebuconazole
for control of powdery mildew (M. diffusa) on soybean
(Yorinori et al. 2004).

In order to couple epidemiological uncertainty
(Gubbins et al. 2000; Gilligan 2002) with economic
analysis, we adopt an options approach (Saphores
2000; Gilligan 2003; Matty et al. 2004). By evaluating
treatment as an option which can be exercised during
the season, we go a step further than the standard
cost–benefit analysis, which identifies the optimal
treatment time as the point at which the benefits of
treatment are merely equal to or greater than the
costs. We show that, if the threshold levels of benefits
over costs have been met, meaning the expected gain
from immediate treatment is positive, there is still
value in waiting. This supports the conclusions of
Kuosmanen et al. (2006) and Lichtenberg & Zilberman
(1986), who advocate a reduction in the use of pesti-
cides in the form of a delay to treatment. The delay
hinges upon key features of the system, namely uncer-
tainty in disease progression, irreversibility of the
decision to treat, and flexibility to delay treatment.

The convention in options analysis of biological sys-
tems is to assume exponential increase in the state
variable (i.e. the number of diseased hosts). In practice
most systems exhibit some form of density dependence,
even early in the spread of disease, as the availability of
susceptible host tissue becomes limiting (Burdon &
Chilvers 1982). Accordingly, we introduce a simple
form of density dependence in disease increase (mod-
elled by logistic growth) and show how this can
profoundly affect the conclusions about when to treat
compared with the conventional assumption of
exponential increase in disease.

The delay strategy based upon the real options
approach maximizes the expected gain in the presence
of uncertainty. We examine the effect of applying the
delay strategy to epidemics with different degrees of
uncertainty, as well as the impact of density-dependent
compared with density-independent growth on decision-
making. Finally, we compare the standard, cost–benefit
approach to the real options approach for decision-
making, and discuss the relevance of our results to
disease control policies.
J. R. Soc. Interface (2010)
2. MODEL

Consider agricultural disease outbreaks in a particular
crop at the landscape scale, and a decision-making
agency with the authority to decide whether or not
treatment should be administered. Given a suitable
(i.e. biologically validated) model for disease spread,
the decision-making agency requires (i) knowledge of
the current status of disease and (ii) estimates of the
model parameters in order to predict future spread of
disease. Here, we consider two classes of parameters;
one is concerned with the expected rate of spread of dis-
ease, the other is a measure of the within-season
variability in the disease dynamics. The latter is also
known as the volatility of disease increase (Gilligan
2003). Estimates of the parameters may be derived
from the current epidemic, for example using con-
ditional least squares or maximum likelihood methods
(Marcus 1991; Forsyth 2000). Exceptionally, for some
recurrent epidemics, estimates of the parameters may be
known from previous disease outbreaks (Kleczkowski &
Gilligan 2007). Knowing the current and probable
future state of the epidemic, the decision-making
agency can either approve or postpone the decision to
deploy disease control. We assume that the objective
for the agency is to maximize the expected return for
that season in the presence of uncertainty. The seasonal
return depends upon the quantity of healthy yield, the
market price of the crop and the cost of spraying the
region with fungicide. The degree of uncertainty over
the market price of the crop at the end of the season
and the cost of spraying the region with fungicides
can be minimized by entering a contract at the begin-
ning of the season, to sell at an agreed price at
harvest. This type of arrangement, known as a forward
contract, provides the seller with insurance from the
purchaser in the form of a margin account (Hull
2002). Hence, we assume that the market price and
treatment cost are easily quantifiable. Therefore, the
only major concern for the grower would be the quan-
tity of healthy yield, which we assume is directly
related to the level of disease present during the season.

Disease spread is highly stochastic. The stochasticity
derives not only from environmental fluctuations, such
as weather variability and soil quality, but also from
demographic uncertainty, associated with the trans-
mission of infection. Many experimental data show
that the cumulative number of infected sites typically
follows a logistic growth curve, equating to rapid
increase in infections when susceptible sites are abun-
dant and a deceleration of the epidemic as susceptible
sites become scarce. In larger systems, where the
number of susceptibles is very large during the time
scale of control, density dependence is less evident.
We assume that disease is spread from sources of infec-
tion to neighbouring fields by movement of pathogen
propagules, such as spores. Subsequent amplification
within an infested field provides a further source for
pathogen spread. The unit of infection (I(t)) may
vary from a single plant to an entire field, depending
upon the scale of interest (Gilligan 2008).

The expected return for the season is related to the
treatment costs (denoted by D) and the quantity of
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healthy yield, which in turn is related to the severity of
disease and the action of the fungicide. Once fungicides
have been applied the costs of treatment (D) cannot be
reversed. The treatment costs (D) are therefore con-
sidered to be irreversible. To quantify the positive
effect of treatment on yield, we use a value function
(V ¼ V(I, t)). The value of treatment is the product of
the yield gained from releasing the fungicide at time t
when the level of infection in the system is I(t), multi-
plied by the unit price of the commodity. The value
of treatment is then related to the amount of infection
prevented. The objective is to maximize the expected
value of treatment (the expected value is a measure of
the expected yield under uncertainty) minus the cost
of treatment (D). The flexibility in choosing the
timing of treatment in combination with uncertainty
about the value of treatment (V ) and irreversibility of
treatment costs (D) creates a value known as the real
option value in the finance literature (Wesseler 2003).
The value of the option to treat depends on the current
value of treatment as well as the value of treatment at a
later time. It is always greater than or equal to the cur-
rent value of treatment (Hull 2002). We denote the
value of the option to treat by F(V, t0), and we require
a rule that maximizes this value. Since the net gain
from treatment is the difference between the value of
treatment at future time t* and the treatment costs,
V(I, t*) 2 D, we wish to maximize the value of the
option to treat, that is

FðV ; t0Þ ¼ max EððV ðI ; t�Þ � DÞe�rðt��t0Þ; 0Þ; ð2:1Þ

where E denotes the expected value of the net benefit of
treatment under uncertainty and r is a discount rate
that is conventionally used in economic models,
whereby expenditure today has greater weighting than
the same expenditure at some time in the future. Note
the value of the option to treat is uncertain and is influ-
enced by the point in time in the future when treatment
is exercised. We consider two standard functions, the
exponential and the logistic, to model the trend in dis-
ease increase. Hence for density-independent growth
the level of infection is modelled by a simple geometric
Brownian motion, given by

dI ¼ bI dt þ sI dz: ð2:2Þ

For density-dependent growth, the increase in infection
is modelled using the following stochastic logistic
differential equation:

dI ¼ bI 1� I
Imax

� �
dt þ sI dz; ð2:3Þ

where b is the transmission rate of the pathogen, s

is the level of uncertainty in the path of infection,
Imax is the maximum amount of infection relative to
the environmental carrying capacity (Marcus 1991),
and dz is a Gaussian distributed Wiener process, with
zero mean and infinitesimal variance dt, which is
used to model the background fluctuations in disease
severity (see the electronic supplementary material).
The model in equation (2.3) is analogous to an SI
(susceptible-infected) epidemiological model.
J. R. Soc. Interface (2010)
3. METHODS

The objective of the decision-making agency is to maxi-
mize the option to treat that is given by equation (2.1),
reproduced here for convenience:

FðV ; t0Þ ¼ max EððV ðI ; t�Þ � DÞe�rðt��t0Þ; 0Þ; ð3:1Þ

where E denotes the expectation and r is a discount
rate. For every model of disease increase (exponential
and logistic increase), the value of treatment, V(I, t),
is given by

V ðI ; tÞ ¼ pI ðtÞf ðtÞ; ð3:2Þ

where p is the monetary gain in yield per unit of infec-
tion prevented by treatment, I is the level of infection at
time t and f(t) is the scaled value of the expected value
of the amount of infection averted by treatment (see the
electronic supplementary material). Since I follows the
Ito process (Dixit & Pindyck 1994) given by equation
(2.2) or equation (2.3), which incorporates both the
demographic trend and uncertainty of the epidemic
progression, V(I, t) follows the process:

dV ðI Þ ¼ AðV ðI Þ; tÞdt þ BðV ðI Þ; tÞdz ð3:3Þ

(see the electronic supplementary material for further
details and the assumptions underlying the Ito process).

We formulate the decision problem of whether to
treat or postpone the treatment as an optimal stopping
problem (Wesseler 2003). Using standard methods
from dynamic programming and Ito calculus (Dixit &
Pindyck 1994), we show that solving the above problem
(equation (3.1)) is equivalent to solving the following
free boundary value problem (see the electronic
supplementary material for details):

@F
@t
þ1

2
B2ðV ðI Þ;tÞ@

2F
@V 2þAðV ðI Þ;tÞ@F

@V
�rF ¼0: ð3:4Þ

In addition, F(V, t) must satisfy the following boundary
conditions:

Fð0; tÞ ¼ 0; ð3:5Þ
FðVf ; tÞ ¼ Vf � D ð3:6Þ

and
@F
@V
ðVf ; tÞ ¼ 1; ð3:7Þ

in which equations (3.5)–(3.6) follow naturally from the
formulation of the problem while equation (3.7), known
as the smooth-passing condition, is typical for optimal
stopping problems (Dixit & Pindyck 1994). The princi-
pal parameters and variables used in the model are
summarized in table 1.
4. RESULTS

The results presented here give insight into optimal
timing of treatment for disease control in an agricul-
tural landscape during a single season. Given some
prior knowledge of the epidemiological and economic
parameters, we can calculate the value of treatment
required for which immediate treatment is optimal.
The decision to treat depends upon the progression of
the epidemic, since we assume that the cost of treat-
ment (D) is known. The value of treatment at any
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Figure 1. Relationship between the current value of the option
to treat (F) and the value of treatment (V ) for varying dis-
ease transmission rate (b) for logistic increase in disease.
The dashed line represents the intrinsic value of the option
(V 2 D) and the dotted lines are the projections from F (at
F ¼ V 2 D) on V to identify the threshold value of treatment
(Vf). Vf(b ¼ 0.1) and Vf(b ¼ 0.05) are the threshold values of
treatment when the disease transmission rate (b) is equal to
0.1 (0.05). Default parameter values are T ¼ 100 d (duration
of the epidemic), a ¼ 3 d (duration of protectant activity of
treatment), r ¼ 0.1 d21 (discount rate), I0/Imax ¼ 0.05 (initial
proportion of infection relative to the environmental carrying
capacity), D ¼ 20 (costs of treatment), and p ¼ 1 (monetary
gain in yield per unit of averted infection). The relative mag-
nitudes for costs of treatment and monetary gain from yield
(through application of treatment) are expressed in arbitrary
units.

Table 1. Summary of variables and parameters.

symbol definition

variables
I(t) the level of infection at time t
V(I, t) the value of treatment at time t
F(V ) the value of the option to treat
Vf (t) the threshold value for immediate treatment at

time t
parameters
p the monetary gain in yield per unit of averted

infection
D the costs of treatment
r the discount rate
b the transmission rate of infection
s the level of uncertainty in the path of infection
Imax the environmental carrying capacity
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time is therefore estimated from the current level of
infection (using equation (2.2) or equation (2.3)).

Using a successive over-relaxation algorithm (Wil-
mott et al. 1995), we solved the free boundary value
problem (equations (3.4)–(3.7), §3) to obtain a value
of the option to treat (F(V, t)) at different times and
for different levels of infection. We also calculated the
threshold value of treatment Vf at different times. At
a given time t, treatment should be applied if the
value of treatment V is greater than or equal to the
threshold value Vf (see the electronic supplementary
material). It follows that Vf is the value required for
immediate treatment, which varies with the economic
and epidemiological parameters appropriate to the par-
ticular host–pathogen system. We analysed the
sensitivities of the responses to changes in epidemiologi-
cal parameters (b, s) for both density-independent
(exponential) and density-dependent (logistic) increase
in infection and disease. Here we summarize the
principal effects.

Changing the transmission rate (b) has a marked
effect on the threshold value required for immediate
treatment (Vf). The effect is especially pronounced
for a logistic increase in infection (figure 1): where, if
the spread of infection is rapid, treatment should be
applied early. Moreover, there are substantial differ-
ences between the threshold values of treatment
(Vf(b ¼ 0.05),Vf(b ¼ 0.1)) and the treatment value V,
where the value of the option is said ‘to be in the
money’ i.e. V .D. These differences indicate that con-
sideration of uncertainty, irreversibility and flexibility
generates huge additional value (figure 1). For a given
value of the transmission rate, the threshold value of
treatment differs if disease increase is modelled as a den-
sity-dependent function (e.g. using the logistic
function) or as a density-independent function (using
an exponential function). Our results show that it is
not optimal to treat early in the epidemic (i.e. t , t*),
when the increase in disease is assumed to be exponen-
tial (see the electronic supplementary material).
However this is not the case with logistic increase,
where it may be optimal to treat even at an early
stage of an epidemic. It follows that selecting an appro-
priate and biologically plausible model for disease
J. R. Soc. Interface (2010)
increase is important in devising effective models for
disease control.

Our results show a concave response in the threshold
value of treatment (Vf) as a function of the level of
uncertainty in the path of infection (s) when disease
increase is logistic (figure 2a; see also the electronic sup-
plementary material). The concavity infers that there is
a critical value s* such that for s . s* the severity of
infection is not only highly variable and hence
uncertain, but that the level of infection will almost
surely decrease towards the end of the season, providing
the season is long enough to allow extinction (see
the electronic supplementary material). The value of
s* depends upon the value of the transmission rate
(b). For relatively short seasons, Vf is an increasing
function of the level of uncertainty (s) for both expo-
nential and logistic models for disease increase.

The results above show that, at any point in the
season, there exists a level of infection above which it
is optimal to treat. If the level of infection has not yet
reached that threshold, it is then optimal to wait
longer. The option is said to have a value of waiting
(named the time value in the economic literature),
which derives from the uncertainty in disease progress.
The waiting time reflects the desire to acquire more
information about disease progress before carrying out
treatment.

Using the real options approach, we are able to esti-
mate the time of release of treatment during the season
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that maximizes our expected gain in the presence of
uncertainty about the future of disease progression.
Since expectation is an average, it provides little infor-
mation on the variability of the return among seasons
or across independent sites. To demonstrate how this
variability could play a role in policy decisions, we
consider replicated epidemics with a range of values of
the level of disease uncertainty s. Each epidemic
J. R. Soc. Interface (2010)
simulation produces a stochastically evolving value
function (V(I, t), see the electronic supplementary
material). Using the solution derived numerically for
F(V, t) (from equation (3.7)), we obtain a correspond-
ing value for the option to treat. From this we derive
a time-value, which is the value of the option minus
the intrinsic value of the option to treat (figure 3).
The point at which the time-value drops to zero is the
time at which treatment is optimal.

To illustrate results on the optimal time to release
treatment, we first consider the effect of the level of dis-
ease uncertainty (s) on the optimal treatment time
conditional upon release of treatment (see the electronic
supplementary material, figure S2). Treatment is
released only if the Vf criterion is satisfied. This hap-
pens at time t if the value of treatment (V(t)) is
greater than or equal to the threshold value of treat-
ment (Vf(t)). On average, the optimal time to treat is
a decreasing function of the level of disease uncertainty
but the variability changes with the model for disease
increase (logistic or exponential growth). For logistic
increase, the variability in the optimal time of treat-
ment is a concave function of disease uncertainty (see
the electronic supplementary material, figure S2a). In
fact, for low values of s (more predictable epidemics)
the variability of the value of the time of treatment is
an increasing function of disease uncertainty. Whereas
for high values of s (more unpredictable epidemics),
variability of treatment time is a decreasing function
of disease uncertainty. For exponential increase, the
variability of the value of the time of treatment is
shown to be a decreasing function of disease uncertainty
(see the electronic supplementary material, figure S2b).
Next we analyse the effect of the level of disease uncer-
tainty on the probability of exercising the option to
treat (see the electronic supplementary material,
figure S3a,b). For convenience, we show the probability
that the condition is not met. The more unpredictable
an epidemic is, the less likely it is to reach the level of
infection required for optimal release of treatment (see
the electronic supplementary material, figure S3a,b).
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We compare the real option approach with an
alternative decision criterion, the standard cost–benefit
approach in which treatment can be released as soon as
the value of treatment is greater than the cost. Unsur-
prisingly, the divergence in the probability of treating
on the real option over the standard cost–benefit
approach increases with the level of disease uncertainty
s (see the electronic supplementary material, figure
S3c,d). The effect is more pronounced for epidemics
with density-independent than density-dependent
growth rates when s is large.

The gains from waiting for the standard cost–benefit
and real option approach are defined, respectively, as

W ðV . DÞ ¼
ðTw

0
e�r tðD � V ðtÞÞdt ð4:1Þ

and

W ðV . Vf Þ ¼
ðTw

0
e�r tðVf ðtÞ � V ðtÞÞ dt; ð4:2Þ

where Tw is the first time when either (V(t) . D) or
(V(t) . Vf (t)).

For any given disease outbreak, one of the following
three scenarios will be observed:

(1) V , D for the entire season.
(2) V � D at some point during the season but V , Vf

for the entire season.
(3) V � Vf at some point during the season.

The gains from waiting reflect the gains from delaying
treatment, in which the decision-maker balances the
short-term loss with an expected long-term gain. The
differences between average gains from waiting under
the real option approach and the standard cost–benefit
approach are larger for the logistic model than for the
exponential model (see figure 4). If disease increase is
a density-independent (exponential) process, a
decision-making agency would have more incentive to
aim for the long-term expected gain (real option
approach) than if disease increase is a logistic process.

5. DISCUSSION

We have focused on the timing of a single application of
treatment in a regional agricultural setting, over which
there is risk of severe disease in some years but not
necessarily in all. By allowing for uncertainty in the
progression of the disease within a single season we
were able to value the option to treat. Our results
show that, even if the expected gain from immediate
treatment is positive, there may still be value in waiting.
The real option approach applied here identifies a delay
strategy that maximizes the expected gain in any single
season in the presence of uncertainty, while also explor-
ing differences in disease increase. Whereas most
theoretical analyses of real option approaches in natural
systems assume exponential increase, many epidemics
are intrinsically nonlinear, with density dependence
limiting the availability of susceptible tissue. By using
the logistic function as a simple exemplar of density-
dependent increase in disease, our results show
marked differences between the two models. In
J. R. Soc. Interface (2010)
particular, we have shown that the qualitative response
to the level of uncertainty in the path of infection of
both the threshold value of treatment (Vf) and the
optimal time of treatment are highly dependent upon
the model for disease increase (figure 2; see the elec-
tronic supplementary material, figure S2).

For systems in which the disease severity each season
is highly predictable, the probability of exercising the
option to treat over the whole season is high (see the
electronic supplementary material, figure S3). More-
over, when it is never optimal to exercise the option
to treat (V , Vf over the entire season), it was shown
that the average gains from waiting under the real
option approach and the gains under the cost–benefit
approach are almost identical (figure 4c,d). The result
holds for both disease models. It follows that for
highly predictable epidemics, a decision-making
agency would have more incentive to adopt a delay
strategy (real option approach) than treating early
under a cost–benefit approach. Such a choice would
be based not only on the high probability of exercising
treatment over the whole season, but also on the
higher expected return secured by the real option
approach (figure 4e,f ).

For highly volatile systems, the probability of exer-
cising the option to treat is very low (see the
electronic supplementary material, figure S3). If a
decision to delay treatment is taken, the large degree
of variability in the severity of the epidemic each
season may mean that the threshold value Vf that trig-
gers treatment may not be attained. In this case, there
may be an economic gain in treating earlier according to
a cost–benefit approach but importantly this cannot be
known in advance. However, when V . Vf is satisfied, a
very high benefit occurs from delayed treatment (figure
4e,f ).

The problem confronting a decision-making agency
in controlling epidemics under uncertainty is whether
to treat early, on the assumption that an epidemic
might occur, or to delay the release of treatment until
more is known about the likely progression of the epi-
demic. The solution depends upon the agency taking
account of risk. Rather than a firm decision not to
treat throughout the whole season, a decision-making
agency may instead recommend continuous monitoring
of the level of disease incidence against the threshold
level required for immediate treatment. It is important
to note that the threshold value Vf required for
immediate treatment changes over time.

Further, our analyses show that the threshold value
of treatment (Vf) varies significantly with the level of
uncertainty in the path of infection (s) and the epide-
miological model used to characterize the progression
of disease. One of the main factors influencing the quali-
tative behaviour of Vf, with respect to the level of
uncertainty s, is the relative duration of the cropping
season with respect to the transmission rate of the
pathogen. For short cropping seasons, the threshold
value of treatment increases with the level of uncer-
tainty in the path of infection, regardless of the
epidemiological model. This result is consistent with
common financial options, in which the exponential
function is routinely used. However, for longer seasons,
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Figure 4. Gains from waiting under the standard (asterisks) and the real option (open circles) decision approaches for different
values of the level of uncertainty in disease severity (s), under an assumption of logistic (a,c,e) and exponential (b,d,f) increase in
disease. Gains are shown, respectively, for the three possible outcomes (scenarios) of the treatment value. First scenario (a,b):
V , D for the entire season. Second scenario (c,d): V . D at some point during the season but V , Vf throughout the entire
season. Third scenario (e,f ): V . Vf at some point during the season. The edges of the error bars show, respectively, the fifth
and ninety-fifth percentiles, whereas the circle and the star denote, respectively, the mean value of the gains from waiting
under the real option approach and the standard approach. In (c,d), the gains under the standard approach represent the
economic gains obtained when V . D.

Economically optimal timing for crop disease M. L. N. Mbah et al. 1427
the density-dependent model, appropriate for many epi-
demics, leads to a concavity in the response of Vf to s
(figure 2). Whether or not a season is defined as long,
depends upon the transmission rate (b) inter alia with
a long season being one in which there is a high prob-
ability of disease extinction under a logistic stochastic
process (see the electronic supplementary material).

The model presented here is an initial step towards
understanding how irreversibility and flexibility affect
optimal treatment decisions in agriculture under
uncertainty, for which we have introduced a density-
dependent model for disease increase. Further work is
required to incorporate additional realism to the
J. R. Soc. Interface (2010)
system. For instance, cryptic infection (in which
infected individuals may transmit infection without
exhibiting symptoms) is assumed to have very little or
no effect on this model. This contrasts with many
pathogens (Gilligan et al. 2007) in which there is a
delay between infection and symptom expression. The
model could also be extended from a single to multiple
seasons by establishing how the initial inoculum for one
season depends upon the epidemic dynamics in the pre-
vious season (Gilligan et al. 2007). Several other
adaptations of the model may be introduced to increase
realism in the decision-making process. For example,
the approach may be adapted to introduce a decision-
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maker’s risk preference (e.g. risk aversion). This may be
done by modifying the objective function (utility func-
tion) so as to account for the effect of the decision-
makers’ risk attitude on the valuation of treatment,
when the path of disease progression is uncertain.
Other adaptation may replace a central agency that dic-
tates the strategy for the entire landscape with locally
informed but spatially coupled decisions that take
account of heterogeneities in the landscape (Holt et al.
2006). Further work may also be undertaken to change
the criterion for decision-making in order to distinguish
public (as assumed above) from private benefits and
costs of disease control (Perrings et al. 2005).

This work was supported by a Gates Cambridge Scholarship
(MN-M) and a BBSRC (Biotechnology and Biological
Research Council) Professorial Fellowship (CAG) which we
gratefully acknowledge. We are grateful to three anonymous
referees for their helpful and constructive comments which
have greatly improved the readability of the manuscript.
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