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ABSTRACT

Allosteric nucleic acid ligases have been used previ-
ously to transform analyte-binding into the formation
of oligonucleotide templates that can be amplified
and detected. We have engineered binary deoxyri-
bozyme ligases whose two components are brought
together by bridging oligonucleotide effectors. The
engineered ligases can ‘read’ one sequence and
then ‘write’ (by ligation) a separate, distinct sequence,
which can in turn be uniquely amplified. The binary
deoxyribozymes show great specificity, can discrimi-
nate against a small number of mutations in the effec-
tor, and can read and recode DNA information with
high fidelity even in the presence of excess obscuring
genomic DNA. In addition, the binary deoxyribozymes
can read non-natural nucleotides and write natural
sequence information. The binary deoxyribozyme
ligases could potentially be used in a variety of app-
lications, including the detection of single nucleotide
polymorphisms in genomic DNA or the identification
of short nucleic acids such as microRNAs.

INTRODUCTION

Allosteric nucleic acid enzymes have been generated previ-
ously by both design and selection. Enzymes whose activities
are modulated by small molecules have been generated by
fusing ribozyme domains with allosteric domains [aptamers,
yielding aptazymes; (1–10)], while enzymes whose activities
are modulated by oligonucleotides have been generated by the
strategic insertion of hybridization sites (11–19). In most
instances, the modulation of catalytic function has relied on
the analyte-dependent re-organization of secondary or tertiary
structure. In contrast, a ‘maxizyme’ has been developed in
which the modulation of catalytic function relied on the
analyte-dependent formation of a specific quarternary struc-
ture (20). In this design, two half-ribozymes were brought
together by a bridging oligonucleotide in order to form an
active hammerhead ribozyme (Figure 1).

We have engineered a DNA ligase to function in a manner
similar to the maxizyme, in that the half-deoxyribozymes can
be activated by a bridging oligonucleotide to carry out a liga-
tion (rather than a cleavage) reaction. The engineered deoxyri-
bozyme can recode nucleic acid information by ‘reading’ one
sequence through hybridization and then ‘writing’ a separate
sequence by ligation (Figure 1). Since the newly ligated
sequence can be a unique template for amplification, the ligase
maxizyme can potentially find use in recoding short, hard-
to-detect sequences (such as antisense oligonucleotides or
microRNAs) into longer templates that can be readily detected
by PCR.

As a proof-of-principle, we show that the ligase maxizyme
is highly and specifically activated by cognate oligonu-
cleotides, functions faithfully against a background of gen-
omic DNA, and can even read oligonucleotides containing
modified nucleotides.

MATERIALS AND METHODS

Sequences of deoxyribozymes, effectors and substrates

All of the ligase maxizymes were composed of two oligo-
nucleotides, which we designate as the left (L) and right (R)
subunits. The sequences of the oligonucleotides are as
follows: dR8(L), 50-CGAAGACAGGTTGTGGCCGCAT-
TAAAA-30; dR8(R), 50-AAAAAAACGTTGACCTCTGCT-
TAGTC-30; dR3(L), 50-CGAAGACAGGTTGTGGAGGTTG-
CCGCATTAAAA-30; dR3(R), 50-AAAAAAACGTTGGCTT -
CCAACACTGCTTAGTC-30; dR3.1.5(L), 50-CGAAGACA-
GGTTGTGTTGGTTGCCGCATTAAAA-30; and dR3.1.5(R),
50-AAAAAAACGTTGGCTTCCTTCACTGCTTAGTC-30.
The sequence of the forward effector oligonucleotide, 18N, is
50-TTTAATGCCGTTTTTTT-30. The sequence of the reverse
effector oligonucleotide, 19N, is 50-GACTAAGCACCTGT-
CTTCG-30. There are two substrate oligonucleotides for the
ligation reactions. The 50 substrates are terminated with a
30-phosphorothioate (PS) group while the 30 substrates carried
a 50-iodine (I) group. The sequences of the substrates for
the ‘forward’ reaction are KSS2, 50-TACATGTCTATC-
GATCTGACTAAGCACC-PS-30, and 5I.8.c14.m1, 50-I-TG
TCTTCG-30. The sequences of the substrates for the ‘reverse’
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reaction are 3PS.18N.ol1, 50-TTTTAATGCCG-PS-30; and
5I.18N.ol2, 50-I-TTTTTTTACACTTACGAACGT-30.

The non-natural ligase maxizyme is composed of the
oligonucleotides dR8b(L), 50-CGAAGACAGGTTGTGGCC-
GCATTiCAAA-30; and dR8b(R), 50-AAAiCAAACGTT-
GACCTCTGCTTAGTC-30 where iC indicates 5-methyl
isocytosine. The sequence of the forward effector for dR8B,
18Nb, is 50-TTTiGAATGCCGTTTiGTTT-30, where iG
indicates isoguanosine.

All natural and non-natural oligonucleotides were synthe-
sized by Integrated DNA Technologies (Coralville, IA). All
phosphorothioate- and iodine-bearing oligonucleotide sub-
strates were synthesized in our laboratory as described in
Ref. (3). All oligonucleotides were purified by denaturing
PAGE prior to use.

Ligation assays

All ligation reactions were conducted in a volume of 10 ml
at 25�C unless otherwise noted. Reactions were assembled by

the addition of 10 pmol of each deoxyribozyme subunit, and
20 pmol of DTT treated phosphorothioate-bearing substrate to
1· reaction buffer [500 mM NaCl, 50 mM Tris–HCl (pH 7.4),
10 mM MgCl2 and 500 mM DTT]. The reactions were dena-
tured for 3 min at 70�C and then cooled to 25�C at 0.2�C/s. An
aliquot of 10 pmol effector olignonucleotide or H2O (in the
effector-independent reactions) was then added, and the
reaction was finally initiated by the addition of 20 pmol of
the iodine-bearing substrate. Reactions were terminated
by the addition of 4 vol of 95% formamide containing
bromophenol blue.

Prior to the ligation reaction, the 30 substrate was
radiolabeled using 30-terminal deoxynucleotidyl transferase
(Invitrogen, Carlsbad, CA) and dideoxyadenosine 50-
[a-32P]triphosphate (Amersham Pharmacia Biotech,
Piscataway, NJ). After the ligation reaction, the ligated and
unligated species were separated on a denaturing 8% poly-
acrylamide gel containing 7 M urea. Ligation was quantitated
using a Phosphorimager (Molecular Dynamics, Sunnyvale,
CA) and ImageQuant software.

Figure 1. Design of the bidirectional ligase maxizyme. (a) The DNA ligase was designed to be a binary (two black strands) enzyme with two catalytic domains fused
by a common stem structure. When the binary strands associate to form the correct structure, the catalytic domains are formed and are capable of ligating two DNA
substrates (green and purple). (b) An effector DNA (red) can specifically base pair with the binary enzyme, stimulating the correct folded structure and catalyzing the
ligation of two substrates on the opposite end. In this way the effector oligonucleotide is recoded into a new oligonucleotide ligation product. For convention, we refer
to ligation of substrates on the ‘bottom’ and on the ‘top’ of the enzyme.
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Reactions were initially linear as a function of time, and
pseudo-first order rates were calculated from a best fit line
passing through at least three data points taken at <10% total
ligation.

Real-time PCR detection

To accommodate real-time PCR-based detection, the forward
substrates were modified. KSS2 was modified to contain a
primer-binding site at its 50 end, followed by a region
whose reverse complement could bind to a TaqMan probe
(described below), while oligonucleotide 5I.8.c14.m1 was
modified to contain a primer-binding site at the 30 end.
The sequence of the resulting 50 substrate 3PS.RTs1 was
50-GTGACTTCGTGGAACTATCTAGCGGTGTACGTGA-
GTGGGCATGTAGCAAGAGGGACTAAGCACC-PS-30, and
the 30 substrate 5I.RTs2 was 50-I-TGTCTTCGGTCATCATTC-
GAATCGTACTGCAATCGGGTATT-30. The enzyme dR8b-
(R) was also modified to carry a 30-amine modification in
order to stop nucleotide extension on 5I.RTs2 during PCR.
The sequence of the TaqMan probe PLA.TqMnPb was 50-
6FAM-TGTACGTGAGTGGGCATGTAGCAAGAGG-BHQ1-
30 where BHQ1 indicates Black Hole Quencher�1 (IDT, Coral-
ville, IA). The sequences for real-time PCR were adapted from
Ref. (21).

For real-time PCR detection, ligation reactions were con-
ducted for 5 min as described above and then directly diluted
1:50 into a real-time PCR mix. Real-time PCR was performed
on an MJ DNA Engine Opticon (Bio-Rad, Hercules, CA). The
reaction conditions were 20 mM Tris–HCl (pH 8.3), 50 mM
KCl, 0.2 mM dNTPs, 500 nM 50 and 30 primers, 75 nM
PLA.TqMnPb, 0.5· SmartCycler additive [0.1 mg/ml non-
acetylated BSA, 75 mM trehalose and 0.1% Tween-20 in
8.5 mM Tris–HCl (pH 8.0)] and 1.5 U of Platinum Taq
DNA polymerase (Invitrogen). All real-time PCRs were car-
ried out in a volume of 50 ml. The samples were heated at 92�C
for 5 min then cycled 50 times at 92�C for 1 min, 50�C for
1 min and 72�C for 1 min. The fluorescence intensity was
measured at the end of each 72�C extension step. Amplifica-
tion was controlled for using 1 pM full-length template bearing
both primer-binding sites and a TaqMan probe-binding region
as in Ref. (22).

RESULTS

Design of a binary deoxyribozyme ligase

We have previously used in vitro selection to evolve a deoxyri-
bozyme ligase that can catalyze the formation of internu-
cleotide phosphorothioester linkages (22,23). This enzyme
relies upon chemistry pioneered by Xu and Kool (24), in
which a 30 phosphorothioate displaces a 50 iodide group, result-
ing in a phosphorothioester. The deoxyribozyme has a small
hairpin stem that functions as a catalytic domain, and two
single-stranded arms that can base pair with DNA substrates.

At around the same time, the hammerhead ribozyme was
re-engineered to act as an allosteric ribozyme or ‘maxizyme’
that could be activated by hybridization to a nucleic acid
effector (20). We noted that since the structure of the deoxyri-
bozyme ligase was superficially similar to that of the ham-
merhead ribozyme it should be possible to engineer a nucleic
acid sequence-dependent ligase. The ligase maxizyme was

generated by fusing two catalytic domains via a common
stem structure (Figure 1a).

The resultant binary deoxyribozyme is composed of two
half-molecules, and the catalytic ability of either ligase
domain should depend upon the association of the half-
molecules. DNAs that bridge the substrate-binding arms
should also template the association and folding of the half-
molecules, and thus could act as sequence-specific effectors of
catalysis. Since there are two catalytic domains, either end of
the ligase can bind either substrate or effector DNAs. This
duality in turn allows one piece of sequence information to act
indirectly upon another, via the intervening enzyme
(Figure 1b).

Effector-dependent catalysis

A number of different deoxyribozyme constructs were
designed in which the specificity domains (binding arms)
accompanying the two catalytic units were different in order
to create distinct reactions on each side the maxizyme. For
convenience, we will discuss reactions in the ‘bottom’ direc-
tion (ligation on the ‘bottom’ of the construct) and in the ‘top’
direction (ligation on the ‘top’) (Figure 1b). The sequence and
stability of the stem structure connecting the top and bottom
catalytic domains was then systematically varied.

Initially, the deoxyribozymes were assayed for dependence
on an effector oligonucleotide that spanned the hybridizing
arms on the top side and activated ligation of substrates that
bound the bottom side. Of the designs that were assayed,
several proved to be constitutively ‘on’ (required no effector),
while others were constitutively ‘off’ (could not be activated
by effector). For the remainder, activation varied significantly
(Supplementary Data). Two constructs (dR8 and dR3) showed
strong effector-dependence (Figure 2).

While it should be possible for the ligase maxizymes to be
activated in either the bottom or top direction (i.e. with a
full-length effector oligonucleotide at either end), activation
was found to occur predominantly in one direction, the bottom
direction. Activation required a full-length effector oligonu-
cleotide; the two oligonucleotide substrates which compose
the effector did not stabilize the maxizyme structures (data not
shown).

The construct dR8 had a relatively fast rate of bottom liga-
tion (0.13 h�1) and showed the largest effector-dependence
(1300-fold). This construct, however, showed no detectable
ligase activity in the top direction. Construct dR3 showed
approximately the same rate of ligation as dR8 in the bottom
direction, but also had a higher rate of effector-independent
ligation. This resulted in an overall lower effector-dependence
(71-fold). Construct dR3 also displayed modest effector-
dependent ligation in the top direction (0.0017 h�1; 17-fold
activation).

We hypothesized that the differences between ligation rates
in the bottom and top directions might be due to the inherent
asymmetry of the maxizymes, and that a more symmetrical
construct might be activated in both directions. Therefore, all
bulge sequences in the internal stem structure of dR3 were
mutated to T–T mispairs, creating dR3.1.5. This modification
had no significant effect on top ligation, but did increase
activation in the bottom direction from 71- to 740-fold. The
background activity of dR3.1.5 was also significantly lower
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than dR3, presumably because T–T base-pairing is inherently
less favorable than A–A or A–G base pairing.

We attempted to measure substrate turnover by dR3 and
dR8. When monitoring ligation as a function of time, no accu-
mulation of ligation products was observed in the absence of
effector, consistent with previous results. In the presence of the
effector, some accumulation of ligation products was observed,
but it was extremely slow, yielding a maximum turnover num-
ber of �4 at >100 h (data not shown). The lack of turnover in
our system can most likely be attributed to the increased sta-
bility of base pairing between the ligated bottom product and
the deoxyribozyme (19 bp with the ligation product, as
opposed to 8 and 11 bp with the corresponding substrates).
In an attempt to optimize turnover, we shortened the lengths
of the hybridizing arms of dR3 and dR8. However, even the
deletion of 1 bp completely abolished effector-dependent liga-
tion. Conversely, increasing the number of base pairs between
the hybridizing arms and substrates resulted in higher overall
rates of catalysis but also less effector-dependent activation,
owing to the greater stability of the effector-independent
enzyme-substrate complex at room temperature. These results
confirm the extraordinary sensitivity of the ligase maxizyme to
even small changes in binding energies.

Recognition of non-natural nucleotides

In order to expand the range of information that could
be recoded by the ligase maxizyme we incorporated two
non-natural nucleotides, 5-methyl-isocytidine (isoMeC) and
isoguanosine (isoG) (25) into the effector oligonucleotide

and the substrate-binding arms of the maxizyme. A variant
of construct dR8 was first synthesized that included isoMeC
residues at two positions in its substrate-binding arms. The
resultant construct, dR8b, was assayed for its ability to spe-
cifically recognize an effector oligonucleotide that contained
two complementary isoG substitutions (18Nb). While con-
struct dR8b was highly activated by the non-natural effector
18Nb, it was much less active with effectors bearing residues
that were predicted to form mismatches, such as A–isoMeC,
C–isoMeC, G–isoMeC and T–isoMeC (Figure 3). The extent of
activation correlated well with the previously observed sta-
bilities of the mispairs (26), except for a greater than expected
activation by the T–isoMeC mispairs.

To increase the fidelity of recognition against the T–isoMeC
mispair, we increased the temperature of the reaction. At 25�C,
dR8b showed 5-fold discrimination for its cognate effector
versus the effector bearing the T–isoMeC mispair, while at
32.5�C the discrimination increased to 21-fold (Figure 4).
The increase in discrimination was accompanied by an
expected decline in the rate of ligation, since the originally
selected (22) ligase was most active near room temperature.
The decrease in activity at higher temperatures was also con-
sistent with the previous finding that the deoxyribozyme was
so finely poised that the deletion of even a single base pair led
to loss of activation.

Detection of recoded sequence information

While we have demonstrated that a deoxyribozyme can be
used to recode sequence information, the utility of this method

c

Figure 2. Secondary structures of deoxyribozymes dR8, dR3 and dR3.1.5. The two oligonucleotides composing the enzymes (black) fold into the active structure
(shown) in the presence of the effector (18N, red) in order to bind two substrates (green and purple, as in Figure 1). This orientation is designated as the bottom
orientation, and is the standardized presentation of the ligase maxizyme.
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will rely on being able to detect the transformed product.
To this end, we attempted to recode short oligonucleotide
sequences that could not be readily amplified by PCR into
different, longer amplicons. Moreover, we wished to recode

and detect one sequence against a background of non-specific
sequence information. As a proof-of-principle, we used the
ligase maxizyme dR8b that recognizes non-natural base pairs
to detect non-natural oligonucleotides obscured within vast
amounts of genomic DNA.

Oligonucleotide substrates were prepared for dR8b that,
upon ligation, would yield an amplicon that could be readily
detected by real-time PCR by extending the 50 and 30 substrates
so that they contained primer and TaqMan probe-binding sites
(Figure 5a). Ligation reactions were carried out with the
oligonucleotide effector, 18Nb, in the presence of a 1000-
fold mass excess of genomic DNA (Materials and Methods).
When dR8b-mediated ligation was allowed to proceed for only
5 min, the presence of the effector 18Nb in the genomic DNA
resulted in a 12 cycle threshold (CT) real-time PCR advantage
for the ligated product relative to amplification in the absence
of the effector (Figure 5b). This is a huge CT value relative to
typical, diagnostically relevant real-time PCR signals (21),
and corresponds to a nearly 4100-fold activation of the non-
natural enzyme by its cognate effector. Importantly, the pres-
ence of 1000-fold excess genomic DNA also decreased the
extent of effector-independent ligation (5 cycles or 32-fold).
This effect is likely due to genomic DNA sequestering
either substrate or half-enzyme molecules (by non-specific
hybridization) or magnesium (by chelation). Either mecha-
nism would decrease effective reactant concentrations,
increase the overall stringency of the reaction and thereby
increase reaction specificity.

Figure 3. Expanded base pairing in an allosteric deoxyribozyme. Construct dR8 was re-engineered to carry a non-natural nucleotide, 5-methyl-isocytidine (isoMeC),
at two positions (blue), generating dR8b. The effector was then synthesized with compensatory isoguanosine (isoG) substitutions, generating 18Nb. The adjacent gel
shows the ligation activity of dR8b with different substrates. The lower band on the gel is a radiolabeled, unligated substrate, while the higher band is the ligated
product. The lane labeled ‘t0’ is time 0 of the reaction and all subsequent lanes are 3.5 h reactions with effector variants engineered to make the indicated
base-pairings. The extent of ligation is normalized to the most active pairing, iG–iC.

Figure 4. Temperature optimization of base pair discrimination. Temperature
was increased to aid discrimination by dR8b for the correct effector, 18Nb
versus the most active competitor, 18N. Fold discrimination (bars) indicates the
ratio of ligated product in the presence of 18Nb to 18N. Circles indicate percent
ligation of substrates in the presence of 18Nb. Ligation reactions were allowed
to proceed for �16 h.
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DISCUSSION

The ligase maxizyme is a catalyst that recodes nucleic acid
sequence information: it ‘reads’ one sequence and ‘writes’
another. There are a variety of potential applications for
such a simple reagent. For example, in many instances the
detection of specific alleles by PCR suffers from background
problems due to primer binding to closely related alleles or to
other related sequences in genomic DNA (27). The ligase
maxizyme could transform individual alleles into amplicons
that were unrelated to most sequences in a genome, and
thereby reduce problems associated with background
amplification.

Nucleic acid enzymes have been engineered previously to
detect biologically relevant nucleic acids such as microRNAs
and regulatory untranslated regions (10,18,19). As the ligase
maxizyme converts short oligonucleotide sequences into
longer amplicons, it could also prove useful as a tool for
detecting therapeutic nucleic acids such as antisense, aptamers
or siRNA molecules by real-time PCR. Such a technique
might be especially useful if the therapeutic contained modi-
fied or non-standard nucleotides that were difficult to detect or
amplify by normal methods. In addition, short, natural
sequences, such as microRNA molecules that are usually
difficult to detect, could be transformed into amplicons and
then read by PCR.

The ligase maxizyme can also be viewed as a simple
machine or ‘part’ that would have a unique function in the
nascent fields of DNA computation and synthetic biology.
To date most of the various implementations of nucleic
acid computation have involved what can be described as

‘hybridization logic,’ assembling and analyzing answers
based upon pre-encoded patterns of hybridization (14–
17,28–32). As might be expected from the error-prone nature
of DNA hybridization and polymerization, large-scale nucleic
acid computation based on hybridization logic is inherently
infeasible (33). For example, the best nucleic acid computer
built to date demonstrated an error rate of �1 in 2500 (29), far
greater than even a poor silicon device. However, the use of
nucleic acid enzymes as ‘silicomimetic’ devices that can inter-
face with biology and make decisions has been demonstrated
brilliantly by Stojanovic and Stefanovic, who encoded an
algorithm for playing Tic-Tac-Toe into a series of deoxyri-
bozymes (16). More recently, Shapiro and co-workers have
extended these ideas to the creation of self-diagnosing and
self-actuating nucleic acid therapeutics (34). A deoxyri-
bozyme that can transform information might be extremely
useful in the design and implementation of such therapeutic
nanomachines, especially since the unidirectional activation
observed with most of the constructs examined would allow
‘reading’ and ‘writing’ to be uniquely specified.

Irrespective of the application, this is a further example of
how allosteric nucleic acid enzymes can be generated by engi-
neering at the level of secondary structure, and stands as one of
the first demonstrations that DNA can act not only as a mole-
cule to carry information but as a machine that can recode
information.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Figure 5. Real-time PCR detection of the ligation product formed by dR8b. (a) Each of the substrates for dR8b was extended to carry one primer-binding site. When
ligated, the product becomes a template for PCR. The complementary DNA strand (cDNA, gray) formed by the first primer extension bears a site complementary to a
Taqman probe. When the cDNA strand is replicated the Taqman probe is digested, liberating the fluorescent molecule from the quencher. The fluorescent readout is
quantified by real-time PCR. (b) Quantification of the ligation product of dR8b by real-time PCR. dR8b was allowed to react with the modified substrates for 5 min
and the product was detected as in (A). Minus and plus indicate the absence and presence of the effector molecule, 18Nb in the reaction. CT shift indicates the decrease
in number of cycles required to reach exponential amplification relative to the effector-independent background reaction plus 1000· excess DNA (left-most bar),
which had an absolute CT value of 37 ± 0.15. Error bars represent 2 SDs.
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