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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:In the face of severe environmental crises that threaten insect biodiversity, new technolo-

gies are imperative to monitor both the identity and ecology of insect species. Traditionally,

insect surveys rely on manual collection of traps, which provide abundance data but mask

the large intra- and interday variations in insect activity, an important facet of their ecology.

Although laboratory studies have shown that circadian processes are central to insects’ bio-

logical functions, from feeding to reproduction, we lack the high-frequency monitoring tools

to study insect circadian biology in the field. To address these issues, we developed the

Sticky Pi, a novel, autonomous, open-source, insect trap that acquires images of sticky

cards every 20 minutes. Using custom deep learning algorithms, we automatically and accu-

rately scored wAU : Pleasenotethatasperstyle; italicsshouldnotbeusedforemphasis:here, when, and which insects were captured. First, we validated our device

in controlled laboratory conditions with a classic chronobiological model organism, Drosoph-

ila melanogaster. Then, we deployed an array of Sticky Pis to the field to characterise the

daily activity of an agricultural pest, Drosophila suzukii, and its parasitoid wasps. Finally, we

demonstrate the wide scope of our smart trap by describing the sympatric arrangement of

insect temporal niches in a community, without targeting particular taxa a priori. Together,

the automatic identification and high sampling rate of our tool provide biologists with unique

data that impacts research far beyond chronobiology, with applications to biodiversity moni-

toring and pest control as well as fundamental implications for phenology, behavioural ecol-

ogy, and ecophysiology. We released the Sticky Pi project as an open community resource

on https://doc.sticky-pi.com.

Introduction

In order to fully characterise ecological communities, we must go beyond mere species inven-

tories and integrate functional aspects such as interspecific interactions and organisms’ behav-

iours through space and time [1,2]. Chronobiology, the study of biological rhythms, has
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shown that circadian (i.e., internal) clocks play ubiquitous and pivotal physiological roles, and

that the daily timing of most behaviours matters enormously [3]. Therefore, understanding

not only which species are present, but also when they are active adds a crucial, functional,

layer to community ecology.

The emerging field of chronoecology has begun to integrate chronobiological and ecologi-

cal questions to reveal important phenomena [4,5]. For example, certain prey can respond to

predators by altering their diel activity [6], parasites may manipulate their host’s clock to

increase their transmission [7], foraging behaviours are guided by the circadian clock [8], and,

over evolutionary timescales, differences in diel activities may drive speciation [9]. However,

because nearly all studies to date have been conducted on isolated individuals in laboratory

microcosms, the ecological and evolutionary implications of circadian clocks in natural envi-

ronments remain largely unknown [10].

While chronobiology requires a physiological and behavioural time scale (i.e., seconds to

hours), insect surveys have primarily focused on the phenological scale (i.e., days to months).

Compared to bird and mammal studies, where methodological breakthroughs in animal track-

ing devices have enabled the ecological study of the timing of behaviours, similar tools for

invertebrates are lacking [11] or limited to specific cases [12–14]. Promisingly, portable elec-

tronics and machine learning are beginning to reach insect ecology and monitoring [15]. For

example, “smart traps can now automatise traditional insect capture and identification” [16].

In particular, camera-based traps can passively monitor insects and use deep learning to iden-

tify multiple species. However, such tools are often designed for applications on a single focal

species and, due to the large amount of data they generate as well as the complexity of the

downstream analysis, camera-based traps have typically been limited to daily monitoring and

have not previously been used to study insect circadian behaviours.

Here, we present and validate the Sticky Pi, an open-source generalist automatic trap to

study insect chronobiology in the field. Our unique framework both automatises insect survey-

ing and adds a novel temporal and behavioural dimension to the study of biodiversity. This

work paves the way for insect community chronoecology: the organisation, interaction, and

diversity of organisms’ biological rhythms within an ecological community.

Results

Sticky Pi device and platform

We built the Sticky Pi (Fig 1A–1C), a device that captures insects on a sticky card and images

them every 20 minutes. Compared to other methods, our device acquires high-quality images

at high frequency, hence providing a fine temporal resolution on insect captures. Devices are

equipped with a temperature and humidity sensor and have 2 weeks of autonomy (without

solar panels). Sticky Pis are open source, 3D printed, and inexpensive (<200 USD). Sticky Pis

can be fitted with cages to prevent small vertebrates from predating trapped insects. Another

unique feature is their camera-triggered backlit flashlight, which enhances the contrast,

reduces glare, and allows for nighttime imaging. Most sticky cards available on the market are

thin and translucent, which allows for the transmission of light. White light was chosen for its

versatility: Sticky cards with different absorption spectra can be used. For outdoor use, the

camera’s built-in infrared-cut filter was not removed. Such filters, which remove infrared light,

are standard in photography as they reduce chromatic aberrations. As a result, we can discern

3 mm-long insects on a total visible surface of 215 cm2 (Fig 1D and 1E), which is sufficient to

identify many taxa. In order to centralise, analyse, and visualise the data from multiple devices,

we developed a scalable platform (S1 Fig), which includes a suite of services: an Application

Programming Interface (API), a database, and an interactive web application (S1 Video).
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Fig 1. Sticky Pi device. (A, B) Assembled Sticky Pi. The device dimensions are 326×203×182 mm (d×w×h). (C)

Exploded view, showing the main hardware components. Devices are open source, affordable, and can be built with

off-the-shelf electronics and a 3D printer. Each Sticky Pi takes an image every 20 minutes using an LED backlit flash.

(D) Full-scale image as acquired by a Sticky Pi (originally 1944×2592 px, 126×126 mm). (E) Magnification of the

500×500 px region shown in D.

https://doi.org/10.1371/journal.pbio.3001689.g001
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Deployment and maintenance instructions are detailed in our documentation (https://doc.

sticky-pi.com/web-server.html).

Image processing

In order to classify captured insects, we developed a novel analysis pipeline, which we validated

on a combination of still photographs of standard sticky traps and series of images from 10

Sticky Pis deployed in 2 berry fields for 11 weeks (see Methods section and next result sec-

tions). We noticed trapped insects often move, escape, are predated, become transiently

occluded, or otherwise decay (S2 Video). Therefore, we used cross-frame information rather

than independently segmenting and classifying insects frame by frame. Our pipeline operates

in 3 steps (summarised below and in Fig 2): (i) the Universal Insect Detector segments insect

instances in independent images assuming a 2-class problem: insect versus background; (ii)

the Siamese Insect Matcher (SIM) tracks insect instances between frames, using visual similar-

ity and displacement; and (iii) The Insect Tuboid Classifier uses information from multiple

frames to make a single taxonomic prediction on each tracked insect instance.

Universal insect detector

To segment “insects from their “background, we based the Universal Insect Detector on Mask

R-CNN [17] and trained it on 240 hand-annotated images from Sticky Pis as well as 120 “for-

eign” images acquired with different devices (see Methods section). On the validation dataset,

our algorithm had an overall 82.9% recall and 91.2% precision (S2 Fig). Noticeably, recall

increased to 90.5% when excluding the 25% smallest objects (area < 1,000 px. i.e., 2.12 mm2),

indicating that the smallest insect instances are ambiguous. When performing validation on

the foreign dataset of 20 images acquired with the Raspberry Pi camera HQ, we obtained a pre-

cision 96.4% and a recall of 92.2%, indicating that newly available optics may largely increase

segmentation performance (although all experimental data in this study were obtained with

the original camera, before the HQ became available).

Fig 2. Overview of the image processing workflow. Devices acquire images approximately every 20 minutes, which

results in a 500 image-long series per week per device. Rows in the figure represent consecutive images in a series.

Series are analysed in 3 main algorithms (left to right). First, the Universal Insect Detector applies a 2-class Mask

R-CNN to segment insect instances (versus background), blue. Second, the SIM applies a custom Siamese network–

based algorithm to track instances throughout the series (red arrows), which results in multiple frames for the same

insect instance, i.e., “insect tuboids. Last, the Insect Tuboid Classifier uses an enhanced ResNet50 architecture to

predict insect taxonomy from multiple photographs. SAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs2and4 � 6:IM, Siamese Insect Matcher.

https://doi.org/10.1371/journal.pbio.3001689.g002
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Siamese insect matcher

In order to track insects through multiple frames, we built a directed graph for each series of

images; connecting instances on the basis of a matching metric, which we computed using a

custom Siamese Neural Network (S3A Fig and Methods section). We used this metric to track

insects in a 3-pass process (S3B Fig and Methods section). This step resulted in multiframe

representations of insects through their respective series, which we call “tuboids.” S3 Video

shows a time-lapse video of a series where each insect tuboid is boxed and labelled with a

unique number.

Insect Tuboid classifier

To classify multiframe insect representations (i.e., tuboids), we based the Insect Tuboid Classi-

fier (Fig 3), on a Residual Neural Network (ResNet) architecture [18] with 2 important modifi-

cations: (i) We explicitly included the size of the putative insect as an input variable to the fully

connected layer as size may be important for classification and our images have consistent

scale; and (ii) Since tuboid frames provide nonredundant information for classification (stuck

insects often still move and illumination changes), we applied the convolution layers on 6

frames sampled in the first 24 h and combined their outputs in a single prediction (Fig 3A). In

this study, we trained our classifier on a dataset of 2,896 insect tuboids, trapped in 2 berry

fields in the same location and season (see next result sections and Methods section). We

defined 18 taxonomic labels, described in S1 Table, using a combination of visual identifica-

tion and DNA barcoding of insects sampled from the traps after they were collected from the

field (S2 Table and Methods sections). Fig 3B and 3C shows representative insect images corre-

sponding to these 18 labels (i.e., only 1 frame from a whole multiframe tuboid) and summary

statistics on the validation dataset (982 tuboids). S3 Table present the whole confusion matrix

for the 18 labels.

The overall accuracy (i.e., the proportion of correct predictions) is 78.4%. Our dataset con-

tained a large proportion of either “Background objects” and “Undefined insects” (16.2% and

22.4%, respectively). When merging these 2 less informative labels, we reach an overall 83.1%

accuracy on the remaining 17 classes. Precision (i.e., the proportion of correct predictions

given a predicted label) and recall (i.e., the proportion of correct prediction given an actual

label) were high for the Typhlocybinae (leafhoppers) morphospecies (92% and 94%). For Dro-
sophila suzukii [Diptera: Drosophilidae] (spotted-wing drosophila), an important berry pest,

we labelled males as a separate class due to their distinctive dark spots and also reached a high

precision (86%) and recall (91%)—see detail in S3 Table. These results show that performance

can be high for small, but abundant and visually distinct taxa.

Sticky Pis can quantify circadian activity in laboratory conditions

To test whether capture rate on a sticky card could describe the circadian activity of an insect

population, we conducted a laboratory experiment on vinegar flies, Drosophila melanogaster
[Diptera: Drosophilidae], either in constant light (LL) or constant dark (DD), both compared

to control populations held in 12:12 h Light:Dark cycles (LD) (Fig 4). From the extensive liter-

ature on D.melanogaster, we predicted a crepuscular activity LD and DD (flies are free-run-

ning in DD), but no rhythm in LL [19]. We placed groups of flies in a large cage that contained

a single Sticky Pi (simplified for the laboratory and using infrared light; Methods section). The

DD and LL experiments were performed independently and each compared to their own

internal LD control. The use of a infrared optics and lighting resulted in lower quality images

(i.e., reduced sharpness). However, in this simplified scenario, there were no occlusions, and

the classification was binary (fly versus background). Therefore, we used a direct approach:

PLOS BIOLOGY Sticky Pi, a high-frequency smart trap to study insect circadian activity under natural conditions
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Fig 3. Insect Tuboid Classifier description and performance. (A) Algorithm to classify insect tuboids. The first

image as well as 5 randomly selected within the first day of data are selected. Each image is scaled and processed by a

ResNet50 network to generate an output feature vector per frame. Each vector is augmented with the original scale of

the object, and the element-wise median over the 6 frames is computed. The resulting average feature vector is

processed by a last, fully connected, layer with an output of 18 labels. (B) Representative examples of the 18 different

classes. Note that we show only 1 image, but input tuboids have multiple frames. All images were rescaled and padded

to 224×224 px squares: the input dimensions for the ResNet50. The added blue scale bar, on the bottom left of each tile,

represents a length of 2 mm (i.e., 31 px). (C) Classification performance, showing precision, recall and f1-score (the

harmonic mean of the precision and recall) for each label. Row numbers match labels in B. See S3 Table for the full

confusion matrix. Abbreviated rows in C areMacropsis fuscula (3),Drosophila suzukiimales (4), drosophilids that are

not maleD. suzukii (5), Anthonomus rubi (11), Psyllobora vigintimaculata (12), Coleoptera that do not belong to any

above subgroup (14), and Lasioglossum laevissimum (16).

https://doi.org/10.1371/journal.pbio.3001689.g003
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We trained and applied independent Mask-RCNN to segment flies from their background.

Then, rather than tracking insects (using our SIM), we extracted the raw counts from each

frames and applied a low-pass filter (see Methods section). Consistent with previous studies on

circadian behaviour of D.melanogaster, populations in both LD and DD conditions exhibited

18 21 24 27 30
Period (h)

AC
F

−6 0 6 12 18
Time (h)

0 1 2 3 0 1 2 3 0 1 2 3

−0.2
0.0
0.2
0.4
0.6

−0.2
0.0
0.2
0.4
0.6

0

5
10

15

0

5
10

15

0
100
200
300
400
500

0
100
200
300
400
500

Time (day)

N
ca

pt
ur

ed

Fig 4. Sticky Pis can monitor circadian rhythms of free-moving populations in the laboratory. Vinegar flies, Drosophila melanogaster, were held in a large

cage with a Sticky Pi. We conducted 2 experiments to show the effect of Light:Light (red; A, C, E) and Dark:Dark (blue; B, D, F) light-regimes on capture rate.

Each was compared to a control population that remained in the entrainment conditions: Light:Dark, 12:12 h cycles (black). (A, B) Cumulative number of

insects captured over time. Columns of the panels correspond to independent full replicates. We used 2 devices per condition, in each full replicate. (C, D)

Capture rates over circadian time. As expected, capture rates in LD and DD show a clear crepuscular activity, but no activity peak in constant light. (E, F)

Autocorrelation of capture rates. Each thin line represents a series (i.e., one device in one full replicate), and the thick line is the average autocorrelogram. The

green dotted line shows the expectation under the hypothesis that there is no periodic pattern in capture rate (ACF). The underlying data for this figure can be

found on figshare [20]. ACF, AutoCorrelation Function.

https://doi.org/10.1371/journal.pbio.3001689.g004
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strong rhythmic capture rates, with an approximate period of 24 h: 23.8 h and 23.67 h, respec-

tively. For example, their overall capture rate was approximately 0.6 h−1 between ZT22 and

ZT23 h, but peaked at 9.5 h−1 between ZT01 and ZT02 h (Fig 4C and 4E). The average autocor-

relation (measure of rhythmicity), with a 24 h lag, for the both DD populations and their inter-

nal control were high and significant: 0.34 (p−value<10−3, N = 6, t test) and 0.35 (p

−value = 2×10−3, N = 6, t test), respectively.

Also as hypothesised, the fly populations held in constant light (LL) showed no detectable

behavioural rhythm and had a constant average capture rate of 1.6 h−1 (SD = 0.62) (Fig 4D and

4F). The average autocorrelation with a 24 h lag for the 6 LL series was 0.03 and was not signif-

icantly different from zero (p−value>0.24, t test), which shows the absence of detectable 24-h

rhythm. In contrast, the 5 series of the LD internal control had a large and significant autocor-

relation value of 0.42 (p−value<10−4, t test). Collectively, these observations indicate that

Sticky Pis have the potential to capture circadian behaviour in a free-flying insect population.

Sticky Pis quantify activity rhythms of wild Drosophila suzukii
To test the potential of the Sticky Pis to monitor wild populations of free-moving insects in the

field, we deployed 10 traps in a blackberry field inhabited by the well-studied and important

pest species D. suzukii (see Methods section). Like D.melanogaster,D. suzukii has been charac-

terised as crepuscular both in the laboratory [21] and, with manual observations, in the field

[22]. Since capture rates can be very low without attractants [22], we baited half (5) of our

traps with apple cider vinegar (see Methods section). In addition to D. suzukii, we wanted to

simultaneously describe the activity of lesser-known species in the same community. In partic-

ular, D. suzukii and other closely related Drosophila are attacked by parasitoid wasps [Hyme-

noptera: Figitidae], 2 of which (Leptopilina japonica and Ganaspis brasiliensis) have recently

arrived in our study region [23]. Their diel activity has not yet been described. In Fig 5, we

show the capture rate of male D. suzukii, other putative Drosophilidae and parasitoid wasps

throughout the 7-week trial (Fig 5A) and throughout an average day (Fig 5B).

Our results corroborate a distinctive crepuscular activity pattern for male D. suzukii and

other putative drosophilids. For example, 68.0% (CI95% = [63.9, 71.3], 10,000 bootstrap repli-

cates) of D. suzukii and 57.8% (CI95% = [53.2, 61.6], 10,000 bootstrap replicates) of the other

Drosophilids. occurred either in the 4 hours around dawn (WZT2[8, 14] h) or dusk (WZT<2

orWZT>22 h)under a time-uniform capture null hypothesis, we would expect only 1

3
of cap-

tures in these 8 hours. In contrast, Figitidae wasps were exclusively diurnal, with 83.0% CI95%

= [79.9,85.4], 10,000 bootstrap replicates) of all the captures occurring during the day

(WZT<12), where we would expect only 50% by chance.

Overall, baiting widely increased the number of male D. suzukii (from 3.0 to 26.0 device−1.

week−1, p−value<2×10−8), and other Drosophilidae (from 8.8 to 49.8 device−1. week−1,

p−value<10−9), but not parasitoid wasps (p−value>0.65, Wilcoxon rank-sum tests). These

findings indicate that Sticky Pi can quantify the circadian behaviour of a simple insect commu-

nity in a natural setting.

Sticky Pi, a resource for community chronoecology

Berry fields are inhabited by a variety of insects for which we aimed to capture proof-of-concept

community chronoecological data. In a separate trial, we placed 10 Sticky Pis in a raspberry

field and monitored the average daily capture rate of 8 selected taxa (Fig 6A) over 4 weeks—we

selected these 8 taxa based on the number of individuals, performance of the classifier (Fig 3),

and taxonomic distinctness (S4 Fig shows the other classified taxa). We then defined a dissimi-

larity score and applied multidimensional scaling (MDS) to represent temporal niche proximity
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in 2 dimensions (see Methods section). We show that multiple taxa can be monitored simulta-

neously, and statistically partitioned according to their temporal niche (Fig 6B). Specifically, as

shown in Fig 6A, sweat bees (Lasioglossum laevissimum), large flies (Calyptratae), and hoverflies

(Syrphidae) show a clear diurnal activity pattern with a capture peak at solar noon (Warped

Zeitgeber time [WZT] = 6h, see Methods section for WZT). Sciaridae gnats were also diurnal,

but their capture rate was skewed towards the afternoon, with a peak around WZT = 7 h. The

Typhlocybinae leafhopper was vespertine, with a single sharp activity peak at sunset (WZT = 11

h). The Psychodidae were crepuscular, exhibiting 2 peaks of activity, at dusk and dawn. Both

mosquitoes (Culicidae) and moths (Lepidoptera) were nocturnal.
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FigitidaeFigitidae

0.8

0.2

0.1

0.0

0.5
0.4
0.3
0.2
0.1
0.0

0.25
0.20

0.10
0.05
0.00

0.6

0.4

0.2

0.0

0.9

0.6

0.3

0.0

0.6

0.4

0.2

0.0

0.15

Fig 5. Sticky Pis can monitor spotted-wing drosophila diel activity in the field. We deployed 10 Sticky Pis in a blackberry field

for 7 weeks and attached apple cider vinegar baits to half of them (blue versus red for unbaited control). This figure shows

specifically the males Drosophila suzukii, the other Drosophilidae flies, and the Figitidae wasps. (A) Capture rate over time,

averaged per day, showing the seasonal occurrence of insect populations. (B) Average capture rate over time of the day (note that

time was transformed to compensate for changes in day length and onset—i.e., Warped ZT: 0 h and 12 h represent the sunset and

sunrise, respectively, see Methods section). Both malesD. suzukii and the other drosophilids were trapped predominantly on the

baited devices. Both populations exhibit a crepuscular activity. In contrast, Figitidae wasps have a diurnal activity pattern and are

unaffected by the bait. Error bars show standard errors across replicates (device×week). The underlying data for this figure can be

found on figshare [20]. ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.3001689.g005
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Fig 6. Sticky Pi reveals community chronoecology. In order to assess the activity pattern of a diverse community, we deployed 10 Sticky Pis in a raspberry

field for 4 weeks, replacing sticky cards weekly. This figure shows a subset of abundant insect taxa that were detected by our algorithm with high precision (see

Supporting information for the full dataset). (A) Average capture rate over time of the day (note that time was transformed to compensate for changes in day

length and onset—i.e., Warped ZT: 0 h and 12 h represent the sunset and sunrise, respectively. See Methods section). (B) MDS of the populations shown in A.

Similarity is based on the Pearson correlation between the average hourly activity of any 2 populations. Small points are individual bootstrap replicates, and
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We asked to what extent the presence of previous insects on a trap impacted its subsequent

capture (e.g., if trap became saturated by insects). We first observed that the cumulative num-

ber of all insects on all traps, did not appear to change over time (S6A Fig). Then, to statistically

address this question for individual taxa, we reasoned that if the capture rate was linear, the

number of insects captured in the first 3 days should be 50% of total (6 full days) N[0,3]days/

N[0,6]days = 1/2. Thus, we tested whether the final, total, number of insects (from all taxa)

explained the proportion of captured insects N[0,3]days/N[0,6]days (of a given taxa) in the first half

of the experiment. We found that the number of insects captured in the first half of each trial

was not different from 1/2 (intercept) and that the number of insects captured did not explain

taxa’s capture rate (slope) (S6B Fig, linear models, p−value>0.05 8 taxa, t tests on model

coefficients).

Together, our findings show that, even without a priori knowledge of the diel activity of

specific taxa, Sticky Pis can inform about both the community structure and temporal patterns

of behaviour of a natural insect community.

Discussion

We have developed the Sticky Pi, a generalist and versatile insect smart trap that is open

source, documented, and affordable (Fig 1). Uniquely, Sticky Pis acquires frequent images to

finely describe when specific insects are captured. Since the main limitation to insect chronoe-

cology is the lack of high-frequency population monitoring technologies [11], our innovation

promises to spark discoveries at the frontier between 2 important domains: chronobiology and

biodiversity monitoring. Furthermore, taking multiple images of the same specimen may

improve classification performance. To adapt our tool to big data problems, we designed a

suite of web services (S1 Fig) that supports multiple concurrent users, can communicate with

distributed resources and may interoperate with other biodiversity monitoring projects and

community science platforms [24]. Compared to other camera-based automatic insect traps

[25], we opted for a decentralised solution. Our platform is explicitly designed to handle multi-

ple concurrent traps: with unique identifiers for devices and images (and relevant metadata),

an efficient mean of retrieving data wirelessly, and a dedicated database, with an API to store,

query, and analyse the results. These features, together with a low device cost (<200 USD) will

facilitate scaling to the landscape level.

Our device’s main limitation is image quality (Fig 1D and 1E). Indeed, high-performance

segmentation and classification of insects were limited to specimens larger than 3 millimetres

(S2 Fig), hence reducing the taxonomic resolution for small insects. We found that segmenta-

tion was globally very precise (>90%) and sensitive (recall > 90% for objects larger than 2

mm2). Furthermore, our machine learning pipeline (Fig 2) showed a high overall accuracy of

the Insect Tuboid Classifier (83.1% on average, when merging background and undefined

insects; see Fig 3). Camera technology is quickly improving and our segmentation results with

the new Raspberry Pi camera HQ (12.3 Mpx, CS mount) are promising, with preliminary

results showing both precision and recall greater than 90% overall, on the segmentation task.

Some of the inaccuracy in segmentation results from transient occlusion or changes in the

image quality. Therefore, tracking (using the SIM) likely improves recall as insects that are

missed on some frames may be detected on previous or subsequent frames.

ellipses are 95% confidence intervals (see Methods section). Insect taxa partition according to their temporal activity pattern (e.g., nocturnal, diurnal, or

crepuscular). Error bars in A show standard errors across replicates (device×week). Individual facets in A were manually laid out to match the topology of B.

The underlying data for this figure can be found on figshare [20]. MDS, multidimensional scaling; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.3001689.g006
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Another potentially limiting feature of our device is the frequency of the images taken

(every 20 minutes). According to their context and questions, users can programme the hard-

ware timer with a different interval. However, we judged 3 times per hour a good compromise

between time resolution—an hourly resolution being necessary to study chronobiology or the

impact of fast weather variations—and battery and data storage efficiency. Furthermore, a

more frequent use of the flash light (e.g., every minute) may be more of a disturbance to wild-

life [26].

In this respect, our image time lapse approach contrasts with continuous lighter-weight sys-

tems such as sensor-based traps, which are suited for high-frequency sampling and were

recently employed to study diel activity of a single species [13,27]. However, sensor-based

traps are often limited to scenarios with a priori-targeted species that respond to certain spe-

cific olfactory or visual baits—which considerably narrows their applicability [28]. In contrast,

camera-based traps are more generalist as they can passively monitor insects, using machine

learning to identify multiple species. Our system importantly captures and keeps individual

insect specimens. While this destructive process comes with limitations, it is also essential in

naive contexts, where we do not know a priori which insects may be present. Indeed, physical

specimens are needed for visual or DNA-based taxonomic characterisation, in particular when

working on diverse or undescribed communities [29]. Keeping individual insects would not

be possible if animals were released or kept in a common container. Furthermore, trapping

insects permanently greatly reduced the risk of recapturing the same individuals several times.

An important consideration using sticky card is their potential to become saturated with

insects. In our study, we replaced traps weekly to limit this possibility. Furthermore, we found

no statistical effect of the number of insects on the probability of capture for a given taxa (S6

Fig). However, we advise users to replace sticky cards often enough to limit this risk.

We corroborated circadian results that had historically been obtained on individually

housed insects, using heterogeneous populations in large flight cages (Fig 4). This suggests that

Sticky Pis could be an alternative tool for laboratory experiments on mixed populations of

interacting insects. In the field, we monitored both the seasonal and diel activity of a well-stud-

ied pest species: spotted-wing drosophila (D. suzukii). Like others before [22], we concluded

that wild D. suzukii was crepuscular (Fig 5). In the process, we also found that Figitidae wasps

—natural enemies of D. suzukii—were distinctly diurnal and were most often detected later in

the season. Finally, we characterised the diel activity of the flying insect community in a rasp-

berry field, without targeting taxa a priori (Fig 6). With only 10 devices, over 4 weeks, we were

able to reveal the diversity of temporal niches, showing coexisting insects with a wide spectrum

of diel activity patterns—e.g., diurnal, crepuscular versus nocturnal; bimodal versus unimodal.

An additional and noteworthy advantage of time-lapse photography is the incidental descrip-

tion of unexpected behaviours such as insect predation (S4 Video) and the acquisition of speci-

mens that eventually escape from traps (S5 Video).

Importantly, any insect trap only gives a biased estimate of the number and activity on

insects at a given time. For sticky cards, the probability of capturing an insect depends, at a

minimum, on the flying activity, the size of the population and the trap attractiveness (and the

“conversion rate”—i.e., the probability of trapping an insect given it is attracted). Importantly,

Sticky Pis only capture mobile adult insects, and, therefore, cannot explicitly quantify the tim-

ing of important behaviours such as mating, feeding, egg laying, emergence, and quiescence.

However, in many species, locomotion and dispersal are a prerequisite to other activities.

Therefore, capture rate implicitly encapsulates a larger portion of the behavioural spectrum. In

most cases, the daily variation of population size is likely negligible. In contrast, several factors

may render trap attractiveness and conversion rates variable during the day. First, visual cues

—which impact a trap’s capture rates [30,31]—vary for any capture substrate (e.g., light
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intensity and spectral qualities inevitably fluctuate). Second, insects’ ability to detect, avoid, or

escape traps may temporarily differ. Last, the preference for certain trap features could itself be

a circadian trait. For example, the responses of certain insects to colours [32] allelochemicals

[33,34] and semiochemicals [35–37] is time modulated. While inconsistencies in trap attrac-

tiveness may, in some cases, narrow the scope of the conclusions that can be made with our

tool, it also paves the way for research on the diel time budget of many insects. Indeed, study-

ing the contrast in trapping rates between different, ecologically relevant, trap features (e.g.,

baits, colour, and location) could help to develop new and improved trapping methodologies

while bridging chronobiology and behavioural ecology.

In addition to insect capture rates, Sticky Pis also monitor humidity and temperature,

which are both crucial for most insects behaviour and demography [38,39]. This study was

performed at the level of a small agricultural field, where the local spatial abiotic variations

were small compared to the interday variations, and hourly temperatures are mostly con-

founded by the time of the day (see Methods section and reported abiotic conditions in S7

Fig). In this context, it was, therefore, difficult to statistically study the individual effects of

time of the day and abiotic variables (temperature and humidity) on capture rate. We are con-

fident that Sticky Pi could, scaled at the landscape level, with explicitly different microclimates,

help address the interplay between abiotic variables and circadian processes.

In the last few years, we have seen applications of chronobiology to fields such as learning

[40] and medicine [41]. We argue that chronobiological considerations could be equally

important to biodiversity conservation and precision agriculture [42–44]. For example, plants’

defences [45,46] and insecticide efficiency [47,48] may change during the day, implying that

agricultural practices could be chronobiologically targeted. In addition, modern agriculture is

increasingly relying on fine-scale pest monitoring and the use of naturally occurring biological

pest control [49,50]. Studying insect community chronoecology could help predict the

strength of interactions between a pest and its natural enemies or measure the temporal pat-

terns of recruitment of beneficial natural enemies and pollinators. Monitoring insect behav-

iours at high temporal resolution is critical for both understanding, forecasting, and

controlling emerging insect pests in agriculture and, more broadly, to comprehend how

anthropogenic activities impact behaviour and biodiversity of insect populations.

Methods

Image processing

Universal insect detector. Data. We acquired a diverse collection of 483 Sticky Pi images

by, first, setting stand-alone sticky cards in the Vancouver area for 1 to 2 weeks and taking

images with a Sticky Pi afterwards, and, second, by systematically sampling images from the

field experiments. TAU : PleasecheckwhethertheeditstothesentenceThefirstsetof offlineimageswas:::arecorrectandamendifnecessary:he first set of “offline” images was physically augmented by taking photo-

graphs in variable conditions, which included illumination, presence of water droplets and

thin dust particles. In order to generalise our algorithm, we also collected another “foreign”

171 images of sticky cards acquired with other devices. Among the foreign images, 140 were

acquired by ourselves using the Raspberry Pi camera HQ (in 2021), and 31 were provided by

the community (digital cameras and desktop scanner)—see Acknowledgments. We annotated

images using Inkscape SVG editor, encoding annotations as SVG paths. The outline of each

visible arthropod was drawn. The contours of 2 adjacent animals were allowed to overlap. We

automatically discarded objects smaller than 30 px (i.e.,<2 mm objects that are indiscernible

in the images by manual annotators) or wider than 600 px (i.e., objects larger than 40 mm,

which were generally artefacts since the vast majority of captured insects are smaller in our
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study region). Partial insects were only considered if their head and thorax were both visible.

This procedure resulted in a total of 33,556 segmented insects.

Training. To perform instance segmentation, we used Mask R-CNN [17]. In order to train

the algorithm, images were pseudo-randomly split into a validation (25%, 96 images) and a

training (75%, 387 images) set, based on their md5 checksum. In order to account for partial

insects on the edge of the pictures all images were zero-padded with a 32 px margin. We per-

formed augmentation on the training set as follow. First, random regions of 1024×1024 px

were cropped in the padded images. Then, we applied, to each image the following: random

rotation (0 to 360 degrees); random vertical and horizontal reflections; and alterations of satu-

ration, brightness, contrast, and hue (uniform random in [0.9, 1.1]). We use the detectron2

implementation [51] of Mask R-CNN to perform the instance segmentation (insect versus

background). We retrained a ResNet50 conv4 backbone, with conv5 head, which was pre-

trained on the COCO dataset, for 150,000 iterations (12 images per batch) with an initial learn-

ing rate of 0.002, decaying by γ = 0.8 every 10,000 iterations.

Generalisation to large images. The default standard dimension of Mask R-CNN inputs is

1024×1024 px. Our images being larger (2592×1944 px), we performed predictions on 12

1024×1024 tiles (in a 4×3 layout), which mitigates edge effects since tiles overlap sufficiently so

that very large insects (> 500 px wide) would be complete in, at least, one tile. A candidate

insect instance (defined as a polygon) B was considered valid if and only if J(Ai, B)<0.58i,
where Ai represents valid instances in neighbouring tiles, and J is the Jaccard index.

Siamese insect matcher. Matching function. The goal of the SIM is to track insect

instances through consecutive frames—given that insects may move, escape, be predated, get

occluded, etc. The core of the algorithm is the matching functionM(m, n)2[0, 1], between

objectsm and n detected by the Universal Insect Detector. This section describes howM(m, n)

is computed (see also S3A Fig for a visual explanation). In order to computeM, we opted for a

mixture of visual similarity and explicit statistics such as differences in area and position

between 2 instances.

For visual similarity, we reasoned that we could extract 2 variables. First, the naive similarity

(S) is the similarity between the image of an insect in a given frame and the image of another

(putatively the same) in a subsequent frame. We compute such similarity using a Siamese neu-

ral network. Second, an important information is whether an insect present in a given frame

has actually moved away in the next frame. To assess such “delayed self-similarity” (Q), we can

use the same network, as we are asking the same question. Indeed, intuitively, if we detect 2

similar insects in 2 consecutive frames (S), but when looking at the exact same place as the first

insect, in the second image, we find a very high similarity, it suggest the original insect as, in

fact, not moved.

Formally, given a pair of objectsm, n, in images Xi and Xj, we have the binary masks Am
and An ofm and n, respectively. We then use the same function D to compute 2 similarity val-

ues S(m, n) and Q(m, n). With

Sðm; nÞ ¼ DðXi \ Am;X
j \ AnÞ;

i.e., the similarity betweenm in its original frame, i, and n in its original frame, j. And,

Qðm; nÞ ¼ DðXi \ Am;X
j \ AmÞ;

i.e., the similarity betweenm in its original frame, i, andm projected in the frame j. Note, that

all inputs are cropped to the bounding box of A, and scaled to 105×105 px. D is a Siamese net-

work as defined in [52] with the notable distinction that the output of our last convolutional

layer has a dimension of 1024×1 (versus 4096×1, in the original work), for performance
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reasons. In order to integrate the nonlinear relationships between the 2 resulting similarity val-

ues, S(m, n) and Q(m, n), as well as other descriptive variables, we used a custom, 4-layers,

fully connected neural network,H(I). The inputs are

I ¼ fSðm; nÞ;Qðm; nÞ; dðCðmÞ;CðnÞÞ; jlogðAm=AnÞj; logðDt þ 1Þg;

where d is the Euclidean distance between the centroids C. A is the area of an object, and Δt =

tj−ti. Our 4 layers have dimensions 5,4,3,1. We use a ReLU activation function after the first 2

layers and a sigmoid function at the output layer.

Data. In order to train the SIM core Matching functionM, we first segmented image series

from both berry field trials (see below) with the Universal Insect Detector to generate annota-

tions (see above). We randomly sampled pairs of images from the same device, with the second

image between 15 min and 12 h after the first one. We created a composite SVG image that

contained a stack of the 2 images, and all annotations as paths. We then manually grouped

(i.e., SVG groups) insects that were judged the same between the 2 frames. We generated 397

images this way, containing a total of 9,652 positive matches. Negative matches (N = 200,728)

were defined as all possible nonpositive matches between the first and second images. Since

the number of negatives was very large compared to the positive matches, we biased the pro-

portion of negative matches to 0.5 by random sampling during training.

Training. We trained the SIM in 3 steps. First, we pretrained the Siamese similarity function

D by only considering the S(m, n) branch of the network (i.e., apply the loss function on this

value). Then we used the full network, but only updated the weights of the custom fully con-

nected partH(I). Last, we fine-tuned by training the entire network. For these 3 steps, we used

Adaptive Moment Estimation with learning rates of 2×10−5, 0.05, and 2×10−5, for 500, 300,

and 5,000 rounds, respectively. We used a learning rate decay of γ = 1−10−3 between each

round. Each round consisted of a batch of 128 pairs. We defined our loss function as binary

cross-entropy.

Tracking. We then use our instance overall matching function (M) for tracking insects in 3

consecutive steps. We formulate this problem as the construction of a graph G(V, E), with the

insect instances in a given frame as vertices V, and connection to the same insect, in other

frames, as edges E (see also S3B Fig for a visual explanation). This graph is directed (through

time), and each resulting (weakly) connected subgraph is an insect “tuboid” (i.e., insect

instance). Importantly, each vertex can only have a maximum of one incoming and one outgo-

ing edge. That is, given v2V, deg−(v)�1 and deg+(v)�1. We build G in 3 consecutive steps.

First, we consider all possible pairs of instancesm, n in pairs of frames i,j, with j = i+1 and

computeM(m, n). In other words, we match only in contiguous frames. Then, we define a

unique edge from vertexm as

e ¼

; if Mðm; nÞ < k8n

fðm; arg max
n

Mðm; nÞÞg else ; ð1Þ

8
><

>:

where k = 0.5 is a threshold onM. That is, we connect an instance to the highest match in the

next frame, as long as the score is above 0.5. We obtain a draft network with candidate tuboids

as disconnected subgraphs.

Second, we apply the same threshold (Eq. 1) and consider the pairs all pairsm, n, in frames

i, j, where deg+(m) = 0, deg−(n) = 0, j−i>1 and tj−ti<12h. That is, we attempt to match the last

frame of each tuboid to the first frame of tuboids starting after. We perform this operation

recursively, always connecting the vertices with the highest overall matching score, and
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restarting. We stop when no more vertices match. This process bridges tuboids when insects

were temporarily undetected (e.g., occluded).

Finally, we define any 2 tuboids P(E,V) and Q(F,W) (i.e., disconnected subgraphs, with ver-

tices V andW, and edges E and F) as conjoint if and only if tv 6¼ tw8v,w, andmin(tv)2[min(tw),

max(tw)] ormin(tw)2[min(tv),max(tv)]. That is, 2 tuboids are conjoint if and only if they over-

lap in time, but have no coincidental frames. We compute an average score between conjoint

tuboids as

�M P;Qð Þ ¼
1

N
P

v;w2K M v;wð Þ;

where K is the set of N neighbouring pairs, in time:

K ¼
[

v

fðv; arg min
w8tv>tw

ðtv � twÞÞ; ðv; arg min
w8tv<tw

ðtw � tvÞg

That is, the average matching score between all vertices and their immediately preceding

and succeeding vertices in the other tuboid. We apply this procedure iteratively with a thresh-

old k = 0.25, merging first the highest-scoring pair of tuboids. Finally, we eliminate discon-

nected subgraphs that do not have, at least, 4 vertices.

Insect Tuboid classifier. Data. We generated tuboids for both field trials (see below)

using the SIM described above. We then visually identified and annotated a random sample of

4003 tuboids. Each tuboid was allocated a composite taxonomic label as type/order/family/

genus/species. Type was either Background (not a complete insect), Insecta, or Ambiguous

(segmentation or tracking error). It was not possible to identify insects at a consistent taxo-

nomic depth. Therefore, we characterised tuboids at a variable depth (e.g., some tuboids are

only Insecta/� while others are Insecta/Diptera/Drosophilidae/Drosophila/D. suzukii).

Training. In order to train the Insect Tuboid Classifier, we defined 18 flat classes (i.e.,

treated as discrete levels rather than hierarchical; see Fig 3). We then pseudo-randomly (based

on the image md5 sum) allocated each tuboid to either the training or the validation data sub-

set, ensuring an approximate 3

4
to 1

4
, training to validation, ratio, per class. We excluded the 125

ambiguous annotations present, resulting in a total of 2,896 training and 982 validation

tuboids. We initialised the weight of our network from a ResNet50 backbone, which had been

pretrained on a subset of the COCO dataset. For our loss function, we used cross-entropy, and

stochastic gradient descent as an optimizer. We set an initial learning rate of 0.002 with a

decay γ = 1−10−4 between each round and a momentum of 0.9. A round was a batch of 8

tuboids. Each individual image was augmented during training by adding random brightness,

contrast, and saturation, randomly flipping along x and y axes and random rotation [0, 360]˚.

All individual images were scaled to 224×224 px. Batches of images we normalised during

training (standard for ResNet). We trained our network for a total of 50,000 iterations.

Implementation, data, and code availability. We packaged the source code of the image

processing as a python library: sticky-pi-ml (https://github.com/sticky-pi/sticky-pi-ml). Our

work makes extensive use of scientific computing libraries OpenCV (Bradski, 2000), Numpy

[53], PyTorch [54], sklearn [55], pandas [56], and networkx [57]. Neural network training was

performed on the Compute Canada platform, using a NVidia 32G V100 GPU. The dataset,

configuration files, and resulting models for the Universal Insect Detector, the SIM, and the

Insect Tuboid Classifier are publicly available, under the creative commons license [58]. The

underlying data for the relevant figures are publicly available [20].
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Laboratory experiments

In order to reproduce classic circadian experiments in an established model organism, we

placed approximately 1500 CO2-anesthetised D.melanogaster individuals in a 950 mL (16 oz)

deli container, with 100 mL of agar (2%), sucrose (5%) and propionic acid (0.5%) medium.

The top of this primary container was closed with a mosquito net, and a 3-mm hole was

pierced on its side, 40mm from the bottom and initially blocked with a removable cap. Each

cup was then placed in a large (25×25×50 cm) rectangular cage (secondary container), and all

cages were held inside a temperature-controlled incubator. In the back of each cage, we placed

a Sticky Pi device that had been modified to use infrared, instead of visible, light. In addition,

we placed 100 mL of media in an open container inside each cage, so that escaping animals

could freely feed. Flies were left at least 48h to entrain the light regime and recover from anaes-

thesia before the small aperture in their primary container was opened. The small diameter of

the aperture meant that the escape rate, over a few days, was near stationary. TheD.melanoga-
ster population was a mixture of CantonS males and females from 3 to 5 days old, and the num-

ber of individuals was approximated by weighting animals (average fly weight = 8.4×10−4g).

During the experiments, the temperature of the incubators was maintained at 25˚C and the rela-

tive humidity between 40% and 60%. All animals were entrained in a 12:12 h Light:Dark regime.

Flies were kindly given by Mike Gordon (University of British Columbia). One experimental

replicate (device × week) was lost due to a sticky card malfunction.

Field experiments

In order to test the ability of the Sticky Pi device to capture the daily activity patterns of multi-

ple species of free-living insects, we deployed 10 prototype devices on an experimental farm

site in Agassiz, British Columbia, Canada (GPS: 49.2442, -121.7583) from June 24 to Septem-

ber 30, 2020. The experiments were done in 2 plots of berry plants, raspberries, and blackber-

ries, which mature and decline during early and late summer, respectively. Neither plot was

sprayed with pesticides at any point during the experiments. Temperature and humidity data

extracted from the DHT22 sensors of the Sticky Pis are reported in S7 Fig. None of the species

identified during this study were protected species.

Blackberry field. The blackberry (Rubus fruticosis var. “Triple Crow”‘) plot was made up

of 5 rows, each of which was approximately 60 metres long. Each row had wooden posts

(approximately 1.6 m high) spaced approximately 8.5 m apart, along which 2 metal “fruiting

wires” were run at 2 different heights (upper wire: 1.4 m; lower wire: 0.4 m). Two traps, 1

baited with apple cider vinegar and 1 unbaited, were set up on 2 randomly selected wooden

posts within each of the 5 rows, with the position of baited and unbaited traps (relative to the

orientation of the field) alternated among rows. A plastic cylindrical container (diameter: 10.6

cm; height: 13.4 cm) with 2 holes cut in the side (approximately 3×6 cm) and fine mesh (knee-

high nylon pantyhose) stretched over the top, containing approximately 200 mL of store-

bought apple cider vinegar was hung directly under baited traps (S5 Fig). No such container

was hung under unbaited traps. Vinegar in the containers hung under baited traps was

replaced weekly. Traps were affixed to the wooden posts at the height of the upper fruiting

wire so that they faced southwards. Trapping locations did not change over the course of the

experiment, which began approximately 2 weeks after the beginning of blackberry fruit ripen-

ing (August 12, 2020) and ended when fruit development had mostly concluded (September

30, 2020). Sticky cards were replaced once weekly, and photographs were offloaded from traps

every 1 to 2 weeks. Approximately 15 trap days of data were lost during the experiment due to

battery malfunctions. Overall, 475 trap days over 70 replicates (device × week), remained (i.e.,

96.9%).
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Raspberry field. A total of 10 Sticky Pi devices were set up in a raspberry (Rubus idaeus var.

“Rudi”) plot with 6 rows, each of which was approximately 50 m long. Each row had wooden

posts (approximately 1.6 m high) spaced 10 m apart, along which 2 metal “fruiting wires” were

run at 2 different heights (upper wire: 1.4 m; lower wire: 0.4 m) to support plants. Two traps

were set up on a randomly selected wooden post within each of 5 randomly selected rows. At

each location, to capture any potential fine-scale spatial variation in insect communities, traps

were affixed to the wooden posts at 2 different heights, at the same levels as the upper and lower

fruiting wires. Traps were oriented southwards. Trapping locations within the field did not

change over the course of the experiment, which began approximately 1 week after the beginning

of raspberry fruit ripening (June 24, 2020) and ended after fruiting had concluded (July 29,

2020). Sticky cards were replaced once weekly, and photographs were offloaded from traps every

1–2 weeks. Some data (approximately 9 days, from 3 replicates) were lost due to battery malfunc-

tions. Overall, 271 trap days over 40 replicates (device × week), remained (i.e., 96.8%).

DNA barcoding. In order to confirm the taxonomy of visually identified insects, we

recovered specimens from the sticky cards after the trials to analyse their DNA and inform

visual labelling. We targeted the molecular sequence of the cytochrome c oxidase subunit I

(CO1). The overall DNA barcoding workflow follows established protocols [59] with minor

modifications. Briefly, the genomic DNA of insect specimens was extracted with the QIAamp

Fast DNA Stool Mini Kit (QAU : PleaseprovidethemanufacturerlocationforQIAGENinthesentenceBriefly; thegenomicDNAofinsectspecimens::::IAGEN, Germantown, Maryland, USA) according to the manu-

facturer’s instructions. The resulting DNA samples were then subjected to concentration mea-

surement by a NanoDrop One/OneC Microvolume UV-Vis Spectrophotometer (TAU : PleaseprovidethemanufacturerlocationforThermoFisherScientificinthesentenceTheresultingDNAsampleswerethen::::hermo

Fisher Scientific, Waltham, Massachusetts, USA) and then normalised to a final concentration

of 50 ng/μl. Next, depending on the identity of the specimen, the following primer pairs were

selected for CO1 amplification: C_LepFolF/C_LepFolR [60] and MHemF/LepR1 [61]. Ampli-

fication of the CO1 barcode region was conducted using Phusion High-Fidelity DNA Poly-

merase (NAU : PleaseprovidethemanufacturerlocationforNewEnglandBiolabsinthesentenceAmplificationoftheCO1barcoderegion::::ew England Biolabs, Ipswich, Massachusetts, USA) with the following 25 μl reaction

recipe: 16.55 μl ddH2O, 5 μl 5HF PCR buffer, 2 μl 2.5 mM dNTP, 0.6 μl of each primer

(20 μM), 0.25 μl Phusion polymerase, and finally 2 μl DNA template. All PCR programmes

were set up as the following: 95˚C for 2 min; 5 cycles at 95˚C for 40 s, 4˚C for 40 s, and 72˚C

for 1 min; then 44 cycles at 95˚C for 40 s, 51˚C for 40 s, and 72˚C for 1 min; and a final exten-

sion step at 72˚C for 10 min. PCR products were then subjected to gel electrophoresis and

then purified with EZ-10 Spin Column DNA Gel Extraction Kit (BAU : PleaseprovidethemanufacturerlocationforBioBasicinthesentencePCRproductswerethensubjectedto::::io Basic, Markham,

Ontario, Canada). After Sanger sequencing, a Phred score cutoff of 20 was applied to filter

out poor-quality sequencing reads. The barcode index number (BIN) of each specimen was

determined based on 2% or greater sequence divergence applying the species identification

algorithm available on the Barcode of Life Data Systems (BOLD) version 4 [62]. Barcode

sequences were deposited in GenBank (accession number SUB11480448). We also took several

high-quality images of each specimen before DNA extraction and embedded them in a single

table (S2 Table) to cross-reference morphology and DNA sequences [63].

Statistics and data analysis

Laboratory. Images from the laboratory trials were processed using a preliminary version

of the Universal Insect Detector on independent frames—i.e., without subsequent steps. This

resulted in a raw number of detected insects on each independent frame. In order to filter out

high-frequency noise in the number of insects, we applied a running median filter (k = 5) on

the raw data. Furthermore, we filtered the instantaneous capture rate (dN/dt) with a uniform

linear filter (k = 5). These 2 operations act as a low-pass frequency filter, with an approximate

span of 100 min.
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Warped Zeitgeber time. Zeitgeber time (ZT) is conventionally used to express the time as

given by the environment (typically light, but also temperature, etc.). By convention, ZT is

expressed in hours, between 0 and 24, as the duration since the onset of the day (i.e.,

sunrise = ZT0). Using ZT is very convenient when reporting and comparing experiments in

controlled conditions. However, ZT only defines a lower bound (ZT0) and is therefore difficult

to apply when day length differs (which is typical over multiple days, under natural conditions,

especially at high and low latitudes). In order to express time relatively to both sunrise and

sunset, we applied a simple linear transformation of ZT to WZT,W(z).
Like ZT, we set WZT to be 0 at sunrise, but to always be 1

2
day at sunset and to scale linearly

in between. Incidentally, WZT is 1

4
day and 3

4
day at solar noon and at solar midnight, respec-

tively. Formally, we express WZT as a function of ZT with

WðzÞ ¼
az ; if z � d

a0z þ b0 ; otherwise
;

(

where, a, a0 and b0 are constants, d is the day length, as a day fraction. z2[0,1) is ZT and can be

computed with z = t−smod1, where t is the absolute time and s, the time of the sunrise. Since

WZT is 1 when ZT is 1, we haveW(1) = a01+b0 = 1 Also, WZT is 1

2
at sunset:

W dð Þ ¼ ad ¼ a0d þ b0 ¼ 1

2
, Therefore, a ¼ 1

2d ; a0 ¼
1

2ð1� dÞ and b0 = 1−a0.
Multidimensional scaling. We derived the distance d between 2 populations, x and y

from the Pearson correlation coefficient r, as dxy ¼
1� rxy

2
. In order to assess the sensitivity of our

analysis, we computed 500 bootstrap replicates of the original data by random resampling of

the capture instances, with replacement, independently for each taxon. We computed one dis-

tance matrix and MDS for each bootstrap replicate and combined the MDS solutions [64]. The

95% confidence ellipses were drawn assuming a bivariate t-distribution.

Implementation and code availability. Statistical analysis and visualisation were per-

formed in R 4.0 [65], with the primary use of packages, smacof [66], data.table [67], mgcv [68],

maptools [69], ggplot2 [70], and rethomics [71]. The source code to generate the figures is

available at https://github.com/sticky-pi/sticky-pi-manuscript.

Supporting information

S1 Fig. The Sticky Pi platform. Sticky Pi devices acquire images that are retrieved using a data

harvester—based on another Raspberry Pi. The data from the harvesters are then incremen-

tally uploaded to a centralised, per-laboratory, database. Images are then automatically prepro-

cessed (the Universal Insect Detector is applied). Users and maintainers can visualise data in

real time using our Rshiny web application. The remote API is secured behind an Nginx

server, and the images are saved on an S3 server. All components of the server are deployed as

individual interacting Docker containers. API documentation and source code are available

on https://doc.sticky-pi.com/web-server.html. API, Application Programming Interface.

(EPS)

S2 Fig. Validation of the Universal Insect Detector. The Universal Insect Detector performs

instance segmentation, using Mask R-CNN, on all images in order to detect insects versus

background. (A) Representative image region from the validation dataset. (B) Manual annota-

tion of A. (C) Automatic segmentation of A. Coloured arrows show qualitative differences

between human label (B) and our algorithm: either false positives or false negatives, in blue

and red, respectively. Note that often, samples are degraded and ambiguous, even for trained

annotators. (D) Recall as a function of insect size, showing our method is more sensitive to
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larger insects. (E) Precision as a function of insect size. Precision is overall stationary. The pan-

els on top of D and E show the marginal distribution of insect areas as a histogram. Both curves

on D and E are Generalised Additive Models fitted with binomial response variables. Ribbons

are the models’ standard errors. The validation dataset contains a total of 8,574 insects. The

underlying data for this figure can be found on figshare [20].

(EPS)

S3 Fig. Description of the SIM. (A) The matching metric in the SIM is based on a Siamese

network (see Methods section). (B) The resulting score,M, is used in 3 steps to connect insect

instances between frames. The algorithm results in a series of tuboids, which are representa-

tions of single insects through time. SIM, Siamese Insect Matcher.

(EPS)

S4 Fig. Temporal niches of insect taxa in a raspberry field community. Complementary data

to Fig 6, showing all predicted taxa. Full species names are in the legend of Fig 3 and in the result

section. The low relative frequency ofDrosophila suzukii in this unbaited trial and visual inspec-

tion suggest maleD. suzukii are false positives. Other drosophilid-like flies appear to be unknown

small diurnal Diptera. The underlying data for this figure can be found on figshare [20].

(EPS)

S5 Fig. Baited sticky pi. Sticky pi device (top) with an olfactory bait (bottom). The bait con-

sists of a container holding 200 mL of apple cider vinegar protected behind a thin mesh. Apple

cider vinegar was replaced weekly during trap maintenance.

(TIFF)

S6 Fig. Capture rates are not impacted by previously captured insects. (A) Cumulative

number of insect over time, for each trap (black line). No noticeable reduction of trapping rate

occur, even when large number of insects (>100) are captured. (B) Proportion of insect of a

given taxa captured in the first 3 days of a week as a function of the final total number of all

insects. The red dotted line indicate the null hypothesis: Half of the insects are captured in the

first half of each experiment, and total number of captured insects does not affect capture rate

of a given taxa. The blue lines, and their error bars are individual linear models, none of which

show a significant slope or intercept, t tests on model coefficients.

(EPS)

S7 Fig. Environmental conditions during both experiments. Temperature and relative

humidity throughout field experiment, as recorded by Sticky Pi’s sensors (DHT 22). (A) The

experiment in the raspberry field. (B) The experiment in the blackberry field. Black and white

rectangles, below and above each plot show days (between sunrise and sunset) and night

(between sunset and sunrise) in white and black, respectively. Sun position is inferred through

the maptools package [69]. The average between-device standard deviations for hourly tem-

perature and humidity reads were, respectively, 0.68˚C and 3.95% for the raspberry field (A)

and 0.63˚C and 3.4% for the blackberry experiment (B).

(EPS)

S1 Table. Description of the 18 taxonomical labels. We selected 18 taxa as discrete labels

based on both visual examination and DNA barcoding evidence. This table describes the

selected groups. Data on figshare.

(XLSX)

S2 Table. Representative insect specimen used for DNA barcoding. Data are compiled as an

excel spreadsheet with embedded images of the specimens of interest alongside the DNA
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sequence of their CO1. their DNA-inferred taxonomy and, when relevant, some additional

notes. The printed labels in the images are 5×1 mm wide. The column “label_in_article corre-

sponds to the visually distinct group to which insects were allocated. Data on figshare. CO1,

cytochrome c oxidase subunit I.

(XLSX)

S3 Table. Confusion matrix for the Insect Tuboid Classifier. Detailed confusion matrix for

the 982 tuboids of the validation set. Rows and columns indicate ground truth and predicted

labels, respectively. Abbreviated labels areMacropsis fuscula (3), Drosophila suzukiimales (4),

drosophilids that are not male D. suzukii (5), Anthonomus rubi (11), Psyllobora vigintimaculata
(12), Coleoptera that do not belong to any above subgroup (14) and Lasioglossum laevissimum
(16). Data on figshare.

(XLS)

S1 Video. The Sticky Pi web application. Web interface of the Sticky Pi cloud platform. Users

can log in and select a data range and devices of interest. Then an interactive plot shows envi-

ronmental conditions over time for each device. Hovering on graphs shows a preview of the

images at that time. Users can click on a specific time point to create a pop-up slideshow with

details about the image as well as preprocessing results (number and position insects). Data on

figshare.

(MP4)

S2 Video. Typical image series. Video showing 1 week of data at 10 frames per second.

Images are sampled approximately every 20 minutes. Note the variation of lighting, transient

occlusions, and insects escaping or degrading. Data on figshare.

(MP4)

S3 Video. Output of the SIM. Each rectangle is a bounding box of an inferred insect instance.

Data on figshare. SIM, Siamese Insect Matcher.

(MP4)

S4 Video. Predation of trapped insects by gastropods. Video showing the extent of slug pre-

dation on trapped insects in our dataset. Each rectangle is a bounding box of an inferred insect

instance (i.e., tuboid). Data on figshare.

(MP4)

S5 Video. Anthonomus rubi escaping a sticky trap. Multiple individual strawberry blossom

weevils (A. rubi) impact the trap, but the majority rapidly manage to escape. A. rubi is an emer-

gent invasive pest in North America. Data on figshare.

(MP4)
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