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Abstract: Mixtures of semiflexible polymers with a mismatch in either their persistence lengths or
their contour lengths are studied by Density Functional Theory and Molecular Dynamics simulation.
Considering lyotropic solutions under good solvent conditions, the mole fraction and pressure is
systematically varied for several cases of bending stiffness κ (the normalized persistence length)
and chain length N. For binary mixtures with different chain length (i.e., NA = 16, NB = 32 or 64)
but the same stiffness, isotropic-nematic phase coexistence is studied. For mixtures with the same
chain length (N = 32) and large stiffness disparity (κB/κA = 4.9 to 8), both isotropic-nematic and
nematic-nematic unmixing occur. It is found that the phase diagrams may exhibit a triple point or
a nematic-nematic critical point, and that coexisting phases differ appreciably in their monomer
densities. The properties of the two types of chains (nematic order parameters, chain radii, etc.) in
the various phases are studied in detail, and predictions on the (anisotropic) critical behavior near
the critical point of nematic-nematic unmixing are made.

Keywords: semiflexible polymers; macromolecules; phase behavior; liquid crystals; nematic order;
molecular dynamics; density functional theory; mixtures; blends

1. Introduction

Semiflexible polymers are macromolecules with linear chemical architecture in the
simplest case, which display considerable bending rigidity along the chain backbone [1–4].
In lyotropic solutions of semiflexible polymers, the competition between orientational and
translational entropy can induce a transition from an isotropic (i) to a nematic (n) phase.
Depending on the chemical nature of the monomeric units, the persistence length `p of
such macromolecules can vary over several orders of magnitude: For synthetic polymers,
`p typically lies in the range from 1 nm to 30 nm [5], while the distance between repeat
units along the backbone, `b, is typically on the order of several angstroms. Much larger
values for these lengths may occur for biologically relevant polymers, e.g., `p ≈ 50 nm for
double stranded DNA [6] and `p ≈ 17µm for filamentous actin [7]. Note that `p does not
only depend on the specific polymer chemistry [8] but may also depend on external factors,
e.g., the nature of the solvent [6], and the density of monomeric units in a nematically
ordered solution or melt [9].

The ability to control the materials properties of polymeric systems is highly desir-
able for many practical applications. It is common to do this by mixing two chemically
different polymers, e.g., blending poly(phenylene ether) resins with polystyrene results
in materials with high heat resistance and strong mechanical stability [10]. The statistical
thermodynamics of such polymer blends is usually studied via the Flory-Huggins (FH)
solution theory [11–16], which describes the polymer mixture using a lattice model. Here,
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the entropy of mixing favors homogeneous systems even for very long chains, whereas
unmixing is driven by the chemical incompatibility of the polymers, typically quantified
through the FH χ parameter. One central approximation of the FH solution theory is the
mean-field description of the energy of mixing, which completely disregards the (local)
chain connectivity. As a consequence, this contribution is identical for regular solutions,
polymer solutions, and blends [15]. Further, chain stiffness does not enter at all in the
standard FH solution theory, so that it cannot distinguish between fully flexible and stiff
polymers. Therefore, alternative approaches have been developed to describe rod-coil
mixtures, where the flexible coil-like polymer is often modeled as an effective soft spher-
ical particle [17–20]. Although such coarse-grained descriptions can provide important
insights on the (qualitative) phase behavior, they completely lose information on the scale
of monomeric units, and are also unsuitable for describing blends of semiflexible polymers,
which can neither be described as strictly hard rods nor as soft spheres.

In this work, we consider lyotropic solutions containing two types (A, B) of semi-
flexible polymers with finite persistence lengths `B

p > `A
p � `b. This problem has been

previously considered by a few analytical approaches, yielding interesting explicit results
only for special limiting cases. Semenov and Subbotin [21] generalized the Onsager-
type [22] treatment of single-component lyotropic dilute polymers solution [23–26] to the
two-component case. For the limiting case where the contour lengths LA and LB are in
the range LA � `A

p � `b, LB � `B
p � `b, they predicted interesting (qualitative) phase

diagrams containing both mixed and coexisting nematic phases [21]. Experimentally, the co-
existence of two nematic phases n1 and n2 was observed in mixed virus suspensions [27],
which can be modeled theoretically by mixtures of hard rods differing in diameter [28,29].
In recent MD simulations, Zhou et al. studied the behavior of mixtures of semiflexible (ring)
polymers in spherical [30] and ellipsoidal [31] containers, finding a confinement-induced
phase separation of the two species. In thermotropic systems, n1–n2 coexistence was also
predicted for solutions of two kinds of rigid rods with suitable enthalpic interactions [32],
and experimental observations of n1–n2 unmixing were also reported for mixtures of side-
chain liquid crystalline polymers with small molecule liquid crystals [33], but all such
temperature-driven phase transitions are out of consideration here. Thus, we also do not
discuss in detail the theory of Liu and Fredrickson [34], which was based on a Landau
expansion in terms of both the nematic order parameter and deviations of the local volume
fraction of monomeric units from its average. Since Landau expansions require that order
parameters are small, this approach is not suitable deeply in the nematic phase. In addi-
tion, it was assumed that the transitions were driven by standard enthalpic interactions
throughout, i.e., i-i unmixing due to a standard FH χ parameter, and nematic ordering due
to a Maier-Saupe-like term [35].

In the present work, we focus on systems where transitions are solely driven by
entropic interactions, focusing on cases where contour and persistence lengths are of
the same order. Preliminary results of our work were already presented as a letter [36];
in a complementary study [37], we have described related results for shorter chains,
with emphasis on a comparison between polymers with finite stiffness and strictly hard
rods, and the classification of various contributions to the Gibbs excess free energy within
the Density Functional Theory (DFT) framework. In Section 2, we briefly characterize
the employed models and methods. Following our previous work on one-component
solutions of semiflexible polymers [9,38–40], we use both DFT calculations and Molecular
Dynamics (MD) simulations for closely related models. Section 3 gives an overview of the
possible phase diagrams, emphasizing their description in different statistical ensembles,
as predicted by DFT. In Section 4, we analyze in more detail selected systems that were
studied by both DFT and MD. For one example, we show how a stiffness mismatch leads
to an effective χ parameter of entropic origin, by applying an approach pioneered by
Fredrickson et al. [41] and Kozuch et al. [42]. We also discuss the anisotropic character of
critical fluctuations for the n-n critical point. Finally, Section 5 summarizes our results and
briefly mentions pertinent experiments [43,44].



Polymers 2021, 13, 2270 3 of 23

2. Models, Methods, and Phenomenological Concepts
2.1. Models and Recorded Observables

In the context of DFT [9,36–40], it is convenient to describe the polymer chains as
sequences of N tangent hard spheres of diameter σ. Bending stiffness is introduced via a
bending potential Ubend(θijk), which depends on the angle θijk between subsequent bond
vectors ai = ri − rj and aj = rk − rj, with monomer positions rµ, µ = 1, . . . , N. This
potential is chosen as

Ubend = εbend

[
1− cos(θijk)

]
≈ 1

2
εbendθ2

ijk, (1)

where we anticipated that κ ≡ εbend/(kBT) � 1, hence small angles θijk dominate.
The dimensionless parameter κ controls the persistence length `p of the chains, which
is traditionally defined from the exponential decay of bond orientational correlations,
〈ai · ai+s〉 ∝ exp(−s`b/`p) [15,45], with bond length `b = σ here. However, this exponen-
tial decay with s is doubtful in various contexts [8]; in particular, it does not apply for large
s when nematic order is present. But even then, the case s = 1 can be used to define an
effective persistence length `eff

p :

`eff
p /`b = −1/ ln〈cos(θijk)〉 ≈ 2/〈θ2

ijk〉 . (2)

For simplicity, the superscript “eff” in Equation (2) will be omitted in the following.
The nematic order parameter S is defined as the largest eigenvalue of the traceless

tensor Qαβ(α, β = x, y, z)

Qαβ =
1
2
(3〈uα

i uβ
i 〉 − δαβ), (3)

with unit vector ui along ai. The nematic director is defined from the eigenvector belonging
to the largest eigenvalue of Qαβ. In a system with a single kind of polymer, the average
〈· · · 〉 in Equation (2) is taken over all bond angles of all chains, and over all unit vectors in
Equation (3). Correspondingly, in a two-component system with two kinds of polymers
A and B (we use σA = σB = σ and `A

b = `B
b = σ, but have κA < κB), only A chains are

included in Equations (2) and (3) for computing `A
p and SA, respectively, and likewise for

the B chains.
In the MD simulations, all monomeric units have identical masses mA = mB = m. Ex-

cluded volume interactions between beads are described by the Weeks-Chandler-Andersen
(WCA) potential [46]

UWCA(r) =

4ε

[(σ

r

)12
−
(σ

r

)6
]
+ ε, r ≤ 21/6σ

0, r > 21/6σ
, (4)

where r is the center-to-center distance between a pair of monomers, and ε sets the energy
scale for the repulsion.

Neighboring beads along a chain are bonded through the finitely extensible nonlinear
elastic (FENE) potential [47]

UFENE(r) =

−
kr2

0
2

ln
[

1−
(

r
r0

)2
]

, r < r0

∞, r ≥ r0

, (5)

with spring constant k = 30 ε/σ2 and maximum bond extension r0 = 1.5 σ to prevent
unphysical chain crossing. All parameters in Equations (4) and (5) are chosen the same for
both chain types, resulting in a bond length `b ≈ 0.97± 0.03 σ.

MD simulations were performed either in theNVT ensemble (N being the total num-
ber of monomeric units) with a Langevin thermostat [47], or in the N PT ensemble [48,49]
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using the HOOMD-blue software package (v. 2.9.4) [50]. A time step of ∆t = 0.005 τMD
was chosen to numerically integrate the equations of motion, with intrinsic MD time unit
τMD =

√
mσ2/ε. To achieve thermal equilibrium and reach the desired statistical accuracy,

108 to 109 integration steps were performed. Initial configurations were created by placing
the A and B chains in rod-like configurations, perfectly stretched out in the z-direction
(all bond angles being zero). The systems contained typically 105 to 106 monomeric units,
depending on the desired average density ρ and composition XB. Periodic boundary
conditions were employed in all Cartesian directions, and the size of the simulation box
was chosen distinctly larger than the polymer contour lengths L to avoid significant finite
size effects. Figure 1 shows examples of snapshot pictures of the simulated systems.

Figure 1. (a–c) Snapshot pictures of chain configurations from N PT runs for N = 32, κA = 24,
and κB = 128 in an elongated box geometry Lx = 3Ly = 3Lz, for pressures (a) P = 0.04 kBT/σ3,
(b) 0.10 kBT/σ3, and (c) 0.27 kBT/σ3. Case (a) shows the mixed isotropic region, and case (b) is a state
of i–n2 two-phase coexistence, while case (c) shows a mixed nematic state. The stiffer B component is
shown in yellow. (d) Snapshot picture for NA = 16, NB = 64, and κA = κB = 128 at P = 0.10 kBT/σ3.
The longer B component is shown in yellow. All snapshots are for the mole fraction XB = 0.5.

In the MD simulations, mean square end-to-end distances 〈R2〉 and gyration radii
〈R2

g〉 are also obtained for both chain types. In nematic phases, components parallel (〈R2〉‖,
〈R2

g〉‖) and perpendicular (〈R2〉⊥, 〈R2
g〉⊥) to the director must then be distinguished. We

chose the coordinate system such that the nematic director lies parallel to the z-axis, so that
〈R2〉‖ ≡ 〈R2〉z and 〈R2〉⊥ ≡ (〈R2〉x + 〈R2〉y)/2 (and analogous for 〈R2

g〉).
We also consider the single-chain structure factor [15,45]

G(q) =
1
N

〈
N

∑
j=1

N

∑
k=1

exp[iq · (rj − rk)]

〉
. (6)

For small |q|, we have the expansions [51]

G‖(q‖) = N(1− q2
‖〈R

2
g〉‖), (7)

G⊥(q⊥) = N(1− q2
⊥〈R

2
g〉⊥). (8)

Again, indices A and B need to be introduced in the mixture for the two types of
polymers appropriately. Finally, we mention that both the tangent hard sphere chain and
the bead spring model with bending potential Ubend (see Equation (1)), can be considered
as discretized versions of the Kratky-Porod worm-like chain model [52,53]. The latter
model is recovered in the limit N → ∞, `b → 0, and σ → 0, while keeping the contour
length L = (N − 1)`b fixed.
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2.2. DFT Methods

For semiflexible polymers, DFT expresses the free energy of the system as a functional
of the orientational distribution function f (ω). Here, ω is a shorthand for the two polar
angles ϑ and φ describing the orientation of a molecule, which is defined by the unit
vector belonging to the smallest eigenvalue of the moment of inertia tensor [54]. The the-
ory extends Onsager’s theory for lyotropic solutions of hard rods [22] and describes the
nonuniform molecular density as a product of the average density ρmol = Np/V and f (ω),
with number of polymers in the system Np and system volume V. The Helmholtz free
energy per molecule is then split into an ideal contribution

Fid/(NpkBT) = ln(ρmol)− 1 +
∫

dω f (ω) ln[4π f (ω)], (9)

and an excess contribution

Fexc/(NpkBT) =
1
2

ρmol

∫
dω

∫
dω′ f (ω) f (ω′)Vexcl(ω, ω′), (10)

where Vexcl(ω, ω′) is the effective excluded volume between two semiflexible polymers.
One can simplify the description further noting that Vexcl depends only on the relative
angle γ between the two chains. While Vexcl(γ) can be computed analytically for two
isolated hard rods [22], the conformational degrees of freedom of semiflexible polymers
necessitate a numerical approach. Following Fynewever and Yethiraj [54], we performed
additional two-chain Monte Carlo (MC) simulations to determine Vexcl(γ) for the AA, AB,
and BB chain pairs (see Refs. [37,54] for more details). Note that computing Vexcl(γ) from
two interacting chains at infinite dilution and using it in the approximation based on the
second virial coefficient, Equation (10), is self-consistent only in dilute solutions. To extend
the approach to larger densities ρmol, the prefactor of Vexcl(γ) is enhanced by Parsons-
Lee [55,56] rescaling. Clearly, this procedure is purely heuristic, but extensive comparisons
with MD simulations have shown that the accuracy of these approximations is reasonable
at least for single-component solutions [9,38,39]. Finally, note that the nematic order
parameter Sp derived in this coarse-grained representation refers to the chain ordering as a
whole, and not to the order parameter S associated with individual bond vectors.

2.3. Nematic-Nematic Phase Separation in Binary Mixtures of Semiflexible Polymers Described by
the Random Phase Approximation

In our preliminary communication [36], we have presented evidence that a homoge-
neously mixed binary nematic phase can phase separate into A- and B-rich nematic phases
at a critical point (see Figure 1). Thus, one expects that associated critical fluctuations
should occur in the homogeneous phase near this critical point. In this section, we present
a phenomenological (mean-field type) treatment of these critical phenomena within the
random phase approximation (RPA) [12,15,57,58], to guide the analysis of the DFT and MD
numerical work.

The RPA considers the collective structure factor Gcoll(q), which experimentally is
accessible by scattering under wavevector q. In the case of an incompressible mixture, RPA
relates Gcoll(q) to the single-chain structure factors GA(q) and GB(q) as

Gcoll(q)
−1 = [φAGA(q)]−1 + [φBGB(q)]−1 − 2χeff. (11)

Here, χeff is the appropriate effective FH interaction parameter, and φA and φB are
the volume fractions of A and B chains, respectively, with φA + φB = 1. In a symmetric
mixture (NA = NB = N) that is nematically ordered, Equations (6)–(8) and (11) yield

G−1
coll(q) = G−1

coll(0)
(

1 + ξ2
‖q

2
‖ + ξ2

⊥q2
⊥

)
, (12)
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where the quantity G−1
coll(0) describes the volume fraction fluctuations,

G−1
coll(0) = (NφA)

−1 + (NφB)
−1 − 2χeff. (13)

The correlation lengths ξ‖, ξ⊥ of these volume fraction fluctuations parallel and
perpendicular to the director of the nematic ordering field are

ξ2
‖ =

Gcoll(0)
N

(
〈R2

g〉A‖
φA

+
〈R2

g〉B‖
φB

)
, (14)

ξ2
⊥ =

Gcoll(0)
N

(
〈R2

g〉A⊥
φA

+
〈R2

g〉B⊥
φB

)
. (15)

Equation (13) implies that the critical composition is φA = φB = 1/2 and criticality
occurs for χeff = χc = 2/N [11,12,15]. Therefore, one finds

ξ2
‖ = ξ̂2

‖(1− χeff/χc)
−1, ξ2

⊥ = ξ̂2
⊥(1− χeff/χc)

−1, (16)

the critical amplitudes ξ̂‖, ξ̂⊥ then being related to the averages of the corresponding mean
square gyration radii components

ξ̂2
‖ = (〈R2

g〉A‖ + 〈R
2
g〉B‖)/2, ξ̂2

⊥ = (〈R2
g〉A⊥ + 〈R2

g〉B⊥)/2. (17)

For a well-ordered nematic system, a chain occupies a region that can be approximately
described as a cylinder of height H = N`b and radius R = 1/(π`bρ)1/2. This estimate
comes from the condition that the volume of the cylinder πR2H contains only the N
monomeric units of the chain, so the density inside of the cylinder is just the average
density [38,39]. Hence, for dense systems, ξ‖ is of order L, while ξ⊥ is of order `b. However,
for very stiff chains with `p � L� `b, we know that the i–n transition occurs already for
densities ρ of order 1/N, and then also the density, where n1–n2 unmixing sets in, is of
the same order. Then, we predict ξ̂⊥ ∝ R ∝ `b

√
N, while ξ̂‖ always is of order `bN. Thus,

RPA predicts critical fluctuations of a very anisotropic character, and this consideration
motivates some of the analyses that will be discussed in the next section.

3. DFT Predictions of Possible Phase Diagrams

Figure 2 shows phase diagrams in the space of the intensive thermodynamic variables
pressure, P, and chemical potential difference, ∆µ, for NA = NB = N = 32. When we fix
κB and vary κA, there is a particular “multicritical” value κM

A (estimated here as κM
A = 20.5

for κB = 128 and N = 32), where the topology of the phase diagram changes: For κA < κM
A ,

the (first-order) transition between two distinct nematic phases ends at a triple point,
where (first-order) i–n phase separations into A- or B-rich nematic phases set in. However,
for κA > κM

A , the first-order n1–n2 phase separation ends at a critical point instead.
It is interesting that, for κA < κM

A , the two first-order lines for the i–n transitions meet
in the (P, ∆µ) plane at the triple point under some angle, while, for κA = κM

A , all transition
lines seem to have a common tangent at the triple point. Note also that the value κM

A where
the phase diagram topology changes is not universal but depends on both κB and N [36];
qualitatively similar results were found in related work for shorter chains (N = 16) [37],
but there the critical point occurred at distinctly larger pressures, where the unmixing
of nematic phases could be potentially preempted by the appearance of smectic and/or
crystalline phases. The polymers with N = 32 studied here are just large enough so that
one can expect n1–n2 critical points at monomer densities that are low enough so that
simulation studies, and perhaps also experiments, become feasible.
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Figure 2. Phase diagrams of binary mixtures of two semiflexible polymers A, B with the same chain
length NA = NB = 32 but different stiffnesses κ. Results plotted in the variables pressure P versus
chemical potential difference ∆µ, as predicted by DFT. Results shown for (a) κA = 16, (b) 20, (c) 20.5,
and (d) 24 and 26 at fixed κB = 128 throughout. Triple points in (a,b) are indicated by triangles, while
critical points in (c,d) are denoted by dots.

These special features have their counterparts in the phase diagrams, where one
chooses XB rather than ∆µ as a variable (Figure 3). At the multicritical point κA = κM

A ,
the phase boundary of the i–n coexistence region has a horizontal tangent on the nematic
side and touches the n1–n2 two-phase region at its critical point. For κA > κM

A , however,
there is a single lens-shaped i–n coexistence region, which extends from the pure A system
(XB = 0) to the pure B system (XB = 1). In this representation, the n1–n2 coexistence curve
has an approximate parabolic shape near the critical point, which occurs at the minimum
of this curve in the (P, XB) plane. Such a parabolic shape reflects a mean-field critical
exponent, as expected for DFT. For κA > κM

A , this coexistence region no longer interferes
with i–n coexistence. With increasing P, the n1–n2 coexistence will end when other phases
(smectic liquid crystalline or crystalline solid phases) come into play, but such phases can
not be captured by the present DFT treatment.

In mean-field theories of critical unmixing of binary mixtures, the response function [59]

C = (∂XB/∂∆µ)P,T (18)

not only diverges at the critical point (Xc
B, Pc), but also along the whole “spinodal curve”

Xsp
B (P), which touches the coexistence curve at the critical point. In the phenomenological

FH theory discussed in Section 2.3, where χ rather than P was used as a control parameter,
the spinodal curve is simply given when we require G−1

coll(0) = 0 in Equation (13), since
C ∝ Gcoll(0) [59,60]. Although the concept of a spinodal curve is doubtful outside of mean-
field theories [61], we have included its location in Figure 3c nevertheless. Generally of
interest, however, is the so-called “Widom line”, describing the locus of maxima of C(XB, P);
a short piece of this line is also shown in Figure 3c. Figure 3d shows the molecular nematic
order parameters Sp

A and Sp
B of the two types of chains plotted versus the pressure P, for a

mole fraction XB = 0.5.
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Figure 3. Same as Figure 2, but in the variables pressure P versus mole fraction XB. Results shown
for (a) κA = 20, (b) 20.5, and (c) 24, with κB = 128 and NA = NB = 32 fixed throughout. The three
triangles marking the location of the triple point in (a) have the coordinates Pt = 0.159 kBTσ−3 (dotted
horizontal line) and Xi

B,t = 0.062, Xn1
B,t = 0.315, and Xn2

B,t = 0.68. In (c), both the n1–n2 coexistence
curve and associated mean-field spinodal are included, as well as the Widom line. Panel (d) shows
molecular nematic order parameters Sp

A, Sp
B versus P for XB = 0.5 and κA = 24.

A clear advantage of DFT is that it is straightforward to discuss the phase behavior of
the considered systems in various ensembles of statistical mechanics, which is particularly
useful for making contact with experiments: The (osmotic) pressure P of a polymer solution
is usually not readily accessible, and one rather uses the polymer concentrations as variables.
In our implicit solvent model, these concentrations translate into the monomer number
densities ρA and ρB, respectively. Alternatively, we may take the total density ρ = ρA + ρB
and the mole fraction XB = ρB/ρ as variables to draw the phase diagram (Figure 4a,b).

While coexisting phases in equilibrium must be at the same temperature and pressure,
their densities can differ, as clearly shown in Figure 4a,b. Note also that the critical point
no longer coincides with the minimum of the two-phase coexistence curve of n1–n2 phase
separation in the (XB, ρ) phase diagram. While the tie lines, connecting the coexisting
phases, are almost parallel to each other for n1–n2 coexistence, this is not true for i–n
coexistence: In this case, the tie lines must get perpendicular to the XB-axis when XB → 0
and XB → 1, but are much flatter in between. To avoid a too confusing picture, we have
not shown any tie lines in Figure 4c, where the phase diagram is shown in the (ρA, ρB)
plane; in that representation, three phases must coexist for any state within the triangle
formed by the three dotted lines enclosing the triple region.

In Figure 5a, we present the response function C (Equation (18)) in the homogeneously
mixed nematic phase, plotted versus XB for various pressures smaller than the critical
pressure Pc. The coordinates of the maxima of these curves yield the location of the “Widom
line” in the (XB, P) plane, as shown in Figure 3c. The log-log plot of the inverse height of
this maximum, C−1

max, reveals the expected critical variation, C−1
max ∝ Pc − P (Figure 5b).
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Figure 4. Phase diagrams of binary mixtures of two semiflexible polymers with (a,b) κA = 24, and (c)
κA = 20 at fixed NA = NB = 32 and κB = 128. Results shown in the variables (a,b) ρ versus XB,
and (c) ρA versus ρB (cf. Figures 2d, 3c and Figures 2b, 3a). In (a,b) coexisting phases are highlighted
as dots on the coexistence curves, while tie lines between them are indicated as dashed straight lines,
at different values of the pressure P, as indicated. The large circle in (b) indicates the location of
the critical point. Part (c) shows that the triple point of Figure 2b and corresponding triple line of
Figure 3a in this representation correspond to a three-phase triangle, enclosed by the three dotted
straight lines, with triangles marking its corners. The region at small densities near the origin up
to the full curves contains the isotropic phase; for large ρB and small ρA, there is a homogeneous
nematic phase rich in B chains; for large ρA and small ρB, there is a homogeneous nematic phase rich
in A chains. In between the two dashed green curves, n1–n2 two phase coexistence occurs. The white
region underneath the three-phase triangle is the isotropic-B-rich nematic two-phase region, and
above it the isotropic-A-rich nematic two-phase region.
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Figure 5. (a) Response function C(XB, P) (Equation (18)) versus XB for the case NA = NB = 32,
κA = 24, κB = 128 for several pressures P, as indicated. (b) Log-log plot of C−1

max(P) versus Pc − P,
for the data shown in panel (a), using Pc = 0.2 kBTσ−3. The dashed line indicates the critical exponent
γ = 1 in the power law Cmax ∝ (Pc − P)−γ.
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4. Selected MD Results for the Phase Behavior of Mixtures of Semiflexible Polymers

We start this section with a rather simple special case, i.e., two types of chains with
the same stiffness, κA = κB = 32, but different chain lengths, NA = 16 and NB = 32. We
have studied this system in cubic boxes, containing 12544 A and 6272 B chains (XB = 0.5).
We systematically varied the pressure P and measured the average number density of
monomeric units. Figure 6a shows the resulting equation of state, compared with the
corresponding isotherms of the pure systems (XB = 0 and XB = 1). In the mixed systems,
a sudden increase of the density from ρ ≈ 0.342 σ−3 to ρ ≈ 0.366 σ−3 takes place at
P ≈ 0.215− 0.220 kBTσ−3, where the nematic order parameters SA and SB (Figure 6b) and
end-to-end distances (Figure 6c) indicate the transition, as well.
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Figure 6. (a) Monomer number density ρ versus pressure P for the case NA = 16, NB = 32,
κA = κB = 32, for a mixture at mole fraction XB = 0.5, as well as for pure A (XB = 0) and pure B
(XB = 1) solutions. (b) Nematic order parameters SA and SB for the systems shown in (a). The inset
shows the same data plotted versus ρ. (c) Mean square end-to-end distance 〈R2〉 for A and B chains in
the XB = 0.5 mixture, normalized by their corresponding dilute limit 〈R2(ρ→ 0)〉 versus P, for both
A and B chains. Corresponding results for pure A and pure B solutions are also included. The inset
shows the same data plotted versus ρ. (d) Same as (b), but for the case NA = 16, NB = 64, and
κA = κB = 128 at XB = 0.5.

While pure systems in the N PT ensemble should exhibit a sharp first-order i–n
transition, where the density ρ and the nematic order parameter S have a well-defined
jump, this is not the case for mixtures: There, the phase diagram must have in general
the shape of a lens, similar to the i–n two-phase coexistence region of Figure 3c. We
would have a unique transition pressure Ptrans only for a truly intensive thermodynamic
variable, such as ∆µ, as in Figure 2; however, since XB is formed from densities ρA and
ρB of extensive variables, we rather have a two-phase coexistence region again for fixed
XB, with Pi(XB) < P < Pn(XB). The fact that we seem to observe a unique, well-defined
transition pressure in Figure 6 instead needs to be interpreted by the hypothesis that Pi(XB)
and Pn(XB) are so close together that we cannot resolve the difference.

DFT respects these general rules from thermodynamics, but it suffers from other
problems: The formulation which we used in this work does not give any information on
chain linear dimensions, since it is just based on the distribution f (ω) of coarse-grained
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chains (see Section 2.2). As a consequence, also the nematic order parameter Sp computed
from DFT (Figure 3d) refers to the average orientation of the whole chain, and not to
the orientation of individual bonds, as defined in Equation (3) and shown in Figure 6.
It has been demonstrated [62] that there is a significant difference between the nematic
order parameter defined from bond orientations and its counterpart from the orientation
of whole chains. Thus, we do not have any DFT counterparts to the simulation data of
Figure 6b,c; with respect to Figure 6a, even away from the i–n transition, the agreement is
only qualitative but not quantitative.

An interesting question concerns the comparison of data for the nematic order param-
eters and chain radii in the nematic phase for the mixed system (XB = 0.5) with their pure
counterparts: We find that SB(XB = 0.5) < SB(XB = 1), i.e., the admixture of the shorter
chains, which exhibit somewhat less nematic order, weakens the order of the longer chains
slightly. This is also evident from the fact that SA(XB = 0.5) < SB(XB = 0.5) throughout
the nematic phase. On the other hand, we also have SA(XB = 0.5) > SA(XB = 0) for those
pressures where nematic order occurs. Those chains which order better (here, the longer
chains) act like a nematic ordering field on the chains which have less tendency to order (in
the pure phase). We shall see later that the same phenomenon occurs when we examine
mixtures of chains that have identical N but differ in stiffness.

Throughout the isotropic phase, we find here 〈R2
g,A〉 = 18.15 σ2 and 〈R2

g,B〉 = 66.4 σ2,
irrespective of P and XB, and likewise for the mean square end-to-end distances,
〈R2

A〉 ≈ 182 σ2 and 〈R2
B〉 ≈ 669 σ2. Since the persistence length is about twice as large as

the contour length for the A chains, only a rather modest increase of 〈R2
A〉 can be observed

at the i–n transition (Figure 6c). In contrast, the longer B chains exhibit a marked jump of

their mean square end-to-end distances at the i–n transition. Further note that
√
〈R2

B〉 for

P = 1 kBTσ−3 has already reached 96% of the contour length, at which this quantity must
saturate for large enough pressures.

Now, we turn to some of the cases that were already studied by DFT in Section 3,
where chains have the same chain length NA = NB = 32, but differ in stiffness, e.g., κA = 24
and κB = 128. From DFT, we would expect a transition from the isotropic phase into the i–n
two-phase coexistence region with increasing pressure, then a nematic phase to which both
types of chains contribute, followed by n1–n2 unmixing at still higher pressures (Figure 3c).
Figure 7a shows the density versus pressure curve of the equimolar mixture (XB = 0.5)
from MD simulations, compared to the corresponding pure systems. For the latter, the i–n
transitions show up as little kinks at Ptrans ≈ 0.24 kBTσ−3 and 0.07 kBTσ−3 for the A and B
chains, respectively, with corresponding monomer number densities being ρi ≈ 0.37 σ−3

and ρn ≈ 0.38σ−3 for species A, while ρi ≈ ρn ≈ 0.21 σ−3 for species B. Unlike DFT, we
cannot resolve the density jump at the transition with meaningful accuracy in the MD
simulations. Nevertheless, the corresponding DFT results for the transition pressures,
i.e., Ptrans = 0.145 kBTσ−3 and 0.035 kBTσ−3 for the pure A and B systems, respectively,
are clearly far outside of the MD error bars. Thus, there is almost a discrepancy by a
factor of two in the pressure scale. However, the underestimation by DFT with respect
to the densities is much smaller (Figure 4). When we examine the ρ versus P curve for
the mixture, the i–n transition cannot be recognized from the data at all (Figure 7a). This
behavior can be expected when the two-phase coexistence region is not very narrow (as it
was in Figure 6), but rather wide, as found by DFT for the present case (Figure 3c). Then,
the density variation in this two-phase region is described by the lever rule,

ρ(XB, P) = ρ(Xi
B(P), P) +

XB − Xi
B(P)

Xn
B(P)− Xi

B(P)
ρ(Xn

B(P), P), (19)

where XB = Xi
B(P) and XB = Xn

B(P) describe the curves limiting the two-phase region at
the isotropic and nematic side, respectively. At these curves, ρ(XB, P) has at most a (small)
discontinuity of slope, which clearly could not be seen in the simulation.
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Figure 7. (a) Monomer number density ρ versus pressure P for systems with NA = NB = 32,
and κA = 24, κB = 128. Data recorded in theN PT ensemble at three compositions, XB = 0, XB = 0.5,
and XB = 1. (b) Phase diagram of the same system as in (a), in the plane of variables P and XB.
Lines are guides to the eye only. Error bars of the pressure refer to the fluctuations of the pressure
measured via the virial theorem.

In order to obtain a simulation counterpart (Figure 7b) to the i–n miscibility gap
predicted from DFT in Figure 3c, we had to carry out MD simulations for various choices
of XB, and analyze the compositions observed in suitably placed `x × Ly × Lz subsystems
with `x � Lx = 3Ly; “suitably placed” means that simulation snapshots were inspected
to check for states where two-phase coexistence occurs with interfaces perpendicular to
the x-axis (see Figure 1b). The subsystems were then centered far from these interfaces,
and compositions (as well as other observables) were recorded separately for the isotropic
and nematic subsystems. To avoid systematic errors, we have checked that the diffusion
of the domain walls in the x-direction was small enough during the time interval in
which subsystem averages were taken. However, rather large statistical fluctuations of
all observables are inevitable in such simulations of two-phase coexistence. Further note
that we did not succeed to prepare reasonably stable states of two-phase coexistence for
pressures P ≤ 0.085 kBTσ−3 and P ≥ 0.175 kBTσ−3, but rather metastable homogeneous
nematic or isotropic states took over in those pressure regions. Hence, the connections of
the observed phase boundaries in Figure 7b to the pure system phase transitions at XB = 0
and XB = 1 are tentative interpolations only.

In principle, one could improve the results by running considerably larger systems
and/or longer simulation times, which would, however, require a prohibitively large
investment of additional computational resources. Thus, while MD simulations yield in
principle the exact statistical mechanics of the considered model system, one has to be
aware of its practical limitations. Nevertheless, our MD simulations confirm the DFT
prediction that a rather wide i–n miscibility gap occurs for intermediate values of XB
(Figure 3c), unlike the system shown in Figure 6. Figure 7b suggests that, for XB = 0.5, the
two-phase region extends from about P ≈ 0.08 kBTσ−3 to about 0.14 kBTσ−3, compatible
with Figure 7a.

Since DFT predicted for the case κA = 24, κB = 128 a region of n1–n2 unmixing for
P > Pc ≈ 0.2 kBTσ−3 (Figure 3c), or ρ > ρc ≈ 0.43 σ−3 (Figure 4b), we extended our
MD studies to significantly larger pressures (and corresponding densities) than shown in
Figure 7, in order to search for MD evidence of n1–n2 phase separation in this model. To this
end, we performed additional simulations in elongated boxes of size 128 σ× 64 σ× 64 σ,
with hard walls placed at x = −64 σ and x = +64 σ to stabilize nematic order. Starting
configurations were generated by orienting all chains along the z-axis, and placing the A
and B chains in the right (x > 0) and left half (x < 0) of the simulation box, respectively.
However, we found that the initially separated A- and B-rich phases completely decay by
interdiffusion. Even for ρ = 0.65 σ−3, a state deep in the nematic phase for both pure A and
pure B systems, the system still develops towards a homogeneous mixture in the region
far from the confining walls. At still larger densities, the system is too slowly relaxing to
clearly establish equilibrium, and smectic order starts to take over in the pure B phase [40].
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Since the occurrence of n1–n2 unmixing can also be seen already in the homogeneous
phase by a growth of the response function C(XB, P) as P→ Pc (Equation (18)), cf. Figure 5a,
we attempted to estimate this quantity in the density regime where we still can equilibrate
well with MD, namely 0.42 σ−3 ≤ ρ ≤ 0.57 σ−3. To mimic a grandcanonical ensemble
in our MD simulations where the total numbers of A and B chains are strictly fixed, we
study fluctuations of XB, as described by C(XB, P), in small subsystems of the total system.
In any such subsystem, the volume fraction is not conserved: Because the remainder of
the system acts like a reservoir on the subsystem, one essentially realizes a grandcanonical
ensemble for the subsystem. The feasibility of such an approach has been demonstrated
previously for both the Lennard-Jones fluid at constant density [63] and the Ising/lattice
gas model [64,65].

For this subsystem analysis, it is most convenient to work in the NVT ensemble
and choose a cubic simulation box with Lx = Ly = Lz. For an Ising system, it would be
adequate to choose subsystems of the same shape, i.e., a cubic volume `× `× ` with `� Lz.
However, in the present case of nematically ordered systems, we must be aware of an
extremely strong anisotropy: Since the A and B chains are stretched out over a length of the
order of L ≈ (N − 1)`b along the z-axis, all volume fraction fluctuations in the z-direction
are strongly correlated; on a mean-field level, this effect was already described via the
distinction of the correlation lengths ξ‖ and ξ⊥ (see Equations (14)–(17)). To test whether
there is a tendency in favor of phase separation in the lateral directions, x and y, we found
it advantageous to study quasi-two dimensional subsystems perpendicular to the z-axis.
The resulting fluctuations C(XB, P) = Gcoll(XB, 0) are plotted in Figure 8a versus 1/`, since
one expects a (1/`)-finite size correction due to the subsystem boundary [63–65]. The data
are compatible with this expectation but also show that there is only a very modest increase
of Gcoll(XB = 0.5, 0) with increasing density (Figure 8a). This is also true for other choices
of XB (Figure 8b), confirming our conclusion that the blend κA = 24, κB = 128 does not
undergo critical n1–n2 unmixing at densities where one still has the nematic phase.
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Figure 8. (a) Response function C(XB, ρ) measured in ` × ` × σ subsystems of a system with
Lx = Ly = Lz = 64 σ, κA = 24, κB = 128, NA = NB = 32, at XB = 0.5, plotted versus 1/`. The dotted
straight lines indicate the linear extrapolation towards 1/`→ 0. Six densities from ρ = 0.42 σ−3 to
0.57 σ−3 are included, as indicated. (b) Extrapolated response functions C(XB, ρ) as obtained in (a)
versus XB for various ρ, as indicated. Curves are intended as guides to the eye only. (c) Same as (b),
but using a more flexible A component, κA = 20.
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Next, we studied systems with slightly more flexible A chains (κA = 20, κB = 128),
which, according to our DFT calculations (cf. Figure 3a), no longer have a mixed nematic phase
extending over the full range of investigated pressures (0.27 kBTσ−3 < P < 0.75 kBTσ−3) and
densities (0.4 σ−3 < ρ < 0.6 σ−3). Indeed, now the fluctuation near XB = 0.5 increases
distinctly stronger with increasing density (Figure 8c) than for the case κA = 24. However, it
turns out to be extremely difficult to reach a decent precision of these data; hence, we could
still not locate the critical point of n1–n2 unmixing of the system with this method. One
problem comes from the fact that critical slowing down is known to lead to a systematic bias
(underestimation) of Gcoll(q = 0) when the runs are not long enough [66]. This problem is
particularly severe for critical binary mixtures, where a finite size scaling of the relaxation
time for interdiffusion τint ∝ `4 is predicted [67].

However, we found it possible to study n1–n2 unmixing for κA = 20, κB = 128, using
the NVT ensemble and elongated boxes with Ly = 32 σ, Lz = 64 σ, N = 196,608, and a
choice of Lx such that the desired density was realized (e.g., Lx = 192 σ for ρ = 0.5 σ−3).
The time step here was chosen as 0.0025 τMD, and runs of 2.5× 109 MD steps were carried
out for compositions XB = 1/3, 1/2 and 2/3. Starting again the simulations with chains
oriented along the z-axis and initially separated in pure A and B domains (according
to the chosen XB), equilibrium was reached for κA ≤ 20 for the densities of interest.
We then determined the phase diagrams of Figures 9 and 10 by analyzing the resulting
density profiles ρA(x) and ρB(x). From Figure 9, it is obvious that the topology of the
phase diagram found in MD disagrees with its DFT counterpart for κA = 20 (Figure 3a),
but rather resembles the DFT phase diagram for κA = 24 (Figure 3c). Likewise, the MD
phase diagram for κA = 16 (Figure 10) is qualitatively similar to the DFT phase diagram
found for κA = 20 (Figure 3a). Thus, the massive discrepancies between DFT and MD
phase diagrams for choices of κA = 24 and κA = 20 should not be interpreted as a complete
breakdown of the DFT method: Rather, the latter is only somewhat inaccurate with respect
to the prediction of the value κM

A , where the phase diagram topology changes. For κA < κM
A ,

the phase diagram exhibits a triple point, while, for κA > κM
A , two separate coexistence

regions occur, i.e., an i–n region at lower pressures and a n1–n2 coexistence region (ending
in a critical point) at higher pressures. DFT predicts κM

A = 20.5 for κB = 128, while MD
rather suggests κM

A = 18± 1. Apart from this quantitative mismatch in κM
A , the general

sequence of phase diagram changes with increasing κA predicted by MD and DFT is the
same. Further, these findings are also compatible with the predictions obtained by Semenov
and Subbotin [21] for the limiting case of very large contour lengths. Hence, we conclude
that the general features of the phase behavior predicted here are rather robust.

An important aspect of phase coexistence in the studied systems is that only the
pressure P in the coexisting phases is identical, while the density ρ is not, as evidenced from
the nonzero slopes of the tie lines drawn in Figures 9b and 10b. This density inhomogeneity
could also be seen very well in the density profiles ρ(x) in the direction perpendicular
to the interfaces: Due to the periodic boundary conditions, there must be two interfaces,
and the slope of the tie lines tells us that the density of the phase n2 is larger than both
the density of the phase n1 and the isotropic phase. Due to this density variation at the
i–n2 interfaces, there could occur some excess density (“interfacial adsorption”) associated
with these interfaces, which might affect our analysis of the MD results (as a finite size
effect of order 1/Lx). However, a more detailed analysis of our results has shown that this
effect (and other finite size effects) is negligible. Rather, we could show that our results on
phase coexistence are fully compatible with consequences of the Gibbs phase rule. In fact,
when the two A-rich (a) and B-rich (b) phases coexist in our simulation volume, the volume
consists of two parts, V = Va + Vb, since, per definition, interfaces have zero volume.
The particle numbers NA and NB of the two kinds of monomers can be likewise split into
particle numbers in the two phases

NA = NAa +NAb, (20)

NB = NBa +NBb, (21)
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with XB = NB/(NA +NB). The phase boundaries in Figures 9 and 10 were based on
the four partial densities ρAa = NAa/Va, ρAb = NAb/Vb, ρBa = NBa/Va, ρBb = NBb/Vb,
namely ρa = ρAa + ρBa, ρb = ρAb + ρBb, and XBa = ρBa/ρa = NBa/Na, as well as
XBb = ρBb/ρb = NBb/Nb, with Na = NAa + NBa, Nb = NAb + NBb. Note that the
volume fraction Vb/V must not be confused with the mole fraction XB = NB/N .
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Figure 9. Phase diagram of the system NA = NB = 32, κA = 20, κB = 128 shown in the variables
pressure P versus mole fraction XB. The location of the rectilinear diameter is indicated by black
triangles, while the estimate Pc ≈ 0.73 kBTσ−3 for the location of the critical point is highlighted
by a black dot. (b) Data showing the total densities in the coexisting phases corresponding to (a).
The lower set of points shows data referring to i–n2 phase coexistence, the upper set n1–n2 phase
coexistence. The coexisting phases are connected by the straight tie lines. Each tie line corresponds to
a chosen average density ρ at XB = 0.5, which are highlighted by open symbols. Curves are guides
to the eye only.
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Figure 10. (a) Same as Figure 9a, but for κA = 16. Here, i–n2 phase coexistence is shown by
blue squares, n1–n2 phase coexistence by green triangles, and i–n1 phase coexistence by red dots.
The pressure at the triple point is indicated by a horizontal dashed line and the points where phase
boundaries end there by black triangles. The triple point pressure is at Pt ≈ 0.32 kBTσ−3. (b) Data
showing the total densities in the coexisting phases corresponding to panel (a). The lower set of
points shows data corresponding to i–n2 phase coexistence, the upper set n1–n2 phase coexistence.
No data for i–n1 phase coexistence are included, and the intermediate i–n1–n2 three-phase triangle is
also not shown. The coexisting phases are connected by (straight) tie lines. Each tie line corresponds
to a chosen average density at XB = 0.5, which are highlighted by open symbols. Curves are guides
to the eye only.

Due to Equations (20) and (21) and the relation for V, the four partial densities are not all
independent of each other. We have found it convenient to formulate this dependence via two
equations for the volume fraction of phase b, Vb/V = r1 = r2, with ratios r1 and r2 defined as

r1 = (ρB − ρBa)/(ρBb − ρBa), r2 = (ρA − ρAa)/(ρAb − ρAa), (22)
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with partial densities ρB = NB/V and ρA = NA/V. Tables A1 and A2 quote the partial
densities for XB = 0.5, from which Figures 9 and 10 were constructed, as well as the
estimates r1 and r2 of the corresponding volume fraction of the B-rich phase. Results for
XB = 1/3 and 2/3 were compatible with these results and are therefore not shown.

We now discuss the nematic bond order parameters of the two types of chains, SA
and SB, respectively, extracted as usual [35,39] as the largest eigenvalue of the tensor
Qαβ (Equation (3)). In the pure A and B systems, a discontinuous transition occurs at
P ≈ 0.38 kBTσ−3 and P ≈ 0.07 kBTσ−3, respectively, where the nematic order parameter
jumps from zero to about SA ≈ 0.52 and SB ≈ 0.76 [9,39], respectively (Figure 11a).
In contrast, the mixed systems exhibit a more gradual behavior, as shown in Figure 11a.
As expected from the phase diagram (Figure 10a), SB(XB = 0.5, P) starts to rise steeply as
soon as the i–n2 two-phase coexistence region has entered around P ≈ 0.10 kBTσ−3. Unlike
the pure B system, the increase of SB(XB = 0.5, P) is continuous, since the mole fraction
of the nematic phase grows continuously from zero to one as the two-phase coexistence
region is crossed. In addition, SA(XB = 0.5, P) starts to become nonzero together with
SB(XB = 0.5, P), due to A chains that are dissolved in the nematic B-rich phase (at a very
small mole fractions, cf. Figure 10a), and which align due to the nematic ordering field
exerted by surrounding majority of B chains. At P ≈ 0.3 kBTσ−3, the rise of SA(XB = 0.5, P)
is already rather steep: We interpret this phenomenon as a “capillary nematization” effect of
the nematic B-rich domains on the remaining A-rich domains, which, in a truly macroscopic
system, would still be in the isotropic phase up to a pressure of about P ≈ 0.35 kBTσ−3,
according to the phase diagram shown in Figure 10a. This finite size effect will be discussed
in more detail below.

In bulk (macroscopic) systems, the gradual increase of the order parameters can be
interpreted in terms of the lever rule

SA,B(XB, P) =
XB − Xi

B(P)
Xn

B(P)− Xi
B(P)

SA,B(Xn
B(P)). (23)

Here, the two boundaries of the i–n two-phase coexistence region were denoted as
Xi

B(P) and Xn
B(P). If we could cross this region at fixed P by varying XB, the variation

of SA (or SB, respectively) with XB would be simply linear. However, this clearly is not
true when we vary P at fixed XB (different from XB = 0 or 1, of course): Then, SA and SB
are nontrivial functions, reflecting both the variation of the phase boundaries Xi

B(P) and
Xn

B(P), as well as of SA,B(Xn
B(P)).

The behavior described in Figure 11a and Equation (22) would be observed experi-
mentally by methods that average over all domains in the system, e.g., scattering, optical
birefringence, etc. In the simulations, it is possible to resolve the order parameters sepa-
rately in the two kinds of domains: Then, SB(P) measured in the nematic B-rich domain
rises much faster with P (Figure 11b), similar to the result of the pure B phase. Likewise,
SA(P) measured in the isotropic A-rich domains stays zero up to P ≈ 0.35 kBTσ−3, where
also the A-rich phase becomes nematic (Figure 11b). An analogous interpretation explains
the behavior of the end-to-end distance measured separately in the coexisting domains
(Figure 11c). Equation (23) applies only for pressures P < Pt because, for larger pressures,
we enter a different two-phase coexistence region between two different nematic phases.
The generalization to this case is

SA,B(XB, P) = SA,B(Xn1
B (P)) +

XB − Xn1
B (P)

Xn2
B (P)− Xn1

B (P)
SA,B(Xn2

B (P)). (24)
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Figure 11. (a) Nematic bond order parameters SA and SB of the two types of chains A, B with
NA = NB = 32, κA = 16 and κB = 128 versus pressure P, for three choices of XB, as indicated. (b)
Same as (a), but SA and SB calculated only for A chains in A-rich phases, and B chains in B-rich
phases. (c) End-to-end distances 〈R2〉1/2 versus P, for the same system as panel (b). (d) SA and
SB versus P for the case NA = NB = 32, κA = 20, κB = 128, for XB = 0.5. For 0.075 kBTσ−3 <

P < 0.2 kBTσ−3, there occurs phase separation into isotropic and nematic phases (cf. Figure 9), and,
for about 0.2 kBTσ−3 < P < 0.7 kBTσ−3, we have a uniformly mixed nematic phase, while, for about
P > 0.7 kBTσ−3 n1–n2, unmixing has occurred.

In the simulation, the order parameter of the less stiff chains increases indeed steeply
around P ≈ 0.35 kBTσ−3: According to theory, there should be a clear jump of SA(XB, P)
at Pt, since SA(Xi

B(P < Pt)) ≡ 0 in the isotropic phase, while SA(Xn1
B (P ≥ Pt)) > 0 in

the phase n1. There is also a discontinuous increase from the composition of the isotropic
phase (Xi

B(Pt)) to the composition Xn1
B (Pt) of the A-rich nematic phase. The resulting

singular behavior of SA(XB, P) and SB(XB, P) predicted by Equations (23) and (24) is
somewhat smeared out in the simulations, presumably due to finite size effects. In addition,
the polymer end-to-end distances (Figure 11c) do not show related singularities either.
Thus, it clearly would be desirable to study the system using much larger N and much
better statistics, which was, however, computationally infeasible for us. One reason for
unexpectedly large finite size effects is recognized when we examine the order parameters
Si

A, Si
B, Sn1

A , Sn1
B , Sn2

A , and Sn2
B that belong to the various phases: We find that, in the case

where we have i–n2 two-phase coexistence in the simulation box, the order parameter Si
B

grows gradually with P and is of order 0.5 already when P = Pt is reached. We interpret
this finding as a “capillary nematization” effect of the B chains, which have Sn2

B ≈ 0.9 for
P near Pt already in the n2 phase, in the isotropic phase adjacent to the i–n2 interfaces.
As P→ Pt, a kind of nematic wetting layer grows in the isotropic phase at the i–n2 interface.
If the linear dimensions Lx → ∞, this effect will become negligibly small, but it is not for
the Lx values accessible to us. Another interesting feature is that, in the mixed nematic
phase, the order parameter of the less stiff phase (SA) always exceeds the corresponding
value of the pure A phase at the same pressure, and likewise for the stiffer component (SB)
it is slightly smaller than for its pure counterpart. Thus, the more ordered stiffer chains
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in the direct neighborhood of less stiff chains enhance the order of the latter; conversely,
the less stiff chains somewhat perturb the order of the stiffer ones, but the local nematic
order of the mixture is very nonuniform since SA(XB = 0.5) is distinctly smaller than
SB(XB = 0.5). A similar effect has already been noted for mixtures of chains which have
the same stiffness but differ in chain length (where the longer chains are more ordered), as
in Figure 6b,d.

Figure 11d shows a counterpart to Figure 11b for the case κA = 20, where a uniformly
mixed nematic phase occurs. While we expect a discontinuous transition from SA = 0
in the isotropic phase to a nonzero value in the uniformly mixed nematic phase at the
transition from the i–n two-phase region, a continuous splitting of both SA and SB into
their different values in the coexisting nematic phase is expected at (Xc

B, Pc). Indeed, the
data are compatible with this prediction. We see that SBa in the A-rich nematic phase
grows gradually from zero to distinctly nonzero values, when the transition to the nematic
phase is approached: Again, we interpret this precursor effect as a finite size effect, due to
“capillary nematization” at the i–n interfaces of the domain of the isotropic phase which
has a finite extent in x-direction (according to Table A1, the volume fraction taken by the
isotropic phase is about 0.39 for ρ = 0.35 σ−3 (P ≈ 0.172 kBTσ−3)).

Finally, we make contact between the n1–n2 critical point found here (Figures 9 and 11d)
and the phenomenological theory of Section 2.3: Can one understand the χ parameter pos-
tulated there from the stiffness asymmetry? To answer this question, we apply the approach
of Kozuch et al. [42], who had considered only isotropic mixtures of rather flexible long
polymers with slightly different stiffnesses.

Noting that Equation (13) also follows from the FH free energy

FFH(φA, φB) = kBT
[

φA

NA
ln φA +

φB

NB
ln φB + χeffφAφB

]
, (25)

with volume fractions φA + φB = 1 [11,12,15], one can see that the excess term χeffφAφB
relative to the entropy of mixing terms of the ideal mixture can only result from the
difference in bending energies UA

bend(θijk) and UB
bend(θijk), since both types of chains are

identical in all other respects for NA = NB. Since the average energy 〈E〉 = ∂〈βF〉/∂β
(with β ≡ 1/(kBT)), one can apply thermodynamic integration methods, based on the
appropriate difference in bending energy. Denoting the total free energy of the mixture
with XA = XB = 0.5 as FAB(κA, κB), the sought after excess free energy is

∆Fexc(κA, κB) = FAB(κA, κB)− [FA(κA) + FB(κB)]/2. (26)

Equation (26) leads to

1
N

∂(β∆Fexc)

∂(βκB)
=

1
N

∂(βFAB)

∂(βκB)
− 1

2N
∂(βFB)

∂(βκB)
, (27)

since the number of bonds in the B chains is only one half of the total number of bonds per
chain in the mixed system. Hence,

1
N

∂(β∆Fexc)

∂(βκB)
=

1
2
〈UB

bend〉AB −
1
2
〈UB

bend〉B. (28)

Here, UB
bend is the bending energy per monomer of a B chain, 〈. . .〉AB denotes the

thermal average in a 1:1 AB mixture, while 〈. . .〉B refers to an average in a pure system of B
chains. The desired free energy difference then is

β∆Fexc(κA, κB)

N
=

1
2

βκB∫
βκA

d(βκ′B)[〈UB
bend(κ

′
B)〉AB − 〈UB

bend(κ
′
B)〉B]. (29)
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We have performed this thermodynamic integration for a system at ρ = 0.42 σ−3 in
a cubic box of size Lx = Ly = Lz = 64 σ with N = 111,232 monomeric units. We started
the numerical integration in a state κA = κB = 128, and then lowered the stiffness of
the A component to smaller values (Figure 12). One sees that the integrand is extremely
small if both chains have similar stiffness, but it rises steeply for large stiffness mismatches.
The resulting effective χ parameter is shown in the inset of Figure 12. Criticality (according
to mean-field theory) would be reached for κB/κA ≈ 6, i.e., κc

A ≈ 21. However, while
the pressure P ≈ 0.29 kBTσ−3 for ρ = 0.42 σ−3 and κA = 16 clearly falls inside the i–n2
coexistence region, for κA = 20, the critical pressure Pc ≈ 0.7 kBTσ−3 corresponds to
ρc = 0.58 σ−3; hence, this system at ρ = 0.42 σ−3 is in the mixed nematic region. Since χeff
can be expected to increase with increasing density, we cannot estimate χeff for the data
shown in Figure 10, but the order of magnitude of χeff expected on the basis of Figure 12
makes sense.
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Figure 12. Difference in average bending angles 〈∆ cos(θijk)〉 versus κA at constant monomer density
ρ = 0.42 σ−3 for the system NA = NB = 32 and κB = 128. The solid line is a guide to the eye only.
The inset shows the resulting effective χ parameter versus κB/κA. The dashed horizontal line shows
the mean field prediction for criticality in a symmetric mixture, χc = 2/N. The arrow indicates the
ratio for which the two curves cross.

5. Conclusions

In this paper, we have considered binary mixtures of semiflexible polymers in a
common good solvent. We have studied the case where both constituents have the same
stiffness but differ in chain length and the case where both constituents have strictly the
same chain length but have a large stiffness disparity. We have considered here only very
simple models appropriate for lyotropic solutions, where nematic order is purely entropy-
driven, and applied two complementary computational approaches: (i) Density Functional
Theory, based on a tangent hard sphere model of chains where stiffness is controlled by
a bond angle potential (Equation (1)), and (ii) Molecular Dynamics simulation, based
on standard bead-spring models augmented with the same bond angle potential. We
considered binary mixtures of chains with NA = 16 and NB = 32 monomeric units (of
diameter σ and bond length between the units `b ≈ σ) with persistence length `p/`b = 32,
as well as mixtures with NA = 16 and NB = 64 with `p/`b = 128, both at mole fraction
XB = 0.5. It was found that the i–n coexistence regions are similarly narrow as for the
corresponding pure systems. In the mixed nematic phase, the nematic order parameter
SA of the shorter chains is always less than SB but larger than SA for the corresponding
pure system.

The second case focused on chains of the same length, NA = NB = 32, where the stiffer
component is almost rod-like (`B

p/`b = 128), while the persistence length of the less stiff
chain was much smaller (16 ≤ `A

p /`b ≤ 26). These systems also have a strong tendency for
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nematic order, but unlike the former cases exhibit relatively wide i–n two-phase regions.
Again, the chains in nematic phases adapt to their environment; the less stiff chains are
rather strongly stretched when they are dissolved in a stiffer matrix, whereas the inverse
effect is much less pronounced. The stiffness mismatch between the two constituents
has been shown to cause an unmixing tendency, which can be described by an effective
Flory-Huggins χ parameter, although there are no attractive forces between monomeric
units of different chains present whatsoever. We have computed this effective χ parameter
for one density as function of κB/κA (for κB = 128) through thermodynamic integration,
and have shown that mean-field theory based on this χ parameter would yield roughly the
correct ratio κB/κA for which this phase separation is actually observed. Using the random
phase approximation, one predicts that critical correlations are very anisotropic in dilute
and semi-dilute solutions: The correlation length parallel to the nematic director scales
proportional to chain length N, while it only is proportional to

√
N in the perpendicular

direction. A thorough numerical investigation of this new type of critical behavior is very
challenging, however, and must be left to the future. There has been great recent interest in
the critical behavior of anisotropic systems in the Ising universality class [68,69], since the
principal directions of order parameter correlations beyond mean-field theory may deviate
from the expectations based on mean-field theory, and one can show that then the principle
of “two-scale factor universality” [70] is violated.

This critical n1–n2 unmixing can be seen for an intermediate range of κB/κA only:
When κB/κA is not large enough, the critical point would be at unphysically large monomer
densities, where the nematic phase no longer exists at all (and smectic or crystal phases have
taken over). On the other hand, when the ratio increases, a multi-critical point emerges (see
Figure 3b), where the critical point touches the i–n coexistence region. For still larger κB/κA,
it would be metastable, and the equilibrium phase diagram then exhibits a triple point
(Figures 2a,b, 3a and 10a). For κB = 128, DFT has predicted the multi-critical point where
the phase diagram topology changes to occur for κM

A = 20.5, while MD, rather, suggests
κM

A = 18± 1. We do not attribute this discrepancy to the minor differences between the
chain models used by DFT and MD but, rather, hold responsible the approximations
used by DFT, where only the orientation ω of a rod-like effective chain enters as local
freedom, local density is not a variable, and the effective pairwise interaction Vexcl(ω, ω′)
used in Equation (10) is approximate. Nevertheless, the guidance provided by DFT to
yield an overall picture of phase behavior and lead the interpretation of MD results is
extremely valuable.

Unfortunately, we are not aware of real systems to which the present model calcu-
lations could be compared directly, although there have been studies of mixtures of two
different semiflexible polymers in a common solvent. For example, Russo and Cao [44]
obtained the phase diagram of poly(-γ-benzyl-α, L-glutamate) (PBLG) and Nylon 6 in
m-cresol as a solvent. PBLG in various solvents has broadly been used as a model material
of a liquid-crystal forming polymer in lyotropic solutions [1,2]. However, for the system of
Reference [44], the case NA = NB = N studied here has been out of focus, and, furthermore,
the relevance of hydrogen-bond interactions was stressed, which makes the problem much
more complicated.
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Appendix A

Table A1. Partial densities and ratios r1 and r2 for a system with NA = NB = 32, κA = 20,
and κB = 128.

ρ ρAa ρAb ρBb ρBa r1 r2

0.250 0.1574 0.0203 0.2641 0.0826 0.234 0.236
0.300 0.2358 0.0241 0.3109 0.0413 0.403 0.405
0.350 0.2987 0.0263 0.3650 0.0194 0.450 0.454
0.400 0.3552 0.0348 0.4077 0.0049 0.484 0.484
0.425 0.3793 0.0482 0.4181 0.0022 0.505 0.504
0.450 0.4018 0.0844 0.4013 0.0016 0.559 0.557
0.475 0.4033 0.0897 0.4134 0.0407 0.528 0.529
0.500 0.4159 0.0873 0.4421 0.0546 0.504 0.505
0.550 0.4657 0.0805 0.4997 0.0520 0.498 0.495
0.600 0.5325 0.0517 0.5859 0.0328 0.483 0.484

Table A2. Partial densities and ratios r1 and r2 for a system with NA = NB = 32, κA = 16,
and κB = 128.

ρ ρAa ρAb ρBb ρBa r1 r2

0.250 0.1606 0.0405 0.2380 0.0790 0.289 0.296
0.275 0.2012 0.0473 0.2560 0.0558 0.408 0.414
0.300 0.2377 0.0582 0.2681 0.0387 0.485 0.489
0.325 0.2710 0.0731 0.2771 0.0250 0.545 0.548
0.350 0.2991 0.0963 0.2752 0.0159 0.614 0.612
0.600 0.3867 0.2629 0.3418 0.2030 0.699 0.700
0.615 0.4324 0.1927 0.4372 0.1671 0.520 0.521
0.630 0.4680 0.1714 0.4789 0.1438 0.511 0.516
0.650 0.5043 0.1494 0.5224 0.1226 0.506 0.505
0.670 0.5587 0.1033 0.5955 0.0857 0.489 0.491
0.690 0.5931 0.0598 0.6684 0.0654 0.464 0.465
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