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Abstract: Environmental noise can be defined as the accumulation of noise pollution caused by
sounds generated by outdoor human activities, Road Traffic Noise (RTN) being the main source in
urban and suburban areas. To address the negative effects of environmental noise on public health, the
European Environmental Noise Directive requires EU member states to tailor noise maps and define
the corresponding action plans every five years for major agglomerations and key infrastructures.
Noise maps have been hitherto created from expert-based measurements, after cleaning the recorded
acoustic data of undesired acoustic events, or Anomalous Noise Events (ANEs). In recent years,
Wireless Acoustic Sensor Networks (WASNs) have become an alternative. However, most of the
proposals focus on measuring global noise levels without taking into account the presence of ANEs.
The LIFE DYNAMAP project has developed a WASN-based dynamic noise mapping system to
analyze the acoustic impact of road infrastructures in real time based solely on RTN levels. After
studying the bias caused by individual ANEs on the computation of the A-weighted equivalent
noise levels through an expert-based dataset obtained before installing the sensor networks, this
work evaluates the aggregate impact of the ANEs on the RTN measurements in a real-operation
environment. To that effect, 304 h and 20 min of labeled acoustic data collected through the two
WASNs deployed in both pilot areas have been analyzed, computing the individual and aggregate
impacts of ANEs for each sensor location and impact range (low, medium and high) for a 5 min
integration time. The study shows the regular occurrence of ANEs when monitoring RTN levels in
both acoustic environments, which are especially common in the urban area. Moreover, the results
reveal that the aggregate contribution of low- and medium-impact ANEs can become as critical as
the presence of high-impact individual ANEs, thus highlighting the importance of their automatic
removal to obtain reliable WASN-based RTN maps in real-operation environments.

Keywords: road traffic noise; noise monitoring; dynamic noise maps; anomalous noise events;
individual impact; aggregate impact; WASN; sensor nodes; urban and suburban environments.

1. Introduction

Environmental noise can be defined as the accumulation of noise pollution caused by sounds
generated by human activity outdoors, mainly produced by transport, road traffic, rail traffic, air traffic
and industrial activities [1]. According to the World Health Organization, noise exposure produces
a loss of around one million healthy life years in Western Europe every year due to different types
of derived diseases [2,3]. Focusing on this public health problem, the European (EU) authorities
published the Environmental Noise Directive (END) [1] in 2002, which requires the EU member states
to tailor noise maps and to develop the subsequent action plans to mitigate noise every five years for
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major agglomerations and key infrastructures [4]. To address this issue in a harmonized manner, the
Common Noise Assessment Methods in Europe (CNOSSOS-EU) was also developed, defining the
measurement guidelines to allow comparable noise assessments across the EU [5]. However, as one
of the first set of results obtained after the implementation of the END regulation showed [6], noise
pollution continues to be one of the principal causes of health problems in Europe. This premise was
further endorsed by [7,8], which led to the development of an updated version of the CNOSSOS-EU [9].

The aforementioned dramatic effects of noise pollution on citizens are mainly caused by traffic
noise, as it is the main noise source in urban and suburban areas [10,11]. Road Traffic Noise (RTN)
maps have been historically created from expert-based measurements using certified devices during
specific time periods and locations, considering vehicle flows averaged over long periods of time [12].
During the recordings, the presence of acoustic events non-related to road traffic (e.g., sirens, horns,
works, dogs’ barks, airplanes flyovers, etc.) may occur [13]. As a consequence, the collected
acoustic data should be cleaned of these undesired events before feeding the noise map creation
software [13] to avoid biasing the computation of the A-weighted equivalent sound levels (LAeq)
beyond 2 dB, as recommended by the European Commission Working Group Assessment of Exposure
to Noise (WG-AEN) [14]. In this context, the Signal-to-Noise Ratio (SNR) of these acoustic events
becomes a crucial parameter to evaluate and model [15,16]. Although some researchers have opted to
control the SNR of the events by creating artificially mixed datasets (see e.g., [17–20]), their accurate
characterization remains as an open research question as it is almost unfeasible to represent the wide
diversity of acoustic data for real world [21].

The so-called Wireless Acoustic Sensor Networks (WASNs) have become an alternative to the
creation of noise maps using real-life data, since they allow the ubiquitous monitoring of environmental
noise [22–24]. During the last decade, several WASNs have been deployed in different smart cities such
as Barcelona [25], Algemesí [26], Pisa [27], Monza [28], Halifax [29] and Milan and Rome [30] in Europe,
or New York city [31], to name a few. In this WASN-based approach, the traditional manual cleaning
of the Anomalous Noise Events (ANEs) on the noise pattern [32] becomes unfeasible due to the huge
volume of data that have to be processed in real time [13]. As a consequence, the first generation of
these WASN-based environmental noise monitoring systems have mainly been focused on measuring
the global sound levels of the sensed locations, without considering the impact of the presence of
specific acoustic events on the LAeq computation. To address this issue, some projects have started
incorporating acoustic event detection techniques within the WASN-based noise monitoring pipeline.
The Sounds of New York City (SONYC) project includes the real-time identification of 10 common
classes of urban sound sources [31] through a machine listening system trained after artificially mixing
the events with background noise in the UrbanSound dataset [16]. Moreover, the DYNAMAP project
aims at developing a WASN-based dynamic noise mapping system to monitor the acoustic impact of
road infrastructures through the creation of noise maps in real time [30]. The project includes two pilot
areas: one in the District 9 of Milan as urban area [33], and another in the A90 highway surrounding
Rome as a suburban area [34,35]. As the system focuses on measuring RTN levels solely, the ANEs
present in the acoustic environments should be automatically removed. To that effect, a machine
listening algorithm denoted as Anomalous Noise Events Detector [36] was designed and initially
trained using a 9-h expert-based dataset collected from the two pilot areas before installing both sensor
networks [21]. The analysis of that preliminary dataset highlighted the importance of the removal of
individual ANEs based on their duration and SNR [37]. However, no evidence of a critical impact
was yet observed in that dataset due to the presence of several ANEs within the same period of time,
probably because the expert-based dataset missed several key aspects from real operation, such as
different RTN patterns between day-night and weekday-weekends, or variable weather conditions,
among others [38].

After the deployment of the two WASNs in the urban and suburban pilot areas, this paper
evaluates the aggregate impact of ANEs on the LAeq computation of RTN in both environments in
real operation. Besides analyzing the individual impact of ANEs on the measurements, the analysis
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methodology focuses on evaluating the bias caused by the presence of several ANEs within a given
period of time, taking into account their impact range (low, medium or high) and sensor location.
The study is conducted on 304 h and 20 min of WASN-based labeled acoustic data collected through
both sensor networks, before proceeding to update the ANED algorithm with both WASN-based
datasets (see [39,40] for a detailed description of the general characteristics of the urban and suburban
datasets, respectively).

The paper is structured as follows. Section 2 reviews practices in acoustic environments where the
salience and the impact of the events is a key issue. Section 3 presents the impact analysis methodology
and impact-related measurements. Section 4 presents the conducted experiments and the results
obtained from the analysis of the WASN-based urban and suburban acoustic datasets. Finally, after
discussing several key aspects of this work in Section 5, the main conclusions and future work are
described in Section 6.

2. Related Work

In this section, we review several works from the literature dealing with the identification of
salient acoustic events regardless of the noise source; this issue together with the duration of the event
sets the basis for the evaluation of the actual impact of these events on the LAeq computation.

One of the most challenging issues when working with environmental acoustic data recorded in
real-life is their accurate characterization, which is supervised by experts. More precisely, this process
deals with the parameterization of the data by means of several representative features, among which
are the temporal limits of each sound event—i.e., its actual duration—by setting up its start and end
boundaries [41,42], and its acoustic salience with respect to the background noise [15,16], i.e., the SNR
of the event, which is a key parameter to consider. To properly address this issue, it should be taken
into account that the events that need to be detected are usually independent one from each other, and
typically present a variable duration and SNR. Furthermore, no temporal correlation can be found
among them, which makes the challenge of parameterizing audio events particularly more complex
compared to speech or music signal [43]. Consequently, the accurate characterization of environmental
sound remains as an open research question in real world environments [21].

To work with a controlled environment, artificially-mixed datasets are usually built taking into
account a predefined range of SNRs when mixing the events with the background noise during the
dataset process generation. Some examples can be found in Foggia et al. [17], Stowell et al. [18] and
Socoró et al. [19] (see [21] for further examples). The measurements of SNRs in audio fragments
makes it possible to sort events by their degree of acoustic salience with respect to their environment.
Moreover, datasets containing synthetic or artificially modified samples also respond to the need to
generate more samples of a particular type of noise that is scarce , which is yet today one of the main
limitations of acoustic event detection [44]. The explicit SNR measure can be evaluated by means of a
closed set of saliency levels, such as −6 dB, 0 dB or +6 dB, as suggested by Stowell et al. in [18]; the
authors also propose to record live scripted monophonic event sequences in acoustic environments
under control. Foggia et al. [17] mixes several sounds related to surveillance (e.g., scream, glass
breaking and gunshots) with both indoor and outdoor environments with six different levels of
SNR (from 5 dB to 30 dB, with a step of 5 dB), after the observation of the occurrences of these
events in a real-life environment. Socoró et al. [19] presents a dataset composed of a mixture of
sound sources considering road traffic noise plus other type of sound events generated using two
different SNRs (+6 dB and +12 dB) in order to assess the performance of an anomalous noise event
detector. The original non-traffic-noise related audio fragments were extracted from Freesound
(https://freesound.org/) while road traffic noise was recorded in a city ring road in real-life conditions.
Nakajima et al. [45] works with a dataset recorded in real operation with several examples of noise
sources of interest (e.g., cicadas, outside air conditioner, road traffic noise, and neighborhood noise).
The work complements the dataset with artificial mixtures to increase the sound source diversity
by means of varying the salience of the events using the SNR of three sound sources in the dataset,

https://freesound.org/
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adapting the margins from −6 dB to +6 dB depending on the characteristics of the noise source.
Finally, in Koizumi et al. [46], the authors conduct an objective evaluation on a synthetic dataset, using
an open toy-car-running sound dataset; the dataset includes four types of factory noises, and it was
generated by mixing synthetically those audio samples at a SNR = 0 dB, together with the audio files
of less than 5-s duration from the Task-2 dataset of DCASE 2018 Challenge [47].

Following a different approach, several research works consider auditory attention when
evaluating the impact of sound events on acoustic measurements through the evaluation of their
SNR levels, whose focus may vary depending on the domain of application (e.g., noise monitoring
or surveillance) or the signal of interest (see [48] and references therein for further details). These
works analyze the perceptual relevance of audio events according to human response, as in [15], where
De Coensel and Bootteldooren design a salience-based map to simulate the capability of humans
to switch the attention among several auditory stimuli along time, considering noise examples of
means of transportation. This research approach is focused on the identification of the salient event.
However, it ignores both its origin and its relative energy with respect to background noise. Following
this approach, Salamon et al. [16] included a perceptually based binary descriptor in their dataset to
discriminate whether the event was perceived as the main noise source or in the background of the
recording. Afterwards, the dataset was used to evaluate the performance of a sound event classification
algorithm, getting better accuracy results on foreground events rather than those perceived in the
background. Annotating and evaluating a recorded set of audio files is a very time-consuming task.
To address these limitations, Salamon et al. published Scaper [20], whose goal is to conduct soundscape
synthesis together with data augmentation given a soundbank, controlling characteristics such as
the number and type of events, their timing, duration and SNR with respect to a background sound.
The final goal is to ease the dataset generation process but also to ensure that the sets of data evaluated
present suitable statistical characteristics for training and test of acoustic event detection algorithms.

Finally, it is worth mentioning that a couple of WASN-based projects have recently incorporated
the detection of acoustic events in urban and suburban environments in the environmental noise
monitoring pipeline. To that effect, the SONYC project [31] has developed a representative dataset
with diverse sounds of interest, using the data gathered from the 56 sensors deployed in different
neighborhoods of New York, considering up to 10 different common urban sound sources from the
urban soundscape (highly frequent in urban noise complaints). The UrbanSound dataset was created
after artificially mixing the events coming from Freesound with the background noise collected in
the project [16]. Our team, in the framework of the DYNAMAP project [30] made its first attempt to
create an acoustic dataset of the urban and suburban pilot areas (District 9 in Milan and A90 highway
surrounding Rome) before the sensors of the two WASN were deployed in those scenarios, by means
of an expert-based recording campaign [21]. The analysis of those datasets showed the highly local
and unpredictable nature of anomalous noise events, which were manually labeled and used to train
the preliminary version of the ANED algorithm [36]. Recently, the deployment of the two WASNs in
both pilot areas has led to the generation of a suburban acoustic dataset through the 19-nodes WASN
in Rome [40], together with the completion of the first steps of the creation of an urban dataset through
the 24-node WASN installed in Milan in real operation [39]. From these two experiences, it can be
concluded that the evaluation of the acoustic salience of any environmental acoustic event is relevant
in order to improve the accuracy of the derived machine listening approaches [43], an issue that was
justified in [37] after evaluating the individual impact of the detected events on the overall equivalent
noise level computation considering 9 h of real-life acoustic data collected through an expert-based
recording campaign. However, as far as we know, no specific analysis has been conducted to assess
to what extent the concentration of ANEs with low SNRs within a period of time may bias the
WASN-based computation of the LAeq measurements.
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3. Impact Analysis Methodology

This section describes the methodology followed to analyze the bias caused by ANEs on the LAeq
computation for a given integration time T (hereafter denoted as LAeq,T), building on the analysis
methodology presented in [37]. The impact analysis methodology permits the study of both individual
and aggregate contributions of the anomalous noise events present within a specific period of time.
To that effect, individual and aggregate impact histograms are obtained from the labeled data for
each sensor of the network according to the considered impact ranges. As depicted in Figure 1, the
analysis starts with the labeled acoustic data collected from a WASN of NS sensors in real operation.
After windowing the audio streams into frames of T seconds, the individual and aggregate impacts
of the ANEs present in each period of time t are computed and stacked. Finally, both individual and
aggregate impact histogram matrices are derived to account for the occurrences belonging to each
impact range defined by a set of impact thresholds. The following paragraphs explain the key elements
of the proposed analysis methodology in detail.
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Figure 1. Block diagram of the impact analysis methodology on a labeled WASN-based acoustic
dataset obtained from a NS sensors network, where T is the integration time considered to compute
Li

Aeq,T(t) and L̂i
Aeq,T(n, t) for each sensor i and event n. Moreover, ∆Li

Aeq,T(n, t) and AIi
T(t) denote

the individual and aggregate impacts of the ANEs, respectively. Finally, hij represents the components
of the histogram matrices H derived from the individual and aggregate impact histograms Hi, which
account for the impact values according to NR impact ranges defined by a set of impact thresholds
Γ = {γ1, γ2, ..., γ(NR+1)}.

• Aggregate impact computation per sensor

The Aggregate Impact (AI) of several acoustic events can be defined as the accumulated contribution
of the individual impacts of all the ANEs present within a period of time and sensor node.

It is denoted as AIi
T(t), where indexes i and t respectively represent the sensor number, for

i = {1, 2, ..., NS}, and the integration time period, for t = {1, 2, ..., Ni
T}, Ni

T being the total number
of integration time periods of length T considered for its computation given a sensor i, and it is
defined as
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AIi
T(t) =

Ni
E(t)

∑
n=1

∆Li
Aeq,T(n, t), (1)

where ∆Li
Aeq,T(n, t) is the individual impact of the n-th ANE on the LAeq,T computation within

the integration time period t, Ni
E(t) being the total number of ANEs present in that time period

for sensor i, and it is computed as

∆Li
Aeq,T(n, t) = Li

Aeq,T(t)− L̂i
Aeq,T(n, t), (2)

Li
Aeq,T(t) being the total A-weighted equivalent sound level in the integration period of interest

t for the i-th sensor (i.e., considering RTN and all ANEs found in that t), and L̂i
Aeq,T(n, t) the

corresponding noise level after removing the n-th ANE from the measurement through the linear
interpolation of the LAeq,1s values of the previous and subsequent RTN samples (the reader is
referred to [37] for further details).

To that effect, first, the audio data collected from sensor i is divided into Ni
T windows of T

seconds length (see Figure 1). Next, the A-weighted equivalent noise levels with and without
ANEs are computed, whose difference gives the n-th individual ANE impact ∆Li

Aeq,T(n, t). Then,
the aggregate impact of window t is obtained by accumulating the individual impacts of all the
ANEs it contains.

• Range-based impact analysis per sensor

The analysis methodology also aims at categorizing the relevance of both individual and aggregate
impacts according to NR impact ranges Θ = {θ1, θ2, ..., θNR} (in dB) delimited by a predefined set
of impact thresholds Γ = {γ1, γ2, ..., γ(NR+1)}, and it is computed as

Θ =
NR⋃
j=1

θj =
NR⋃
j=1

[γj, γj+1), (3)

where θj is defined as the impact range where γj ≤ ∆Li
Aeq,T(t) < γj+1, for j = {1, 2, ..., NR}.

This information is statistically analyzed through the histograms obtained for each sensor (see
Figure 1) in the impact histogram matrix H = (hij) ∈ N(NS×NR), hij being the number of occurrences
of ANEs that account for an impact within θj observed in the i-th sensor as follows

H =



H1

H2
...

Hi
...

HNS


=



h11 h12 · · · · · · · · · h1NR

h21 h22 · · · · · · · · · h2NR
...

...
. . . . . . . . .

...
...

...
. . . hij

. . .
...

...
...

. . . . . . . . .
...

hNS1 hNS2 · · · · · · · · · hNS NR


, (4)

where

hij =


Ni

T

∑
t=1

NE(t)

∑
n=1

1θj

(
∆Li

Aeq,T(n, t)
)

for individual impact,

Ni
T

∑
t=1

1θj

(
AIi

T(t)
)

for aggregate impact,

(5)
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with 1θj(·) being the indicator function defined for the interval range θj as

1θj(x) =

{
1 if x ∈ θj,

0 if x /∈ θj.
(6)

Notice that rows of H (denoted as Hi in Equation (4)) correspond to the impact histograms
obtained from each i sensor.

• Analysis of the critical aggregate impacts per impact range and sensor

To complement the previous analyses, it is also interesting to identify the origin of critical AIs for
those cases that surpass the critical threshold γc. To that effect, the aggregate impact of ANEs for
a given integration time period and sensor is computed considering only those individual ANEs
which ∆Li

Aeq(n, t) belongs to a particular impact range (i.e., ∆Li
Aeq(n, t) ∈ θj) as follows

AIi
T(θj, t) = ∑

n∈Ψ(θj ,t)
∆Li

Aeq,T(n, t), (7)

where Ψ(θj, t) represents the subset of ANE indices within t which individual impact belongs to
impact range θj.

Finally, the critical AI histogram matrix Hc = (hc
ij) ∈ NNS×NR is defined as a particular case of H

(see Equation(4)) considering the matrix components as

hc
ij =

Ni
T

∑
t=1

1θc

(
AIi

T(θj, t)
)
, (8)

the 1θc(x) being a particular case of the indicator function defined by θj = θc (see Equation (6)),
where θc = [γc,+∞) defines the range of critical impacts, as γc represents the threshold of a
non-tolerable deviation of the A-weighted equivalent road traffic noise levels.

4. Experiments and Results

This section describes the results of the experiments from the impact analysis conducted on
the two environmental WASN-based audio databases from the DYNAMAP’s Milan and Rome pilot
areas [39,40]. According to the project specifications, the considered integration time to update the
LAeq,T values of the RTN maps is 5 min [30], i.e., T = 300 s. To analyze to what extent the collected
ANEs from each sensor location bias the LAeq,300s measurement, the impacts are categorized within
three impact ranges (i.e., NR = 3) [37], accounting for those occurrences (from either individual or
aggregate ANEs) causing a low-impact in θ1 = (−∞, 0.5) dB, a medium-impact in θ2 = [0.5, 2) dB, and,
finally, a high-impact in θ3 = [2,+∞) dB, θ3 = θc being as this last interval collects those cases that
surpass the critical threshold γc = 2 dB according to the WG-AEN [14]. Regarding the two WASNs,
the number of sensors NS considered for the subsequent analyses is 19 for the suburban network, and
23 for the urban one, whereas the total number of evaluated segments of 5 min is 1812 in Milan and
1840 in Rome, respectively.

4.1. WASN-Based Environmental Databases

After the deployment of the sensor networks in the urban and suburban pilot areas of the
DYNAMAP project, two WASN-based databases were obtained from environmental acoustic data in
real-operation conditions. On the one hand, the nodes distribution across the urban area of Milan is
based on the clustering of traffic noise profiles in order to place the best sensor locations for different
road categories [33]. On the other hand, in the Rome suburban area, the sensor nodes have been
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spread along the A90 highway, considering several scenarios of different complexity (single road,
crossings, nearby railways and multiple connections) [34,35]. Figure 2 depicts two examples of the
sensor placements in both urban and suburban areas, and Appendix A details the sensors’ Ids as well
as the description of their locations within Tables A1 and A2 for the urban and suburban environments,
respectively.

(a) Example of the sensor in its location in the
urban area of Milan.

(b) Example of the sensor in its location in the
suburban area of Rome (picture property of
ANAS S.p.A.).

Figure 2. Examples of the location of the low-cost acoustic sensors in the DYNAMAP’s urban and
suburban pilot areas.

In both cases, the recorded databases include data from two days with different traffic conditions:
one from a weekday (on Tuesday, the 28th of November 2017 for the urban area, and on Tuesday, the
2nd of November 2017 for the suburban environment), and another during the weekend (on Sunday,
the 3rd of December 2017 on the urban area, and on Sunday, the 5th of November 2017 in the suburban
environment). The audio recordings were collected in continuous raw audio clips from the first 20 min
of each hour (considering a sampling frequency of 48 kHz) , as a trade-off between the storage capacity
and communications resources of the nodes, and obtaining a representative sub-sampling of the LAeq
measurements along the day [40]. The gathered acoustic data were manually labeled by experts in
audio signal processing (see [39,40] for further details). As a result, up to 28 ANE subcategories were
identified. Table 1 lists the 16 types of ANEs observed during the manual labeling process in the
suburban environment (subcategories being stru and trck only specifically detected in this scenario),
together with the 26 subcategories identified during the annotation of the urban dataset (being bell,
blin, dog, glas, peop, rubb, sqck, step, tram and wrks those ANE subcategories typically found within
this environment). Meteorological-related ANEs like thun, rain and wind cannot be attributed to any
specific acoustic environment since they are highly dependent on the weather during the days of
the WASN-based data collection. Finally, audio excerpts that contained a mixture of different sound
sources (e.g., diverse ANEs together with RTN as background) were labeled as complex sound mixtures
or CMPLX. Both CMPLX and ANEs are considered for the subsequent impact-related analyses as both
contain undesired acoustic events, after windowing the audio streams into Ni

T frames of length T (see
Figure 1).
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Table 1. Description and % of occurrences of the 28 sound subcategories attributed to anomalous
noise events found throughout the manual labeling process of the WASN-based urban and suburban
acoustic databases.

Label Suburban Urban Description
Counts (%) Counts (%)

airp 0.1 1 Noise of airplanes and helicopters

alrm 0.2 0.3 Sound of an alarm or a vehicle beep moving backwards

bell 0 1.2 Church bells

bike <0.1 3.6 Sound of bikes and bike chains

bird 15.1 14.7 Birdsong

blin 0 <0.1 Opening and closing of a blind

brak 23.1 12.7 Brakes and conveyor belts

busd 2.8 1.1 Opening bus door (or tramway), depressurized air

dog 0 2.5 Barking of dogs

door 2.6 14.7 Closing doors (vehicle or house)

glas 0 0.1 Sound of glass crashing

horn 6.7 3.7 Horns of vehicles (cars, motorbikes, trucks, etc.)

inte 0.3 0.2 Interfering signal from an industry or human machine

musi <0.1 0.6 Music in car or in the street

peop 0 22.2 Sounds of people chatting, laughing, coughing, sneezing, etc.

rain 23.7 0.4 Sound of heavy rain

rubb 0 0.1 Rubbish service (engines and grabbing system)

sire 1.8 0.7 Sirens (ambulances, police, etc.)

sqck 0 0.8 Squeak sound of door hinges

step 0 13.7 Sounds of steps

thun 7.4 <0.1 Thunderstorm

trck 11.9 0 Noise when trucks or vehicles with heavy load passed over a bump.

tram 0 0.7 Stop, start and passby sounds of tramways

tran 2.7 <0.1 Sound of trains

trll 0 1 Sound of wheels of suitcases (trolley)

stru 1.4 0 Noise of highway portals structure caused by vibration of trucks passbys

wind 0 <0.1 Noise of wind (movement of the leaves of trees,...)

wrks 0 4.1 Works in the street (e.g., saws, hammer drills, etc.)

As a result, the subsequent analyses evaluate 153 h and 20 min of audio data obtained from the
19 sensors placed on the A90 highway portals along the Rome suburban environment, and 151 h
obtained from 23 different sensors placed in the building façades of several public buildings across the
District 9 of Milan, after discarding node hb114 due to technical problems during the data recording
process, but keeping sensor hb119 despite missing some data from the Sunday recordings to 75%Ni

T .
Table 2 summarizes the general characteristics of both analyzed datasets. As can be observed,

RTN is the majority class in both cases, as identified 83.7% of the time in the urban environments, while
this value raised to 96.5% in the suburban scenario. Accordingly, ANEs were more frequently observed
in the urban than in the suburban dataset, being more than four times detected in this environment
compared to the suburban one (8.7% of ANE in urban while 1.9% of ANE in suburban). It should be
also noticed that the increase of ANE occurrences in the urban environment also fostered the presence
of highly complex audio passages.

Table 2. General characteristics of the WASN-based urban and suburban acoustic databases evaluated
considering the impact analysis methodology.

Acoustic Environment Total Duration RTN (%) ANE (%) CMPLX (%)

Milan (Urban) 151 h 83.7% 8.7% 7.6%
Rome (Suburban) 153 h 20 min 96.5% 1.9% 1.6%
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4.2. Individual Impact of ANEs

To understand the relevance of the events, first, a study of the individual ANE impact is conducted
following the aforementioned impact analysis methodology. As an overall analysis, Table 3 details the
number of occurrences and sensor activation ratios for each environment and recording day.

Table 3. Number of occurrences and sensor activation ratios per sensor for low, medium and high
individual impact ranges.

Individual Impacts Low Impact Medium Impact High Impact
(−∞, 0.5) dB [0.5, 2) dB [2,+∞) dB

Occurrences Activation Occurrences Activation Occurrences Activation
Count (%) Count/NS Count (%) Count/NS Count (%) Count/NS

Milan Tuesday 21,264 (99.5%) 23/23 76 (0.4%) 21/23 28 (0.1%) 16/23
Sunday 15,215 (99.4%) 23/23 58 (0.4%) 20/23 29 (0.2%) 16/23

Rome Tuesday 2105 (98.1%) 19/19 33 (1.6%) 13/19 7 (0.3%) 5/19
Sunday 3415 (99.0%) 19/19 31 (0.9%) 11/19 5 (0.1%) 3/19

As can be observed, the presence of anomalous noise events is common in both environments,
particularly in Milan which records 10 times more ANEs on Tuesday and 4 times more on Sunday
than Rome. Specifically, all recording days have yielded a high percentage of low-impact ANEs, but in
Milan, particularly, the presence of low-impact events in relation to the other impact ranges, is higher
than in Rome, rising from 98.1 to 99.5% on Tuesday, and from 99.0 to 99.4% on Sunday. In Rome,
however, the percentage of medium-impact events is higher than in Milan on both days, with a total
of 134 ANEs in Milan and 64 in Rome, respectively. This implies that the sensors in Milan can detect
this kind of event in almost all sensors, while only 60% of the sensors in Rome can detect these ANEs.
Finally, concerning high-impact events, the percentage of occurrences is similar in both locations,
despite Milan has 57 high-impact events detected in 16 sensors and Rome only 12, which activate
few sensors.

In Figure 3, the corresponding impact histogram matrices for individual ANEs are detailed for
each sensor location according to the three impact range intervals (low, medium and high). Notice that
the number of occurrences in the low-impact intervals is depicted separately from the medium and
high-impact intervals for illustration purposes, as it is more than two orders of magnitude larger.

It can be observed that the maximum number of low-impact ANEs has been found in sensor
hb123 of Milan on Tuesday, with 2374 occurrences. In contrast, the maximum number of low-impact
events in Rome is 379 for sensor hb143 on Sunday. Concerning the medium-impact events in Milan, the
first day accounts for the highest number of events, coming from hb139, which obtains the maximum
number of medium-impact ANEs, with 9 occurrences, also presents a significant number in Sunday,
with 6 events. In the rest of the cases in Milan, no clear pattern is observed relating both recording days.
In Rome, however, sensor hb104 attributes for the maximum number of medium-impact events, with
18 occurrences on Tuesday and 17 on Sunday. This is a particularly relevant case in the suburban area
as the second closest sensor is hb134 with only 3 medium-impact events on Sunday. When looking at
the column depicting high impact ANEs, it can be observed that a maximum of 5 events were captured
on Sunday in sensor hb133 of Milan, while also a significant presence on Tuesday with 4 occurrences.
In Rome, sensor hb104 accounts for the highest number of high-impact ANEs on Tuesday, with 3
events, which also recorded one of the highest number of occurrences on Sunday, with 2 events.
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Figure 3. Individual impact histogram matrices (obtained using integration time T = 300 s)
categorized in three impact ranges (low, medium and high) for the urban (Milan) and suburban
(Rome) environments obtained from a weekday (Tuesday) and weekend day (Sunday).

4.3. Aggregate Impact of ANEs

This section details the results obtained from the analysis of the labeled data in order to find to
what extent the presence of several ANEs with low and medium individual impacts within the same
integration period can bias the LAeq,300s computation.

First, Table 4 shows the number of occurrences and sensors activation ratios of the AI for
environment and recording day. As it can be observed from the table, the overall presence of
occurrences and activation ratios are similar for both days within each location. However, when
comparing Milan with Rome, the distribution of the impact ranges differs. In the case of Milan, near
85% of the AIs entail a low impact on the LAeq300s. This percentage increases to almost 96% in Rome.
For this reason, the presence, as well the sensor activation, of medium and high-level AIs in Rome
is lower than in Milan. In Milan, only one sensor on Tuesday and two on Sunday fail to detect a
medium-impact AI. However, in Rome, on Tuesday 7 sensors were not capable of detecting any event
and on Sunday the number was 6. In the particular case of high-impact aggregates, their presence is
reduced from near 4% in Milan to less than 1% in Rome. Most Milan sensors activate (18 on Tuesday
and 17 on Sunday), but only 5 and 3 sensors detect ANEs of this category in Rome in the weekday and
during the weekend, respectively.

Following the same analysis scheme described in the previous section, Figure 4 depicts the AI
histogram matrices showing the number of occurrences of aggregate ANEs for each impact range
and sensor location for both pilot areas. Again, the number of occurrences in the low-impact range is
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separated from the rest of occurrences for illustration purposes, due to the same reason indicated in
the previous analysis. As can be observed, in Milan, low-impact AIs range from 28 to 43 on Tuesday,
and from 24 to 36 on Sunday. A total of 107 intervals on the first day and 88 in the second day contain
a medium-impact AI, highlighting sensor hb115 in Milan, with 11 occurrences on Tuesday and hb124
with 10 occurrences on Sunday. However, high-impact AIs record a lower presence of occurrences,
with a highest value of 4 in sensors hb109 and hb140 on Tuesday, and in sensor hb133 on Sunday.

Table 4. Number of occurrences and sensor activation ratios per sensor for low, medium and high
aggregate impact ranges.

Aggregate Impacts Low Impact Medium Impact High Impact
(−∞, 0.5) dB [0.5, 2) dB [2,+∞) dB

Occurrences Activation Occurrences Activation Occurrences Activation
Count (%) Count/NS Count (%) Count/NS Count (%) Count/NS

Milan Tuesday 855 (85.5%) 23/23 107 (10.7%) 22/23 38 (3.8%) 18/23
Sunday 693 (85.4%) 23/23 88 (10.8%) 21/23 31 (3.8%) 17/23

Rome Tuesday 874 (95.8%) 19/19 29 (3.2%) 12/19 9 (1.0%) 5/19
Sunday 887 (95.6%) 19/19 35 (3.8%) 13/19 6 (0.6%) 3/19

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

Milan - Tuesday                          

Impact ranges                           

0

1

2

3

4

5

6

7

8

9

10

11

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

Milan - Sunday                          

Impact ranges                           

0

1

2

3

4

5

6

7

8

9

10

11

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

0

5

10

15

20

25

30

35

40

45

50

55

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

Rome - Tuesday                          

Impact ranges                           

0

2

4

6

8

10

12

14

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

0

5

10

15

20

25

30

35

40

45

50

55

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

Rome - Sunday                          

Impact ranges                           

0

2

4

6

8

10

12

14

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

Figure 4. Aggregate impact histogram matrices (obtained using integration time T = 300 s)
categorized in three impact ranges (low, medium and high) for the urban (Milan) and suburban
(Rome) environments obtained from a weekday (Tuesday) and weekend day (Sunday).
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Regarding the pilot area in Rome, the presence of low-impact AIs is clearly dominant.
However, it is worth mentioning that sensor hb104 presents a completely different pattern, with
15 medium-impact AIs on Tuesday and Sunday. This reduces significantly the low-impact occurrences
in that sensor in comparison to other nodes. Finally, as aforementioned, it is to note that sensor hb119
failed in recording several hours of Sunday.

4.4. Critical Aggregate Impacts Per Level

In this section, the occurrences that surpass the critical threshold γc = 2 dB, are analyzed in detail.
First, the individual ANEs that bias the LAeq,300s beyond threshold γc by themselves belong to the
high-impact range. To analyze their distribution in detail, the critical individual ANEs observed in
Section 4.2 (see Figure 3) are divided in 2-dB spans for each sensor in Figure 5. When analyzing this
kind of anomalous noise events, Milan credits for most of the high-impact individual ANEs, most of
them within the range of 2 to 4 dB, without belittling their presence in the other ranges for both days.
Concerning Rome, sensor hb104 is the one that recorded the largest number of high-impact events,
most of them belonging to the [2, 4) dB range. Finally, it is to note that 10 events surpass the 10-dB
impact range are sirens, being the event with the highest impact a 3-min siren with 29.4 dB of impact,
recorded in sensor hb137 on Sunday. In contrast, no events surpassing the 10-dB threshold are present
in Rome.
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Figure 5. Critical AI histogram matrices (Hc) of individual ANEs for the urban (Milan) and suburban
(Rome) environments obtained from a weekday (Tuesday) and weekend day (Sunday).

On the other hand, in order to evaluate if the presence of several ANEs may contribute to the
surpassing of the γc threshold, Figure 6 shows the critical AI histogram matrices Hc obtained for
each network for different impact intervals. That is to say, it depicts the number of times the AI of
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ANEs contribute to bias the LAeq,300s of RTN critically for both pilot areas and recording day according
to the type of impact range. To that effect, besides considering θ1 (low), θ2 (medium) and θ3 (high)
impact intervals to analyze the critical aggregate impacts, two more intervals are considered: θ1

⋃
θ2 to

account for co-occurring low and medium individual impact ANEs, and θ1
⋃

θ2
⋃

θ3 to quantify all the
critical cases, disregarding the type of the ANE’s individual impact.
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Figure 6. Critical AI histogram matrices (Hc) categorized in the defined impact ranges for the
urban (Milan) and suburban (Rome) environments obtained from a weekday (Tuesday) and weekend
day (Sunday).

The first column of each Hc matrices depicted in Figure 6 shows those low-impact AIs causing a
critical impact. It can be observed that there is one case accounting for a deviation of the AI higher
than 2 dB for a particular period of time t of 5 minutes in sensor hb121 installed in Milan. It is due
to 13 wrks sounds recorded on Tuesday ranging from 0.01 dB to 0.4 dB, i.e., all of them belong to the
individual low-impact range θ1, but due to their co-occurrence within the same period of time their AI
becomes critical.

Likewise, the second column plots critical medium-impact AIs. In Milan, the threshold γc is
surpassed three times on Tuesday and twice on Sunday, whereas in Rome, purely medium-impact
occurrences cause a critical AI once each day. Specifically, sensor hb139 collected two of these pieces of
evidence on Tuesday. In the first case, the two most significant ANEs are horns, with individual impacts
of 0.8 and 1.2 dB, respectively (the third one is a dog bark with an impact of 0.03 dB). The second is
composed of a horn of 1.3 dB and two CMPLX sounds, consisting on a mix of RTN and an undetermined
beep noise of 0.8 and 0.5 dB. Moreover, sensor hb145 also recorded a period in which individual ANEs
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bias the LAeq,300s critically on Tuesday, where the most important event is a tram passby of 1.5 dB and
the second one is a 1.6-dB CMPLX event consisting of a mix of a tram passby and birds tweeting near
the sensor. On Sunday, two of the periods recorded in the urban environment contain a combination
of medium-impact ANEs that surpass the threshold: one in sensor hb129, composed of two distant
sirens mixed with other sounds, and another due two CMPLX sounds in sensor hb135, containing
unidentified mechanical sounds. In what concerns Rome, sensor hb104 presents critical impact
evidence due the co-occurrence of purely medium-impact events for both week and weekend periods.
On Tuesday two train passbys of 1.3 and 1.1 dB bias the LAeq,300s more than 2 dB. On Sunday, the
critical bias is caused by the presence of two horns of 1.2 and 1.9 dB, respectively.

The third column of the four AI critical matrices of Figure 6 show the number of times γc is
surpassed for ANEs when considering low and medium-impact ANEs, i.e., it collects the occurrences
of aggregate low-impact ANEs from θ1 and the aggregate medium-impact ANEs from θ2, as well as
the the number of times that the critical threshold is surpassed as a result of the combination of the
medium- and low-impact events. This last case is only observed during the weekday 6 times in Milan
and once at sensor hb104 in Rome. The latter happens on Tuesday and it consists of the sum of several
train passbys, with the most salient event an impact of 1.9 dB and the other ones of about 0.1 dB.
The six cases in Milan have all been found on Tuesday in different sensors: in hb109, three CMPLX
sounds have been found that consist of train passbys mixed with RTN of 1.8, 0.2 and 0.2 dB; in hb115,
a sum of 13 wrks sounds with impacts from 0.01 dB to 0.9 dB; in hb116, a 1.9-dB siren co-occurring
with a 0.4-dB CMPLX sound of birds mixed with RTN; in hb123, an airp of 1.9 dB and other peop and
brak-related sound with impacts smaller than 0.02 dB; in hb125, all significant events are dog barks,
with impacts of 0.9, 0.6, 0.4, 0.3 dB and decreasing; and in hb140, a siren of 1.9 dB has been found,
jointly with people-related sounds of 0.2 dB.

The next column of critical AI matrices presents high-impact ANEs. For the data at hand,
the aggregate high-impact occurrences coincide with the number of individual high-impact events
depicted in Figure 3 (see also Table 3, where the number of occurrences in this level is quantified).

Finally, the last column of matrices Hc shows the critical AI histogram caused by the co-occurrence
of ANEs of any individual impact range altogether. If we focus on the last three columns of Figure 6,
it can be appreciated that in all cases, the sum of the low and medium-impact ANEs with the
high-impact ANEs results in the total number of times the 2 dB threshold is surpassed. This result
could have differed in the case that aggregate low and medium ANEs co-occurred with high-impact
ANEs. Therefore, Figure 6 clarifies the fact that high-impact events have not co-occurred at the same
5-min interval for the datasets at hand, besides showing there is no situation in our datasets where low
and medium impact aggregated surpass γc at the same 5-min slot t in which a high-impact ANE occurs.

To summarize, in Milan, the threshold has been surpassed due to low and medium aggregate
impacts in 12 of the 69 critical cases, which correspond to 17% of cases. Likewise, in Rome, the ratio is
3 to 15, corresponding to 20% of the critical cases. Therefore, according to these results, it can be stated
that the removal of low and medium-impact ANEs becomes as relevant as high-impact events in order
to preserve the accuracy of the RTN level measurements in both urban and suburban environments.

5. Discussion

This section discusses several relevant aspects related to the results obtained after applying
the impact analysis methodology to the two WASN-based datasets collected from the urban and
suburban areas. First of all, it is to note that the individual analysis of the impact of each ANE of
those co-occurring within the same integration period has been conducted as a baseline study, since
the individual view of the impact of acoustic events unrelated to traffic noise is a straightforward but
unrealistic approach to the problem at hand. However, this study has been useful to set the basis for
the subsequent aggregate analyses. In this sense, it is worth noting that although the datasets have
been collected during specific time periods, the analyzed data show the regular presence of anomalous
events across all the days and locations in a real-operation context. Specifically, the number of ANEs
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found in the urban area is seven times greater than in the suburban environment on average (this ratio
being ten times on the weekday). In the suburban environment, the weekday pattern is very similar
to what is observed in during the weekend, although a larger number of events have been recorded
during the weekend, which should be studied in the future with more detail.

In terms of the acoustic categories, it is worth mentioning that 7.7% of the urban WASN-based
dataset and 1.6% of the suburban one has been annotated as CMPLX. As aforementioned, the CMPLX
acoustic category can be either caused by a mix of RTN and ANEs or by unidentified ANEs by the
experts. The conducted analyses have shown that these kinds of acoustic events can also have a
significant impact on the LAeq,300s computation, showing a similar presence in both datasets as the
corresponding ANE acoustic category. Therefore, as well as ANEs, CMPLX audio passages should
also be removed from the computation of road traffic noise levels to tailor reliable RTN maps.

When comparing the individual and aggregate impact occurrences for low, medium and
high-impact ranges, the analyzed environments present a different distribution. In the case of the urban
area, a larger number of low-impact events have been recorded than in the suburban environment.
However, as far as AIs are concerned, the percentage of low-impact pieces of evidence are lower in the
former than in the latter. In addition, medium and high-impact aggregate ANEs have a significant
presence in the urban environment, being near the 15% of occurrences; however, in the suburban area,
this value decreases to 5%, probably because also the high-impact ANEs present a lower number of
instances. From these results it can be concluded that the detection and removal of ANEs will be more
usual in a urban than in a suburban environment, since a significantly higher number of LAeq,300s
values can be biased critically. Furthermore, it is worth mentioning that the number of individual
high-impact ANEs may not always coincide with the number of times these events bias the 2 dB
threshold. This is because it could happen that two or more high-impact events co-occurred in the
same evaluated period of time. However, as shown in the results of this work, this is not the case for
the data at hand, thus, all high-impact ANEs occur in different integration times.

The impact patterns observed on both environments present different trends. From the analysis
conducted in the suburban area, it was observed that sensor hb104 presents a clearly different pattern
of the impact of ANEs compared to the rest of the nodes of that WASN for both week and weekend
days. This sensor was installed on a major road with two lanes in each direction with a crossing
highway under the bridge (see Table A2), which makes this location substantially different from the
other sensors locations in Rome (as they do not correspond to major crossroads). For this sensor,
the aggregate ANEs are more likely to bias the LAeq,300s, as a 40% of the analyzed measurements
contain a medium or high aggregate impact considering both days. This result leads to the preliminary
conclusion that in a suburban area, a crossroad is more susceptible to collect anomalous noise events
that may distort the RTN level measurements critically. On the contrary, the data analyzed from
the other sensor locations in Rome show that the AIs of the ANEs do not usually have a significant
impact on the A-weighted equivalent RTN level measurements. In Milan, however, it becomes difficult
to identify specific impact patterns according to the sensor locations due to the great variability of
occurrences observed from the recordings of both week and weekend days. Nevertheless, note that
all sensors have recorded ANEs with a significant impact—both evaluated individually and in an
aggregate manner—being relevant enough to bias the RTN map representation in certain periods
of time. Given the fact that the recordings were taken over two days, a relevant number of LAeq,300s
measurements could have been computed with an inaccuracy of more than 2 dB, we can conclude that
is necessary to remove all kind of anomalous noise events from the final computation of the noise map.

Briefly, the results drawn from this work present a non-negligible number of anomalous noise
events that occur randomly both in the DYNAMAP’s pilot urban and suburban acoustic environments.
This is a relevant issue, as we have to mention that the analyzed data correspond only to a recording
campaign of two different days, which provide a relevant but limited scope of all the possible issues
that may occur in all streets and ring road portals during any day of the year at any time. Nevertheless,
although the amount of evidence observed in the gathered data may result statistically poor (i.e., only
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84 critical pieces of evidence have been observed), their mere presence demonstrates the importance of
their automatic removal to obtain reliable dynamic RTN maps through WASN-based approaches. That
is, if the sub-sampling done in two days for several 20-min long audio files has led us to this conclusion,
what will be the real impact on the measurements in a 24-h × 7-day WASN-based monitoring system?
How many works around the city and the highway can occur throughout the year together some horns
and sirens? How many sensors can be located close to a school (with the children in the playground)
or next to a church with its bells?... This opens a much wider research goal, focused on the detailed
analysis of the sensors location and the consequences it entails in terms of anomalous noise events
detection and removal, as the election of the sensor’s installation place is usually based on spatial
coverage to draw the acoustic map, being also limited by the actual location of the portals and public
buildings where the sensors are finally installed.

6. Conclusions

In this work, we have analyzed more than 300 h of labeled acoustic data collected through
two WASNs after being deployed in the pilot urban and suburban areas of the DYNAMAP project.
The study shows that ANEs can be widely found in acoustic environments when monitoring RTN
levels in real-operation conditions, being particularly common in the data gathered from the urban
area. Moreover, through the impact analysis methodology, it has been also concluded that the
aggregate contribution of low and medium-impact ANEs can deviate the LAeq,300s as critically as
high-impact individual ANEs. Therefore, the obtained results highlight the importance of the
automatic removal of low, medium and high-impact events to obtain reliable WASN-based RTN
maps in real-operation environments.

Future work will be focused on the detailed analysis of the particularities of each acoustic
environment and ANEs subcategories together with complex passages, not only to consider their
global impact patterns in the urban and suburban, but also to study the spatio-temporal particularities
of all the locations and periods of time. Finally, we plan to adapt the preliminary version of the ANED
algorithm by using the two WASN-based datasets to improve its performance in both urban and
suburban environments in real operations.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Aggregate Impact
ANE Anomalous Noise Event
ANED Anomalous Noise Event Detection
CNOSSOS-EU Common Noise Assessment Methods in Europe
DYNAMAP Dynamic Noise Mapping
END European Noise Directive
EU European Union
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RTN Road Traffic Noise
SNR Signal-to-Noise Ratio
SONYC Sounds of New York City
WASN Wireless Acoustic Sensor Network
WG-AEN European Commission Working Group Assessment of Exposure to Noise

Appendix A

This section includes the description of the sensor locations for both urban and suburban
environments by means of Tables A1 and A2, respectively.

Table A1. Sensor locations description for the urban environment. X-lane/Y-lane road stands for a
two-way road that has X lanes in one sense and Y lanes in the opposite sense. X-lane road stands for a
street with X lanes in the same sense.

Sensor Id Sensor Location Description

hb106 1-lane/1-lane road with connection with 1 line road, area with parks nearby, no shops
hb108 1-lane/1-lane road, in front University exit, no shops

hb109 3-lane/3-lane road, near crossing with tramway and 1 line+2 line/2 line+1
line road, shopping and coffe/restaurant area

hb115 1-lane road with shopping in front
hb116 1-lane/1-lane road with connection with 1-lane road, residential area
hb117 3-lane/3-lane road, near school, area with parks nearby, no shops
hb120 1-lane/1-lane road, residential area, no shops
hb121 2-lane/2-lane road, connection with 1-lane road, University area, no shops
hb123 2-lane/2-lane road with hotel and traffic light nearby
hb124 1-lane road, no shops

hb125 1-lane road with connection with 1-lane/1-lane road, mix of
residential with some shops

hb127 1-lane road near bifurcation with 1 line road, some shop nearby
hb129 1-lane/1-lane road, bike line, connection with 1-lane road, some shop
hb133 1-lane road, residential area, no shops, little park area in front

hb135 1-lane road with connection with 1-lane road (low speed), near University campus (students),
no shops, in front of park area

hb136 1-lane/1-lane road with connection with 1-lane road, area with
parks nearby, no shops

hb137 1-lane road with connection with 1 line road, in front of park, residential area, no shops
hb138 1-lane road near connection with other 1-lane road, no shops
hb139 1-lane road, residential area, some shop/enterprise

hb140 2-lane/2-lane road with parking area and traffic light with crossing nearby,
no shops near and high traffic

hb144 1-lane road in residential area, one shop far away
hb145 1-lane road, in front of park
hb151 1-lane/1-lane road, bike line, some shop and restaurant

Table A2. Sensor locations description for suburban environment. X-lane/Y-lane road stands for a
two-way road that has X lanes in one sense and Y lanes in the opposite sense. X-lane road stands for a
street with X lanes in the same sense.

Sensor Id Sensor Location Description

hb103 Highway with 3-lane/3-lane
hb104 Major road with 2-lane each direction crossing a highway under bridge (out of major ring)
hb105 Highway with 4-lane (only 1 direction, and near exits/crossings)
hb110 Highway with 3-lane/3-lane
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Table A2. Cont.

Sensor Id Sensor Location Description

hb111 Highway with 3-lane/3-lane
hb112 Highway with 3-lane/3-lane (near exit and near crossings)
hb119 Highway with 3-lane/3-lane
hb128 Highway with 3-lane/3-lane
hb134 Highway with 4-lane/4-lane (near bridge and crossings)
hb141 Highway with 5-lane/5-lane (near crossings)
hb143 Highway with 2-lane/2-lane (out of major ring)
hb147 Highway with 3-lane/3-lane
hb148 Highway with 3-lane/3-lane
hb149 Highway with 3-lane (near tunnel)
hb153 Major road with 2-lane each direction crossing a highway under bridge (out of major ring)
hb154 Highway with 4-lane/4-lane
hb155 Highway with 2-lane (near connection but out major ring) plus 1 road same sense next to
hb156 Highway with 3-lane/3-lane
hb157 Highway with 5-lane/5-lane
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