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Abstract
This study begins with constructing the mini metabolic networks (MMNs) of beta amyloid

(Aβ) and acetylcholine (ACh) which stimulate the Alzheimer’s Disease (AD). Then we gen-

erate the AD network by incorporating MMNs of Aβ and ACh, and other MMNs of stimuli of

AD. The panel of proteins contains 49 enzymes/receptors on the AD network which have

the 3D-structure in PDB. The panel of drugs is formed by 5 AD drugs and 5 AD nutraceutical

drugs, and 20 non-AD drugs. All of these complexes formed by these 30 drugs and 49 pro-

teins are transformed into dyadic arrays. Utilizing the prior knowledge learned from the drug

panel, we propose a statistical classification (dry-lab). According to the wet-lab for the com-

plex of amiloride and insulin degrading enzyme, and the complex of amiloride and neutral

endopeptidase, we are confident that this dry-lab is reliable. As the consequences of the

dry-lab, we discover many interesting implications. Especially, we show that possible

causes of Tacrine, donepezil, galantamine and huperzine A cannot improve the level of

ACh which is against to their original design purpose but they still prevent AD to be worse

as Aβ deposition appeared. On the other hand, we recommend Miglitol and Atenolol as the

safe and potent drugs to improve the level of ACh before Aβ deposition appearing. More-

over, some nutrients such as NADH and Vitamin E should be controlled because they may

harm health if being used in wrong way and wrong time. Anyway, the insights shown in this

study are valuable to be developed further.

Introduction
Currently, the causes of Alzheimer’s Disease (AD) remain quite unclear and no safe and effec-
tive drug may stop or reverse the progression of AD although many hypotheses have been pro-
posed including cholinergic-, tau protein-, amyloid- hypotheses [1–3] and many risk factors
have been identified including apolipoprotein E (APOE) [4–5], mutations of triggering
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receptor expressed on myeloid cells 2 (TREM2) [6–7], susceptibility loci [8], viral [9], age-
related myelin breakdown [10], dys-homeostasis [11], diabetes and cardiovascular risk factors
[12], etc. Moreover, the epidemiological studies during 2005–2007 have showed that the preva-
lence of AD is increasing [13] while pharmaceuticals emerged as a new risk factor [14]. There-
fore, it is appealing to discover safe and effective pharmaceutical treatments and to develop
non-invasive imaging agents to detect AD. In addition, it is also important to understand the
mechanism of pharmaceutical products and their effects on the prevalence of AD. This
requires new insights into molecular mechanism of action between the available pharmaceuti-
cals and the proteins on AD network. For simplicity, in the rest of this paper we only use the
word “drug” which could means ligand, compound, or pharmaceutical.

There are three typical strategies to design drugs: (1) Choosing converting enzymes of the
stimulus as the target in order to down-regulate the level of the stimulus; (2) Choosing cleaning
enzymes as the target in order to up-regulate the level of the stimulus; and (3) Choosing the
receptor as the target in order to prevent the specific function induced by the given stimulus
from docking on a receptor. Some drugs may dramatically alter the level of the specific stimu-
lus, and therefore they are welcomed by both doctors and patients. Nevertheless, clinical evi-
dences show that almost all metabolic diseases cannot be completely cured with drugs,
although the levels of the markers can be regulated to the expected level by these drugs. How to
solve this puzzle is the main goal of drug design. An insight has newly emerged from industry
which requires that multiple mechanisms of a disease should be covered when designing a par-
ticular drug (see A BioMAP. Drug Discovery Case Study). However, how to cover many mech-
anisms simultaneously has not yet been elucidated.

Since the molecular mechanism for conventional drug designing is increase or decrease the
level of a stimulus. In practice, a disease may have more stimuli at the same time. For example,
brain natriuretic peptide (BNP), angiotensin II (Ang-II or AII for short), and aldosterone are
markers related to heart failure (HF) and hypertension (HT). Historically, while one drug is
used to decrease the level of Ang-II, it can increase the level of BNP at the same time. Therefore
a double inhibitor of NEP and ACE was proposed and Omapatrilat, Alatrioprilat, Sampatrilat
and Gemopatrilat were thought to be the most potent double inhibitors [15]. After substantial
investigating, they were found to have failed the phase-III trials because the side-effects of these
double inhibitors are stronger than either the NEP inhibitor/ACE inhibitor individually or a
combination of them [16]. This reveals that artificially designed multiple inhibitors are both
difficult and highly risky [17]. In this study, we will show that our computational results sug-
gest multiple inhibitors exist if we discover them in accordance with their natural tendency
rather than through our own design.

We organize the rest of this paper as follows. Firstly, we show how to construct the AD net-
work based on basic hypotheses and risk factors, how to form the panel of proteins and the
panel of drugs, and then transform all complexes formed by the drugs and proteins in the pan-
els into dyadic arrays by using ILbind [18] and Vina, the newest version of Autodock [19]. Sec-
ondly, we model the statistical classification by learning from 30 complexes formed by the
given drugs and their targets. We then divide all 1,470 complexes into 7 groups of H0-H6

according to their dyadic arrays, where the complexes in H0 are highly recommended while
those in H6 are highly rejected. Obviously, the complexes Amiloride-Insulin degradation
enzyme (AMR-IDE) and Amiloride- neutral endopeptidase (AMR-NEP) are located at the top
corner of H1 and therefore their positions are the worst cases relative to most of complexes in
H0 or H1. The IC50 results show that AMR strongly inhibits IDE and weakly inhibits NEP,
which suggests that drug binds the protein is a high probability event for most complexes in H0

or H1. Thirdly, we discuss on filtering some false positive complexes according to the function
of the binding sites and binding position [20–21]. Finally, we draw some potential conclusions.
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Materials and Methods

Constructing the AD network
Although this study focuses on AD, our proposed framework is applicable to all metabolic dis-
eases. We begin with drug designing for metabolic diseases. Conventionally, investigating a
mechanism of a metabolic disease constitutes three main steps: (1) picking stimuli that are
strongly related to the given disease, based on clinical cases; (2) among all strongly related sti-
muli, selecting a measureable and stable stimulus, which has both high sensitivity and specific-
ity for diagnosing and managing the disease, as a biomarker; and (3) for each selected stimulus,
finding its precursor, the enzymes that convert the precursor to the stimulus, the receptors of
the stimulus and their associated functions, or the enzymes for cleaning the stimulus.

In order to explore ways of integrating the related mechanisms, we construct the mini meta-
bolic network (MMN) of a given stimulus. For a given stimulus, the center of an MMN should
consists of the precursors, enzymes for converting the stimulus from the precursor, receptors
for accepting the stimulus, and enzymes for cleaning the stimulus. Its standard form is shown
in Fig 1A. Of course, in practice we can obtain many non-standard variants of an MMN
because the precursors, the converting enzymes, and the cleaning enzymes can be regulated by
other enzymes, and the receptors may be affected by the endogenic antagonists. Especially,
many receptors are GPCR proteins, and therefore have tails composed of G-protein and
enzymes. Beta-amyloid (Aβ), acetylcholine (ACh) and phosphorylated tau protein (PTP) are
three markers related to AD. We begin with constructing the MMNs of Aβ, Ach, and PTP, as
show in Fig 1B, 1C and 1D. For detail, see S1 File.

Fig 1. (A) The general form of MMN of a stimulus. (B) The MMN of Aβ. (C) The MMN of ACh. (D) The MMN of tau protein. The stimuli (middle products),
enzymes, and receptors are highlighted with red, orange, and green colors, respectively.

doi:10.1371/journal.pone.0144387.g001
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In order to generate the AD network based on the three MMNs, we require their cross-talk
information and additional auxiliary information mined from the literature, some other stimuli
which do not appear in the three MMNs but activate or inactivate the enzymes of MMNs. For
example, NF-κB activates BACE-1 [22–23], and PKC activates ADAM [24]. The interaction
between arachidonic acid (AA) and Aβ follows previous work [25], as does the interaction
between protein tau and Aβ [26–27], the interaction between acetylcholine and Aβ [28–32],
etc. For details, see Text A in S1 File of this paper. We construct an AD network which is much
larger than the union of three MMNs, as shown in Fig 2.

Panel of proteins and panel of drugs
We sort out these enzymes and receptors on the AD network to form the panel of proteins if
they have a 3D-structure (partial or entire) in PDB. Consequently, 49 enzymes/receptors with
partially or entirely known structure in PDB are selected into the panel from the AD network,
and are listed in Table A in S1 File. Each enzyme/receptor in the panel has more than one ver-
sions of 3D-structure in PDB. Especially, many enzymes/receptors have a large amount of ver-
sions in PDB, for example, the number of the versions of BACE-1 in PDB is more than 200.
For these cases, we will use the alignment algorithm to select a few versions which are the best
representatives of the 3D-structure of an enzyme or a receptor.

Fig 2. The AD network generated based on three mini metabolic networks. For clearly understanding this graph, we state the nodes and edges as
follows: enzymes, stimuli, precursors and receptors are the nodes. In which, enzymes are shown by orange ovals, stimuli and their precursors are shown by
cyan boxes, and receptors are shown by green ovals. The edges are consisted of three kinds of arrows. In which, green arrows with “+” indicates the up-
regulating or activating relationship, while blue arrows with “–”means the down-regulating or inhibiting relationship. The black arrows are the normal up- and
down- stream relationship.

doi:10.1371/journal.pone.0144387.g002

Uncovering the Molecular Mechanism of Actions

PLOS ONE | DOI:10.1371/journal.pone.0144387 December 9, 2015 4 / 15



In order to show the effects of the AD drugs through using computer-aided approaches, we
also need to construct a panel of drugs composed of AD drugs and non-AD drugs. We select 5
AD drugs and 5 nutraceutical drugs, including (1) Donepezil (E20), Galantamine (GNT), Tac-
rine (THA), and Huperzine A (HUP), which originally are AChE inhibitors [33–34]; (2) Mem-
antine (377) is the unique antagonist of NMDAR [34]; and (3) the other 5 nutraceutical drugs
are randomly selected from Drugbank. For example, NADH (NAI) is the nutraceutical [35],
which is used to improve the function of the brain and central nervous system. For the non-
AD drugs, we select 9 diabetes drugs and 11 drugs used for heart failure. Additionally, we add
amiloride (AMR) as the referential drug, and it is not included in the panel. All 31 drugs are
listed in Table B in S1 File.

The data transformed from all complexes formed by drug and protein in
the panels
Because the total number of possible drug-protein complexes formed by drugs and proteins in
panels is 1470 (= 30�49), it is a time-consuming and money-consuming work if we check all
complexes with wet-lab. Therefore, we employ dry-lab to elucidate the potential relationships.
In this subsection, we will use two tools, ILbind [18] and Vina, the newest version of AutoDock
[19], to perform the task. Despite that ILbind is a potent tool to provide plentiful messages, it
just fits to process single-chain of a protein. If we use ILbind individually, some actual binding
relationships between drugs and proteins will be missed. This is because some medical pockets
are the clefts formed by two or more chains and then ILbind cannot find it but Vina may cor-
rectly find it.

We transform all 1,470 complexes to the dyadic array as the form (x1, x2), in which x1 is the
value of the similarity output from ILbind, and x2 is the minimal free energy output from
VINA for each complex formed by a drug and a protein in the panels. To fit in a single page,
we present the data of 10 AD drugs and the 49 proteins in Table C in S1 File, the data of 9 dia-
betes drugs and 49 proteins in Table D in S1 File, and the data of 12 HF drugs (include AMR
as the referential drug) and 49 proteins in Table E in S1 File, respectively.

Prior knowledge about the values of similarity and free energy
In order to understand the meanings shown in Tables C, D and E in S1 File, we begin with
learning prior knowledge from the values of similarity and free energy based on the panel of
drugs. For each drug, we search for the protein which is the original drug target, called its “tar-
get”. Each complex of drug and its target can then be converted to a dyadic array (x1, x2). We
show the data in Table 1.

Based on these 30 dyadic arrays, we have the meanm and standard deviation σ. The derived
data regarding similarity and free energy are listed as show in Table 2.

From the dyadic arrays of 30 complexes, we may find that the distribution of values of simi-
larity is not normal. Typically, the values of similarity are distributed in [0.4, 0.96]. Specifically,
3 samples are located in [0.4, 0.54], 2 samples in [0.54, 0.68], and 25 samples in [0.68, 0.96].
Regarding the benchmark set, the sensitivity of similarity is 0.833 if the low-bound is 0.68, or
0.9 if the low-bound id 0.54. Similarly, the values of free energy are not normally distributed
either. Typically, 1 sample belongs to interval [-4.4, -3.0], 4 samples belong to [-5.8, -4.4], and
the rest 25 samples belong to [-10, -5.8]. In other words, the sensitivity of free energy is 0.833 if
the up-bound is -5.8, or 0.967 if the up-bound is -4.4. This indicates that the mean and the
standard deviation of similarity or the free energy will be slightly changed as the size of samples
increases or the outlier samples are discarded. In the rest part, we choose 0.68 as the threshold
of similarity and -5.8 as the threshold of free energy.

Uncovering the Molecular Mechanism of Actions
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In practice, the values of free energy are quite scattered. The value of free energy in [-10,
-7.2] implies that the affinity of the ligand binding to the target cannot be ignored. Moreover, if
the value of free energy is in [-11.4, -10.0], or less than -11.4, we should consider the value of
similarity when evaluating whether or not the ligand may bind to the target, even though the
value may be quite small. These cases are due to the fact that drugs do not bind to one domain,
but rather to the clefts formed by two or more domains, which constitutes the most important
drug targets for discovering drugs. Furthermore, for a small ligand which is more smaller rela-
tive to the pocket or a part of a drug binding to the pocket, its similarity is greater than 0.68,
but its free energy is greater than -5.8. Based on the mean, standard deviation, and the derived
data about similarity and free energy, we classify the (x1, x2)-plan into seven areas as shown in
Fig 3. Typically, area H0: x1 > 0.68 and x2 < -7.2, is colored with red. Area H1: 0.54< x1 �
0.68 and x2 < -5.8, or 0.54< x1 and -7.2� x2 � -5.8, it is the boundary zone of H0 and colored
with orange. Area H2: 0.44< x1 � 0.54 and x2 � -7.2, is colored with yellow. Area H3: 0.31<
x1 � 0.4 and x2 � -8.6, is colored with green. Area H4: 0.68� x1 and –5.8< x2 < -4.4, is col-
ored with blue. Area H5: 0.82� x1 and –4.4� x2 < -3.0 is colored with cyan, and the blank
area is named H6.

According to the dyadic arrays of the 30 complexes shown in Table 1 and the divisions in
Fig 3, we find 17 samples in H0, 4 samples in H1, 1 sample in H2, 0 sample in H3, 4 samples in
H4, and 0 sample in H5. In addition, 4 complexes which fall in H6 should be rejected, this
means the correct rate of this decision is 0.867 on this benchmark set. However, this bench-
mark set is not adequate because it has no negative samples. In general, a queried set of com-
plexes often has no prior knowledge. We wish to construct a benchmark set which contains
enough positive and negative samples so that we could estimate the rate of false positive and
the rate of false negative.

Table 2. The derived data regarding similarity and free energy based onmeanm and standard deviation σ.

σ m-3σ m-2σ m-σ m m+σ m+2σ m+3σ

similarity 0.14 0.40 0.54 0.68 0.82 0.96 - -

free energy 1.4 -11.4 -10.0 -8.6 -7.2 -5.8 -4.4 -3.0

doi:10.1371/journal.pone.0144387.t002

Table 1. The values of similarity and free energy based on 30 drugs on their targets. In which x1 is the value of similarity output from ILbind, and x2 is
the minimal free energy output from VINA for each complex formed by a drug and a protein ranging to the panels

No. Drug Target PDB-id x1 x2 No. Drug Target PDB-id x1 x2

1 E20 AChE 4bdt 0.9 -7 16 LF7 DPP-4 2qtb 0.91 -7.2

2 GNT AChE 4bdt 0.9 -7.5 17 ACR MGAM 3ctt 0.92 -8

3 THA AChE 4bdt 0.91 -6.5 18 MIG MGAM 3ctt 0.92 -5.7

4 HUP AChE 4bdt 0.91 -9.6 19 X8Z ACE 1o8a 0.88 -5.8

5 CHT AChE 4bdt 0.71 -3.6 20 X93 ACE 1o8a 0.91 -8.7

6 LPA LIPT1 3a7u 0.86 -4.5 21 LPR ACE 1o8a 0.91 -7.7

7 PSF PRKCA 4dnl 0.8 -5.2 22 06X CA1 1azm 0.55 -6.2

8 NAI UDPGDH 3prj 0.88 -8.7 23 FUN CA2 1fsn 0.88 -7.5

9 VIV PRKCA 3iw4 0.71 -7.8 24 TLS AT1 3vn2 0.75 -8.4

10 BRL PPARγ 2xyw 0.88 -8.5 25 TIM ADRB1 2y00 0.88 -6.2

11 P1B PPARγ 2xyw 0.88 -9.2 26 SNP ADRB1 2y00 0.51 -6.3

12 T22 DPP-4 2qtb 0.91 -7.4 27 CVD ADRB1 2y00 0.88 -7.5

13 356 DPP-4 2qtb 0.91 -8.2 28 2TN ADRB1 2y00 0.53 -7.2

14 715 DPP-4 2qtb 0.91 -8.3 29 CLU CYP2D6 3qm4 0.64 -6.9

15 BJM DPP-4 2qtb 0.91 -7.7 30 377 NMDAR 3jpw 0.49 -5.9

doi:10.1371/journal.pone.0144387.t001
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Applying the same rules of classification shown in Fig 3, we classify these 1,470 complexes
based on the dyadic arrays shown in Tables C, D and E in S1 File into 7 classes: H0, H1, H2, H3,
H4, H5 and H6, and the distribution of complexes in different areas are listed in Table 3.

More than half of all complexes (768 of 1,470) can be rejected directly as they fall in H6. The
sum of the number of H0 and H1 is 550, which is still too many to be tested one by one with a
wet-lab by our group alone. Since complex AMR-IDE with dyadic array (x1, x2) = (0.55, -7.0)
and complex AMR-NEP with dyadic array (x1, x2) = (0.6, -6.9) are located in the top corner of
H1, we can get more confidence to show that the drugs bind to the corresponding proteins with
high probability for these 550 complexes through testing that AMR binds to both IDE and
NEP with wet-lab.

Fig 3. The seven areas (H0- H6) of complexes to be recommended or rejected. H0 is colored with red, H1 is colored with orange, H2 is colored with yellow,
H3 is colored with green. H4 is colored with blue, H5 is colored with purple, and H6 is blank.

doi:10.1371/journal.pone.0144387.g003

Table 3. Distribution of complexes falling into H0-H6 in Tables C, D and E in S1 File.

NO. of set H0 H1 H2 H3 H4 H5 H6

Table C 67 123 26 1 0 0 273

Table D 46 106 55 13 1 0 220

Table E 26 182 52 1 3 0 275

Total 139 411 133 15 4 0 768

doi:10.1371/journal.pone.0144387.t003
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Test of AMR-IDE and AMR-NEP with wet-lab
The amiloride has two analogs including 5-(N, N-Dimethyl) amiloride hydrochloride and
amiloride HCl dehydrate. In order to avoid the unfair output resulted by selection, two analogs
are used in the test. In other words, we confirm that amiloride binds to IDE, and amiloride
binds to NEP if both 5-(N, N-Dimethyl) amiloride hydrochloride and amiloride HCl dehydrate
may bind to IDE and NEP, respectively.

In order to ensure the correctness of the operations of the wet-lab for showing amiloride
binding to IDE, we choose bacitracin A as the referential drug since it was reported as a good
IDE inhibitor, and its value of IC50 is 100μM.With the same reason, we choose DL-Thiophan as
the referential drug for showing amiloride binding to NEP. It was reported that DL-Thiophan is
a good NEP inhibitor, and its value of IC50 is 0.189 μM.We show the data of these two experi-
ments below, while the simulations for the six cases are depicted in the Figs A-F in S1 File.

From Table 4, we first confirm that our experimental operations are reliable through com-
paring the difference between the computed value IC50 = 79.25μM and the reported value
IC50 = 100μM for Bacitracin A binding to IDE, and the difference between the computed value
IC50 = 0.189μM and the reported value of IC50 = 0.0047μM for DL-Thiophan binding to NEP.
Then we may conclude that amiloride strongly inhibits IDE because the inhibition rate, the
quenching efficiency and value of IC50 for 5-(N, N-Dimethyl) amiloride hydrochloride and
amiloride HCl dehydrate binding to IDE are better than those of Bacitracin A. Meanwhile we
may also conclude that amiloride weakly inhibits NEP because the corresponding data of 5-(N,
N-Dimethyl) amiloride hydrochloride and amiloride HCl dehydrate meet the threshold, while
these data are not better than that of DL-Thiophan. As a consequent, AMR is not only the
diuretic, but also a double inhibitor of NEP and IDE. If this unexpected conclusion is utilized
for hypertension associated diabetes II, the value is a million times more than the initial cost
(60,000 RMB). Moreover, the wet-lab tests may enable us to confidently conclude that the drug
binds to the protein for each complex in H0 or H1.

Statistical decision to recommend the complex to be validated with wet-
lab
In order to definitively confirm whether or not the drug binds to a protein, the wet-lab test is
necessary. However, we should assign the limited resources to test the most possible complexes.
Therefore, a good recommendation based on the statistical decision is needed.

Decision. We strongly recommend the complexes in H1 or H0 for the wet-lab test. For
complexes in H2-H5, we moderately recommend the wet-lab test. For complexes in H6, we do
not recommend the wet-lab test. Even though the complexes in H1 or H0 have a higher proba-
bility which means that the drug could bind to the corresponding proteins, we still need to filter
the false positive complexes from H1 or H0. Therefore, we should consider the function of the

Table 4. The inhibition rate and quenching efficiency and value of IC50 for 5-(N, N-Dimethyl) amiloride hydrochloride and amiloride HCl dehydrate
binding to IDE and NEP compared with its controlling drug Bacitracin A and DL-Thiophan, respectively.

No. Compound inhibition rate quenching efficiency IC50/μM Reported value

1 Bacitracin A 77.08% -7.05% 79.25 100μM

2 5-(N,N-Dimethyl) amiloride hydrochloride 93.57% 54.77% 178.5 none

3 Amiloride HCl dihydrate 95.02% -6.64% 214 none

1 DL-Thiophan 102.01% -4.56% 0.189 4.7nM

2 5-(N,N-Dimethyl) amiloride hydrochloride 80.96% 54.77% 829 none

3 Amiloride HCl dihydrate 65.21% -6.64% 214 none

doi:10.1371/journal.pone.0144387.t004
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binding site, the position of the drug binding to the protein, etc. [20–21]. We propose a proce-
dure for filtering false positive complexes as follows:

Step 1. For a candidate complex determined by statistical decision, the protein (enzyme/recep-
tor) in the complex may have more than one intrinsic ligand, and their binding sites on this
protein can be recovered according to the data shown in PDB. If the binding sites of the
drug recommended by Vina do not coincide with (nor are near to) one of these positions of
the intrinsic ligands, then we do not recommend the wet-lab test for the complex. Other-
wise, we continue on to step 2.

Step 2. If one of the binding sites of the drug is the same as the pocket of an intrinsic ligand, we
also need to retrieve the pocket containing the intrinsic ligand. If the pocket has no function,
then we do not recommend the wet-lab test. Otherwise, we go to step 3.

Step 3. If the drug binds to a functional pocket that we desire, then we still need to determine
whether or not the binding pose is acceptable by checking the four computable features
[21]. If acceptable, we then go to step 4. Otherwise, we do not recommend the wet-lab.

Step 4. Even if the drug in a complex has passed steps 1–3 in a fixed binding position, we fur-
ther need to check whether the small-interference of the given position is still adequate. If
many positions within the neighborhood of the given position [20] may also pass step 3,
then we recommend the wet-lab for the complex. Otherwise, we do not recommend.

Each step of the above procedure for filtering false positive complexes may have the chance
to filter some false candidates. For example, the crystal structure of complexes formed by SC-
558, flurbiprofen and indomethacin binding to COX-2 were obtained in PBD, respectively.
Loading these three intrinsic ligands on the same crystal structure (4COX in PDB), we obtain
Fig 4A. Loading the NAI molecules onto all of the binding sites recommended by Vina, we
obtain Fig 4B. Comparing Fig 4A and 4B, we may find that binding sites recommended by
Vina do not come near the pockets of the three intrinsic ligands. Therefore, the NAI-COX2
complex will be rejected for further checking via the wet-lab at the first step, although the
dyadic array of NAI-COX2, (x1, x2) = (0.83, -11.6) is quite attractive. ACE possesses three
intrinsic pockets to receive the ligand CAPTOPRIL (Fig 4C), and the pocket that may receive
both CAPTOPRIL and NAI does not receive peptide AII (Fig 4D); therefore, the NAI-ACE
complex will be rejected for testing via the wet-lab at the second step. The choline is a compo-
nent of acetylcholine and cannot bind AChE and BHCE as fully as acetylcholine. As a conse-
quence it will be rejected at the third step. HEM is a ligand that binds with HIV-1 protease at
just one position. Any small interference will make it unable to enter, and thus it will be
rejected at the forth step.

Although the above procedure for filtering false positive complexes has lower cost than the
wet-lab test, it still will take too much human labor if we want to falter all false positive com-
plexes from these 550 complexes. Next, we only filter a subset of complexes we have to involve,
and we assume that drug may bind to the proteins for each of these complexes which had
passed the filtering program.

Results

Implications from the data in Table C in S1 File
Checking Table C in S1 File, we may find that enzymes AChE and BCHE are inhibited by E20,
GNT, THA and HUP because the dyadic arrays are (0.9, -8.2), (0.9, -8.8), (0.9, -8.0), (0.9, -9.5);
(0.9, -8.4), (0.9, -8.4), (0.9,-7.7) and (0.9, -8.1), respectively. From this angle, we agree that E20,
GNT, THA and HUP may improve the level of ACh. However, since these 4 drugs cross the
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blood-brain barrier (BBB) [36], we conclude they are useless to improve the level of ACh. It is
against the original design purpose, but they still benefit to AD. The reasons are stated as
below:

On one hand, each of E20, GNT, THA and HUP may paralyze the entire MMN of ACh. In
fact, E20-ChAT in H0, E20-CHRM2, E20-CHRNA4, E20-CHRNB2 in H1, and they cannot be
filtered by filtering program, therefore we may conclude that E20 inhibits the enzyme ChAT,
and blocks most receptors of ACh. In the same way, we may show that GNT, THA and HUP
also paralyze the entire MMN of ACh. This implies that E20, GNT, THA and HUP are not
only useless to improve the level of ACh, but also do not response the exogenous infusion of
ACh.

On the other hand, E20, GNT, THA, and HUP may paralyze the MMN of Aβ. We only use
E20 as an example for illustration. In fact, (1) E20-BACE-1 is in H0 and (2) E20-NEP,
E20-ECE, E20-ACE, E20-IDE are in H0; E20-MMP-2 is in H1, E20-Cataepsin D, E20-MMP-9,
and E20-Factor XI are in H2. This result implies that the level of Aβ is kept in initial level with-
out any changing if one of E20, GNT, THA and HUP is used and therefore do not change the
state of Aβ deposition.

377 may not block NMDAR because the dyadic array of 377-NMDAR falls into H6. It sug-
gests that 377 may not be the selective blocker of NMDAR. Therefore, the role of 377 is not

Fig 4. (A) COX-2 complexes in the NSAIDs only. (B) COX-2 complexes in the NSAIDs and NAI. (C) ACE
in complex with the intrinsic ligands only. (D) ACE in complex with the intrinsic ligands and NAI.

doi:10.1371/journal.pone.0144387.g004
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same as the original role shown in instructions. Moreover, since 377-ChAT is in H1, we may
believe that 377 more possible is the inhibitor of ChAT. It suggests that 377 may not block
NMDAR but weaken the activity of the producer ChAT.

Phosphatidylserine (PSF), choline (CHT), Lipoic Acid (LPA), Vitamin E (VIV), and NAI
are approved nutraceuticals, rather than drugs. From Table C in S1 File, we see that PSF, CHT,
and LPA are not likely to inhibit any of the 49 proteins. However, the data of VIV and NAI are
of interest. For the 49 complexes formed by NAI and 49 proteins, 30 complexes in H0, 12 com-
plexes in H1, and 7 complexes in the H6. Filtering these 42 complexes using filtering program,
we can conclude that NAI can paralyze both MMNs of ACh and Aβ. Similarly, we get the same
results for VIV. Moreover, both NAI and VIV cross the BBB [37–38], it means roles of NAI
and VIV similar to the role of E20, GNT, THA, and HUP. Hopefully, NAI is a natural multiple
inhibitors for multiple enzymes among A20, ACE, AChE, BACE1, BCHE, ChAT, CYLD,
CYP1A1, GSK3β, IDE, MARK, MM-2, NEP, and PP2A. Overall, the role of NAI should be
studied further. It shows an example to find the double or multiple inhibitors in natural way.

Implications of the data in Table D in S1 File
From Table D in S1 File, we may find that Acarbose (ACR), Pioglitazone (P1B), Sitagliptin
(715), Linagliptin (356), Rosiglitazone (BRL), Vildagliptin (LF7) and Miglitol (MIG) may serve
as diabetes drugs because ACR-IDE, P1B-IDE, 715-IDE, 356-IDE, BRL-IDE, and LF7-IDE are
in H0, and MIG-IDE is in H1. Especially, we assert that Alogliptin (T22) and Saxagliptin (BJM)
are better inhibitors of NEP other than the inhibitor of IDE because T22-IDE and BJM-IDE in
H2, but T22-NEP in H0 and BJM-NEP in H1. Therefore, we may suggest alternatively using
T22 and BJM as an inhibitor of NEP for heart failure rather than for diabetes.

Furthermore, P1B can stop the entire MMN of ACh Because of the facts, (1) P1B-ChAT is
in H0, (2) P1B-CHRM2, P1B-CHRNA7, P1B-CHRNA9, P1B-CHRNB2 and P1B-CHRNE are
in H0 or H1 and (3) P1B-AChE and P1B-BCHE are in H0. Similarly, we can show that P1B
stops the entire MMN of Aβ. Since P1B crosses the BBB [39] and we can find the role of P1B to
treat AD will be same as the role of E20, GNT, THA and HUP. Therefore, we suggest for these
patients who have diabetes only, do not use P1B because it will weaken the learning and mem-
ory functions through restricting ACh binding to receptors.

Miglitol (MIG) only significantly inhibits AChE among all 49 proteins. Therefore it is possi-
bly a good drug to improve the level of ACh, although it cannot cross BBB. In other words,
MIG is not so effective for diabetes but it may be a potent AD drug.

Implications of the data in Table E in S1 File
From Table E in S1 File, we may find that lisinopril (LPR), captopril (X8Z), and trandolapril
(X93) are really good inhibitors of ACE because the dyadic arrays are (0.91, -7.7), (0.88, -8.8),
and (0.91, -5.8), respectively. Moreover, X93 may lower the level of ACh since X93 crosses the
BBB [40] and X93-ChAT falls into H1.

Telmisartan (TLS) is really an angiotensin II receptor blocker (ARB) because the dyadic
array is (0.75, -8.4) and TLS may also be an inhibitor of ACE because the dyadic array is (0.77,
-10.6). Moreover, the dyadic array of TLS-IDE is (0.74, -11.0) shows that TLS is also a good
inhibitor of IDE. These computational results coincide with clinical experience that indicates
that TLS is used as a diabetes drug and the effect of TLS is almost the same as the effect of lisi-
nopril. Furthermore, TLS may paralyze both whole MMNs of ACh and Aβ and TLS crosses the
BBB [41] imply that the role of TLS likes that of E20, GNT, THA, and HUP for AD. Therefore,
TLS has potential multiple usages for HF, diabetes and AD, however it remains to be validated
further.
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Beta-blockers Atenolol (2TN) and Propranolol (SNP) can cross the BBB [42]. The dyadic
array shows that 2TN is a safe drug because it only has the possibility to bind ACE, IDE and
AChE. That is, 2TN may have an unexpected role to improve the level of ACh. While SNP has
the possibility to inhibit ChAT, AChE and BCHE but does not inhibit all receptors on the
MMN of ACh. Moreover, SNP may reduce Aβ production because SNP-BACE-1 is in H1.
Therefore, SNP may prevent the Aβ deposition and may lower the level of ACh. Unlike E20,
GNT, THA and HUP, SNP does not reject the infusion of ACh exogenously.

Discussion and Conclusion
Overall, we generally define the MMN of a stimulus and use ACh and Aβ as the example to
show the MMNs of ACh and Aβ. Then we show the network of AD generated by MMNs of
ACh and Aβ, and the MMNs of other stimuli related to AD. Based on the network of AD,
many new insights are emerged. For example, among the 30 drugs we selected to form the drug
panel, we find that some inhibitors of a converting enzyme or a cleaning enzyme for some
stimulus could paralyze the whole MMN of the stimulus, and even some blockers of the recep-
tors also could paralyze the whole MMN of the stimulus. It will provide an insight to study the
difference of the effects of a drug between in vivo and in vitro and an insight to analyze the
drug resistance. Moreover, since enzymes often have multiple functions, an insight is emerged
that some drugs cannot cure the appointed disease but probably induce a new disease.

In detail, we show some valued implications in this study to share with readers as below:

1. Despite the role of E20, GNT, THA and HUP is against to their original design for improv-
ing the level of ACh because it could paralyze the entire MMN of ACh and therefore the
original level of ACh is unchanged because no producer and no consumers. However, they
still benefit AD in the sense that E20, GNT, THA and HUP keep the Aβ deposition
unchanged because it also could paralyze the whole MMN of Aβ. Therefore, we must note
that E20, GNT, THA and HUP are useless if we want to use them to treat AD before Aβ
deposition appearing. Especially, in this case the learning and memory ability will be
harmed because ACh cannot be used by receptors, although we can infuse ACh to body
exogenously.

2. The role 377 could not selectively block NMDAR but possible be the inhibitor of ChAT.
Therefore, 377 is useless for AD, which seems against to the original design.

3. The role NAI and VIV for AD is similar to the role of E20, GNT, THA and HUP. NAI
sounds stronger than E20, GNT, THA and HUP to stop the whole MMNs of Aβ and ACh,
while VIV weaker than NAI. Therefore, NAI and VIV will be harmful if we want to use it to
increase the level of ACh in preclinical AD. It suggests that nutrients also need to be con-
trolled, due to their harmfulness if using in wrong time and wrong way.

4. Besides to treat hypertension or heart failure associated with diabetes, TLS has a new role
related to AD. Since TLS crosses BBB and TLS could stop the entire MMN of Aβ, it follows
that TLS keeps original level of Aβ deposition unchanged. This is good news for AD
patients. TLS also stops the entire MMN of ACh. It also follows that original level of ACh is
unchanged. However, ACh unbinding to receptors is a bad news for the learning and mem-
ory functions. Therefore, TLS is a safe drug for hypertension, heart failure, or diabetes, but
could have a slight side effect to affect the learning and memory functions.

5. MIG hopefully is a potent drug to prevent the loss of ACh. Because it cannot cross BBB to
interfere the proteins in brain and it just inhibits AChE which is a ubiquitous protein in cen-
tral and peripheral nerve systems.
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6. 2TN a safe drug for heart failure and hypertension since it can bind to ACE, but its role to
treat heart failure and hypertension is minor. A new role to improve the level of ACh could
be found in this study because it could only inhibit AChE on MMN of ACh. Therefore, 2TN
is also a potent drug to prevent the loss of ACh.

More interesting conclusions could be mined from Tables C, D and E in S1 File, for exam-
ple, both NAI and TLS are the basic elements of the source for discovering the multiple inhibi-
tors in the natural way. Another example, amiloride is not only a diuretic but also a double
inhibitor of IDE and NEP. Due to limited space, we only show these in this paper. Obviously,
this study suggests that we should reconfirm the actual effects of each drug through using
MMNs.

Supporting Information
S1 File. Supply materials for the network of AD: How to read the network of AD (Text A).
The chemical names, functions and the 3D-structures of the 49 enzymes/receptors in the net-
work of AD (Table A). The panel of 31 drugs consisted of 10 AD drugs, 9 diabetes drugs, and
12 heart failure drugs (Table B). The data for 490 complexes formed by 10 AD drugs and 49
proteins (Table C). The data for 441 complexes formed by 9 diabetes drugs and 49 proteins
(Table D). The data for 539 complexes formed by 11 diabetes drugs and 49 proteins and the
additional 49 complexes formed by the controlling drug amiloride (AMR) and 49 proteins
(Table E). The simulation of IC50 data (Figs A-F).
(DOC)
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