
fphys-11-583024 October 23, 2020 Time: 18:58 # 1

ORIGINAL RESEARCH
published: 29 October 2020

doi: 10.3389/fphys.2020.583024

Edited by:
Andras Eke,

Semmelweis University, Hungary

Reviewed by:
Ronny P. Bartsch,

Bar-Ilan University, Israel
Alfonso Monaco,

National Institute for Nuclear Physics
of Bari, Italy

*Correspondence:
Béla Suki

bsuki@bu.edu

Specialty section:
This article was submitted to

Fractal and Network Physiology,
a section of the journal
Frontiers in Physiology

Received: 14 July 2020
Accepted: 28 September 2020

Published: 29 October 2020

Citation:
Suki B, Herrmann J and

Bates JHT (2020) An Analytic Model
of Tissue Self-Healing and Its Network

Implementation: Application
to Fibrosis and Aging.

Front. Physiol. 11:583024.
doi: 10.3389/fphys.2020.583024

An Analytic Model of Tissue
Self-Healing and Its Network
Implementation: Application to
Fibrosis and Aging
Béla Suki1* , Jacob Herrmann1 and Jason H. T. Bates2

1 Department of Biomedical Engineering, Boston University, Boston, MA, United States, 2 Department of Medicine,
The University of Vermont, Burlington, VT, United States

Here we present a model capable of self-healing and explore its ability to resolve
pathological alterations in biological tissue. We derive a simple analytic model consisting
of an agent representing a cell that exhibits anabolic or catabolic activity, and which
interacts with its tissue substrate according to tissue stiffness. When perturbed, this
system returns toward a stable fixed point, a process corresponding to self-healing.
We implemented this agent-substrate mechanism numerically on a hexagonal elastic
network representing biological tissue. Agents, representing fibroblasts, were placed on
the network and allowed to migrate around while they remodeled the network elements
according to their activity which was determined by the stiffnesses of network elements
that each agent encountered during its random walk. Initial injury to the network was
simulated by increasing the stiffness of a single central network element above baseline.
This system also exhibits a fixed point represented by the uniform baseline state. During
the approach to the fixed point, interactions between the agents and the network
create a transient spatially extended halo of stiffer network elements around the site
of initial injury, which aids in overall injury repair. Non-equilibrium constraints generated
by persistent injury prohibit the network to return to baseline and results in progressive
stiffening, mimicking the development of fibrosis. Additionally, reducing anabolic or
catabolic rates delay self-healing, reminiscent of aging. Our model thus embodies what
may be the simplest set of attributes required of a spatiotemporal self-healing system,
and so may help understand altered self-healing in chronic fibrotic diseases and aging.

Keywords: repair, agents, network, fixed point, random walk

INTRODUCTION

Self-healing is the ability for spontaneous repair following injury and is a critical homeostatic
feature of biological systems that allows them to survive the rigors of life’s experiences for extended
periods. Biological self-healing involves a complex interplay between numerous cell types in the
body (Carlson and Longaker, 2004; Vidmar et al., 2017), leading inexorably to complete resolution
of whatever damage the injury caused (Mutsaers et al., 1997). Being able to harness the power of
self-healing is thus of great importance for medicine, and it has even recently led to the bio-inspired
development of artificial self-healing systems (Mutsaers et al., 1997; Hong et al., 2019). On the

Frontiers in Physiology | www.frontiersin.org 1 October 2020 | Volume 11 | Article 583024

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.583024
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.583024
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.583024&domain=pdf&date_stamp=2020-10-29
https://www.frontiersin.org/articles/10.3389/fphys.2020.583024/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-583024 October 23, 2020 Time: 18:58 # 2

Suki et al. Modeling Tissue Self-Healing

other hand, aberrant self-healing is also responsible for many
chronic pathologies that at best leave behind an inconveniently
remodeled tissue, and at worst can be progressive and eventually
fatal. An example is idiopathic pulmonary fibrosis (IPF), an
insidious disease typically associated with aging that has a
median survival of 3.8 years from diagnosis (Raghu et al.,
2014). Nevertheless, we still have a poor understanding of the
essential components required of any system in order for it to
exhibit the property of self-repair; therefore, how repair becomes
dysregulated in a disease such as IPF remains a mystery.

What are the general features of self-healing systems necessary
for successful repair? We propose that there are three: (1) the
ability to detect injury and initiate local reparative processes in
response, (2) the availability of sufficient material and energy
reserves to complete the repair, and (3) the ability to cease
reparative processes when injury is no longer present. In
biological systems, all of these features are associated with various
cell types together with certain properties of the extracellular
matrix (ECM). All are necessary for self-repair to proceed
efficiently. In the absence of damage detection, for example,
reparative processes would have to be initiated at random
locations throughout a tissue. This is much less efficient than
targeted self-healing, as has been demonstrated, for example,
with respect to the elimination of fibrotic lesions from the
lung parenchyma (Suki et al., 2007). Likewise, the availability
of resources is obviously critical if damage is to be repaired at
all, and the ability to turn off the anabolic processes involved
in repair when they are no longer needed is essential if chronic
remodeling and inflammatory pathologies are to be avoided.
Evolution tends to favor efficiency, so it is not surprising that
the above three features are exhibited ubiquitously throughout
the animal kingdom.

Here we focus on the repair of damaged ECM, and how it
might become deranged in chronic fibrotic disease and aging.
The autonomous self-healing of damaged lung parenchyma
requires that the intactness of the ECM be constantly assessed by
migrating cells. When such cells detect ECM fragments they can
either initiate wound healing directly (Tolg et al., 2014) or release
chemotactic factors to attract inflammatory cells that orchestrate
the digestion and removal of damaged tissue (Nakagawa et al.,
1999). Fibroblasts must then be recruited and activated to lay
down new ECM in order to replace the tissue that has been lost
(Hartupee and Mann, 2016). Subsequent changes in cross-linking
between protein fibers then serve to stabilize the mechanical
structure of the new tissue (Rief et al., 1997; Thompson et al.,
2001). The final step, recognizing when repair is complete, is
the least well understood, but likely involves a highly elaborate
cell-cell signaling scheme that brings the inflammatory cascade
to an end (Nathan, 2002). These are all functions that require a
large number of cells and their products to function as a cohesive
system within which self-healing arises as an emergent property.

The goal of this study is to develop a mathematical model
of homeostatic ECM maintenance that is minimal in the sense
of representing the processes outlined above in a general
sense without undue regard for their precise details. Our
premise is that this will abstract the general dynamic processes
involved in self-repair of tissue and then provide a platform for

investigating its breakdown in aging and the pathogenesis of
chronic fibrotic disease.

MODEL DESCRIPTION

We first develop a simple 2-dimensional non-linear
representation of biological soft tissue characterized by a
local state variable, tissue stiffness of the ECM, and an activity
variable representing a single cell interacting with the ECM. We
find the fixed point of this system and analyze its stability. We
then implement the equations of this model in an elastic network
mimicking the mechanical properties of a macroscopic section of
tissue and populate the network with discrete agents representing
the cells that take part in tissue repair. These agents carry out
the self-healing maintenance program as they migrate over the
network by modulating the mechanical properties of the network
members. By maintaining the system under non-equilibrium
conditions to represent a persistent insult to the tissue, and
altering model parameter values from baseline to represent
pathological processes, we demonstrate both how fibrosis can
develop and how self-healing can degrade with aging.

A Non-linear Dynamic Model of
Self-Healing
Consider a single agent at a fixed location on a sheet of tissue. The
agent is characterized by a single state variable, a

′

, representing
its activity level, while the patch of tissue upon which it sits is
characterized by another state variable, k

′

, representing the local
stiffness of the tissue. Both a

′

and k
′

are functions of time, t′.
We assume that cellular activity modulates tissue stiffness,

which in turn regulates cellular activity, so

da
′

dt′
= f (a

′

, k
′

) (1)

dk
′

dt′
= g(a

′

, k
′

) (2)

where f and g are continuously differentiable non-linear
functions. In the special case that the agent does not significantly
affect tissue properties, the stiffness will remain essentially
constant, and we let the activity of an activated cell decay
exponentially toward a steady-state baseline level of β with rate-
constant α. That is,

da
′

dt′
= αβ− αa

′

(3)

The solution to Eq. 3 is

a
′

(t
′

) = β+We−αt
′

where W is a constant determined by the initial conditions. Note
that as t′ →∞, the solution approaches β at an exponential rate
α, which is independent of W.

In the more general case, where the activation state of the
agent does significantly affect tissue properties, we assume that
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the steady-state activation level, β, increases with the stiffness,
k′. However, activation cannot increase indefinitely because it
requires energy, whereas tissue stiffness is a passive property that
is less constrained in this regard. We therefore let the dependence
of activation on stiffness exhibit first-order saturation behavior
according to

da
′

dt′
= α

Ak
′

Q+ k′
− αa′ (4)

In other words, a′ depends linearly on k′ for small k′, but
approaches the saturation level A as k′ becomes large. The
parameter Q represents the value of stiffness at which activity is
half its maximum value.

Next, we want Eq. 2 to account for the homeostatic mechanism
of enzymatic digestion of excess collagen in the case that tissue
stiffness becomes too large, and conversely to allow for collagen
deposition when stiffness becomes abnormally low. We thus
define g such that k′ decreases when activity increases above a
threshold q′, and increases when activity decreases below q′. This
can be achieved by including a partitioning term (a

′

− q
′

) in g so
that g

(
a
′

, k
′
)
=

(
a
′

− q
′
)

h(k
′

). To retain analytic solvability, we

make h(k
′

) as simple as possible by giving it a linear dependence
on k′ such that h

(
k
′
)
= −D

′

k′, where D′ is a constant. These
considerations lead to the rate equation for k′ being

dk
′

dt′
=

(
a
′

− q
′
) (
−D

′

k
′
)
+ P′ (5)

where the constant P′ is a production term that serves to prevent
(0,0) from being a fixed point of the system.

We now introduce the dimensionless variables for time
t = αt′, activity a = a

′

A , and stiffness k = k
′

Q . Eqs 4 and 5 then
become

da
dt
=

k
1+ k

− a

dk
dt
=

A
α

(
a−

q
′

A

)(
−D

′

k
)
+

P
′

αQ

Normalization also leads to a dimensionless digestion rate D =
AD
′

α
, production rate P = P

′

αQ and activity threshold q = q
′

A ,
yielding the final system of model equations

da
dt
=

k
1+ k

− a (6)

dk
dt
=
(
a− q

) (
−Dk

)
+ P (7)

From Eqs 6 and 7 it is easily seen that if P = 0, the fixed
points are a∗ = q, k∗ = q

1−q . This has the undesirable attribute
that the fixed point does not depend on the digestion rate D,
and can be avoided by requiring that P 6= 0. Obviously, the
threshold q at which cellular activity switches from production
to digestion of ECM and the rate-constant P for production of
ECM must also both be positive. Eqs 6 and 7, together with
these constraints, thus constitute our model of self-healing that

accounts for interactions between the cells that maintain the
ECM and the stiffness of the ECM itself.

Fixed Point and Its Stability
The fixed point of the system corresponds to the condition under
which the left-hand sides of Eqs 6 and 7 are both zero. From
Eq. 6, this gives a = k

1+k , which when substituted into Eq. 7 gives
a quadratic equation for k having the two solutions

k1,2 =
qD+ P ±

√(
qD+ P

)2
+ 4D

(
1− q

)
P

2D(1− q)

Since all model parameters are positive, and q < 1
(since a is always between 0 and 1), we have that

qD+ P <

√(
qD+ P

)2
+ 4D

(
1− q

)
P. This means that the

only physically realistic (i.e., positive) stiffness solution for the
fixed point is

k∗ =
qD+ P +

√(
qD+ P

)2
+ 4D

(
1− q

)
P

2D(1− q)
(8)

The corresponding activity fixed point is

a∗ =
k∗

1+ k∗
(9)

The stability of the fixed point is determined by the

Jacobian =

(
df
da

df
dk

dg
dk

dg
da

)
=

(
−1 1

(1+k)2

−Dk − D(a− q)

)
. The trace

of this Jacobian is τ = −1− D(a− q) and the determinant
is τ = D

(
a− q

)
+

Dk
(1+k)2 . For stability, we need 1 > 0

and τ < 0 at the fixed point. The condition on 1 is that
D
(
a− q

)
+

Dk
(1+k)2 > 0, which gives a∗ > q− k∗

(1+k∗)2 . The

condition on τ is that 1+ D
(
a− q

)
> 0, which gives

a∗ > q−
1
D

(10)

Substituting for a∗ from Eq. 9 into the condition on τ gives

k∗ >
qD− 1

D− (qD− 1)
(11)

By setting D < 1, the right-hand sides of both Eqs 10 and 11
become negative, which guarantees stability. We used Eqs 8 and
9 to study the sensitivity of the fixed point to variations in the
values of the model parameters. For time domain analysis, Eqs 6
and 7 were integrated using the ode23 solver of Matlab (R2018a,
MathWorks, Natick, MA, United States).

Computational Network Model
We implemented the analytic model on a computational network
model of soft tissue. The network consisted of a hexagonal lattice
of identical pre-stressed Hookean springs with fixed boundaries.
At baseline (i.e., healthy), each spring had spring-constant k∗.
Injury was simulated by setting the spring-constant of a single
central spring to 2k∗. Self-healing of the network was simulated
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by placing a number of agents at random nodes (spring junctions)
on the network and then allowing them to migrate from node to
node with each time step, as in our previous model of pulmonary
fibrosis (Wellman et al., 2018). Agent migration was either
random or biased by local network stiffness. In the latter case,
the probability of an agent moving to a given adjacent node was
equal to the stiffness of the intervening spring as a fraction of the
sum of the stiffnesses of all 3 springs impinging on the current
node. The initial activities of all agents were set equal to a∗. At
each subsequent time step, the activity level of every agent and the
stiffness of any spring that an agent had just passed across were
simultaneously updated according to Eqs 6 and 7, respectively.

The elastic equilibrium configuration of the network was
computed after a pre-selected number of time steps by finding
the node positions that minimized the total strain energy of the
system using simulated annealing (Cavalcante et al., 2005). The
stiffness of the network was obtained as the ratio of the change
in average network stress when the network boundaries were
varied biaxially by±0.2%.

RESULTS

Based on preliminary simulations, we chose the baseline
parameter values q = 0.2, D = 0.32 and P = 0.1, which resulted
in a∗ = 0.50559 and k∗ = 1.022612. Examples of the time
evolution of activity and stiffness in the baseline model as well
as following a 4-fold change in each model parameter are shown
in Figure 1 when the initial value of stiffness was set to k∗

2 to
represent tissue damage and 2k∗ to represent tissue scarring. In
all cases activity asymptotes toward the fixed point, sometimes
with a brief early excursion in the opposite direction. A 4-
fold decrease in D shifted the fixed point by the same amount
as a 4-fold increase in P; however, the approach toward the
fixed point was slower in the low D case. Beyond the 100th
time point each simulation was within 0.1% of the fixed point,

consistent with a self-healing system. Interestingly, none of these
time courses is exponential (Figure 1B inset) or a power law
(not shown). Figure 2 shows how the fixed point varies with
alterations in the model parameters. As D increases, both a∗ and
k∗ decrease (panels A and D) whereas as P increases, a∗ exhibited
a sigmoidal behavior and k∗ increased linearly on the log-log
plot. When q was gradually increased, a∗ was constant first then
approached unity while k∗ increased without a limit as q→ 1 in
agreement with Eq. 8.

Figure 3 illustrates the resolution of fibrotic injury in the
network model. A single central spring was initialized to have
k = 2k∗. A total of 64 agents were then allowed to migrate over
the network, which consisted of 252 nodes and 345 springs, while
Eqs 6 and 7 determined how the network member stiffness and
agent activity evolved in time. At each time step the agents moved
randomly to an adjacent node with a bias toward stepping over
stiffer springs. By the 4th time step, two agents had visited the
injury site where their activation levels became elevated. They
then moved to neighboring sites and so raised the stiffness of
the springs that they stepped over in the process. As this process
continued, a “halo” of stiffer springs formed around the original
injury site (time step 8). The halo grew initially (time step 32), but
eventually resolved completely. The network model thus displays
the property of self-healing. Figure 4A shows that the rate of
self-healing increases with the number of agents involved in the
healing process. Figure 4B compares the average activity of 250
agents and the corresponding stiffness decline of the single spring
that had initial injury to the evolution of a and k predicted
by the differential equation of the baseline model in Figure 1.
Although the stiffness decline in the network is nearly identical
to that of the differential equation, the average activity is very
different. This is due to the large number of agents whose activity
is still equal to the fixed point producing an average activity
close to that of the fixed point. The inset, however, shows that
the time course of the average activity is similar to that of the
differential equation.

FIGURE 1 | Time evolution of non-dimensionalized activity (A) and stiffness (B). Baseline model parameters in these simulations were q = 0.2, D = 0.32 and P = 0.1
(black) corresponding to the dimensionless variables activity threshold, digestion rate and production rate, respectively. Additional simulations with low D (blue), high
P (green) and high q (red) are also shown. The initial conditions were set to the fixed point in activity and half (solid dotted line) or double (solid line) the value of the
corresponding stiffness fixed point. The inset plots the stiffness decays on a logarithmic scale. The dimensional parameters α, A and Q were set to unity.
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FIGURE 2 | Fix points of activity (A–C) and stiffness (D–F) as a function of the 3 model parameters D (A,D), P (B,E), and q (C,F) corresponding to the dimensionless
variables digestion rate, production rate, and activity threshold, respectively. Notice that stiffness is plotted on a double logarithmic scale.

FIGURE 3 | Resolution of an injury modeled as a single spring with a high stiffness (red line element) at iteration time 0 indicated in the top left corner. As unactivated
agents (gray circles) visit the injury site, they become active (red circles at time 4) and after stepping off the injury site, they also stiffen the neighborhood creating a
halo (defined as the set of spring with stiffess 0.1% higher than the fixed point) around the original injury site (time 8). Notice a yellow, a green, a red and several gray
agents on or around the halo. Over the course of more time steps, the halo first increases (time 32), then gradually shrinks (time 128) and at time 256 there is only
one network member left with a stiffness slightly higher than the fixed point. Eventually all members reach the fixed point. Colors from blue to red denote increasing
agent activity and member stiffness. Gray members and agents represent fixed point values.

Next, we examined how the stiffness-biased agent migration
and the presence of a temporary halo around an injury site
influence the rate of self-healing. Figure 5A shows that the
stiffness decay toward the fixed point produced by the pure
random walk model (blue line) is significantly slower than that
of the stiffness-biased walk (green line). We then eliminated
halo formation by removing the ability of agents to modify
spring stiffnesses, and instead imposing on the model the same
stiffness decline in the central spring obtained from the pure
random walk, while still updating agent activity at each time
step. Figure 5B shows that activity was highest early on but then
declined most rapidly with both stiffness-biased migration and

the halo (green line), whereas the slowest decline is obtained
with the pure random walk without a halo. To investigate the
dynamics of halo formation, we repeated the stiffness-biased and
pure random walk simulations 2,000 times and tracked halo size
(defined as the number of springs for which k > 1.001k∗) in each
simulation (Figure 6). Halo size increased initially to a peak value
after which it slowly decreased for both the biased and random
walks. However, the stiffness-biased walk reached the peak sooner
and the halo also disappeared faster (the difference between
the random and biased walks is highly statistically significant,
p < 10−7). As more agents were working on the network, the
curves shifted to the left completing the self-healing sooner.
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FIGURE 4 | (A) Time course of stiffness decay of the central spring for several values of the number of agents in the network. (B) Comparison of the time course of
the activity and stiffness of the network with 250 agents to that of the differential equation. For the network, the average agent activity is plotted. The inset shows a
magnified region of the activity of the network.

FIGURE 5 | (A) Stiffness decay of the central spring for 3 different models: halo formation allowed during pure random walk (blue), halo formation prohibited during
pure random walk (red) and halo formation together with stiffness-biased random walk (green). (B) Average activity of 64 agents during the same simulations as in
panel (A). The activities were smoothed with a running average filter.

Figure 6B also demonstrates that the recovery phase is not a
single exponential, and that increasing the number of agents
yields faster halo resolution with less difference between random
and biased walks.

To investigate how maintaining the system under sustained
non-equilibrium conditions affects self-healing, agent activity
was set to 0 (representing a highly active agent) after every
second time step in the baseline model. Agents performed both
a stiffness-biased or a purely random walk and the overall
network stiffness as well as the mean and standard deviation
(SD) of the individual spring stiffnesses were recorded. Figure 7
demonstrates that the biased random walk increased network
as well as average member stiffness at a faster rate than the
pure random walk. Comparing panels C and F in Figure 7, it is
evident that the heterogeneity of the network is also noticeably

higher in the stiffness-biased random walk model. Thus, the
network model under sustained non-equilibrium conditions
develops heterogeneously increased stiffness consistent with
progressive fibrosis.

Finally, the behavior of our network model has implications
for healing in the context of aging, which is associated with
increased tissue stiffness, weakened interaction between cells and
tissues, reduced cell migration speed, and most importantly a
reduction in the rate of self-healing in response to injury. To
account for these features, we first increase the stiffness fixed
point to k∗ = 2. From Eq. 9 we obtain a∗ = 2

3 which shifts the
transition from ECM production to digestion to a higher level of
agent activity. Setting the left-hand side of Eq. 7 to zero and using
a∗ = 2

3 leads to P
D = 8/15. Finally, substituting these into Eq. 7

and setting the left-hand side to zero results in q = 2
5 . According
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FIGURE 6 | Evolution of the halo cluster size relative to the size of the network given in percent for the stiffness-biased (b: solid lines) and pure random (r: dotted
lines) walks. Different colors represent different number of agents within the network. There is a statistically significant difference between the biased and random
curves everywhere except the for smallest random walk step number. Panel (A) shows the random walk steps on log scale and panel (B) shows the halo size on log
scale after the peak.

FIGURE 7 | (A–F) Network configurations during simulations using the self-healing model on the network while agent activity was set to 0 after every second
iteration. Top (A–C) and bottom (D–F) rows show networks in which agent walk was stiffness biased or pure random, respectively. Gray network members have
normal stiffness of ∼1. Colors from blue to red indicate increasingly stiffer springs. (G) Network stiffness as a function of iteration number which represents time for
stiffness-biased (blue) and pure random (red) walks. (H) Mean and SD of spring stiffnesses for stiffness-biased (blue) and pure random (red) walks.

to Figure 1, lowering D slows the approach to the fixed point.
Thus, we set D = 0.08 and from P

D = 8/15, P = 0.0427, which
guarantees no change in the fixed point. Using these parameters
as a model of aging, we find significant changes in the halo
dynamics (Figure 8A): compared to baseline, the halo reaches a
larger cluster size with a peak that is delayed as computed from
2,000 repetitions of each random walk. Furthermore, elimination
of the initial injury takes almost 10 times longer compared
to baseline as the stiffness of the network also relaxes much
slower in the aging model (Figure 8B). The total network
stiffness computed from 20 repetitions is also sensitive to the
type of random walk, demonstrating that the stiffness-biased walk
further stretches out the self-healing time.

DISCUSSION

Recent advances in network theory and computational modeling
have provided much insight into the two-way communication
between sub-cellular, inter-cellular and integrated organ level
mechanisms in physiological systems both in health and disease
(Ivanov et al., 2016). The aim of this study was to investigate
whether a computational model of cells communicating with
their surrounding ECM network is capable of exhibiting
behavior consistent with biological self-healing. We are not
the first to attempt this, but previous studies have tended
to focus on specific underlying processes or mechanisms
(Huiskes et al., 2000; Taylor and Lee, 2003; Verberg et al., 2007;
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FIGURE 8 | Comparison of the dynamics of network properties in the baseline and the aging models following an initial injury of setting a single spring constant to a
value twice the fixed point. (A) Evolution of the halo size relative to the size of the network given in percent for the stiffness-biased (b: solid lines) and pure random (r:
dotted lines) walks for the baseline (BL, black) and aging (red) models. (B) Relaxation of network stiffness normalized to the value after the injury has been removed.
Notice that the magnitude of the network stiffness barely increases beyond the equilibrium value because less than 4% of the network members are affected by the
halo.

Bosia et al., 2014; Quattrociocchi et al., 2014; Shang, 2015),
whereas our goal is to abstract the general principles of self-
healing in their simplest form. To this end, we formulated an
analytic model of the essential feedback process required for
self-healing, and implemented it computationally in an elastic
network representing the ECM of biological tissues. Our main
findings are that: (1) properties of self-healing can be exhibited
by dynamic non-linear interactions between only two variables,
(2) when these interactions are incorporated into a spatially
distributed network model of the ECM that is imbued with
mobile agents, a halo of activity forms around a site of injury
that attracts the agents and accelerates self-healing, (3) under
sustained non-equilibrium conditions, the network model loses
its capacity for complete self-healing and displays features of
chronic progressive fibrosis, and (4) altering the strength of the
interactions between agents and the network mimics the reduced
rate of self-healing associated with aging.

We have identified three key attributes of a self-healing
biological system, namely (1) automatic instigation of local
reparative processes in response to injury, (2) sufficient material
and energy reserves to complete the repair, and (3) cessation of
the self-healing process when injury is resolved. The initiation
of repair is inherent in the existence of the stable fixed
point exhibited by Eqs 6 and 7, which causes the system to
embark on a trajectory back toward “normality” when forced
out of equilibrium (Figure 1). The availability of resources
is not immediately evident from Eqs 6 and 7. In biology, a
homeostatic fixed point (e.g., the stiffness of the skin or lung
tissue) is an unlikely condition and according to the second
law of thermodynamics, the order associated with the fixed
point cannot be maintained unless external energy is utilized in
the form of active maintenance. This, however, is not directly
implemented in the model equations. Nevertheless, the equations
represent a dissipative system due to the asymptotic approach

toward the fixed point (Figure 1). Hence, the energy input
associated with a given initial condition is dissipated during
the return to the fixed point. Finally, the stability of the
fixed point guarantees that reparative processes asymptotically
approach zero as the system approaches its baseline equilibrium
state. Of course, homeostasis in a real biological system is
characterized by fluctuations within a local region of state space
(Suki et al., 2020), so the single fixed point in our model
corresponds to being within this region. Therefore, within the
limitations imposed by its extreme simplicity, the dynamical
system described by Eqs 6 and 7 displays the key features
of self-healing.

Self-healing over the spatial extent of the network
implementation of the model (Figure 3), requires that agents
are able to reach every node of the network. If the agents are
stationary, then a large number of agents is required so that an
agent can be positioned ready to act at every node. Economically,
this would require a large chunk of the total energy available for
an organism. Far fewer agents are required if they have the ability
to move around in the network, particularly if their movements
can be directed to sites where agent activity is required. Nature’s
solution to this question is to have key reparative cells, such as
fibroblasts, continually migrating around within a tissue, and to
be responsive to gradients in appropriate chemical or biological
signals so as to home toward sites of injury. Accordingly, we
implemented repair in our network model via a relatively small
number of mobile agents whose behavior (their activity and
preferential directions of movement) is influenced by the nature
of the network (its local stiffness). The rate of repair of a damaged
network depends, not surprisingly, on the concentration of
the agents (Figure 4A). The dynamics of self-healing become
similar to those of Eqs 6 and 7 as the number of agents
approaches the number of nodes in the network (Figure 4B),
but at lower agent concentrations we see the emergence of a
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new spatiotemporal phenomenon resulting from agent-network
interactions. These interactions also allow agents to indirectly
influence each other’s behavior; if an activated agent increases
the stiffness of a given spring by passing over it, when this spring
is subsequently visited by a second agent the activation level of
the second agent will also increase. In other words, agent-agent
communication emerges from spatial interactions of individual
agents with the underlying ECM network. Furthermore, this
communication causes the changes in ECM stiffness to become
spatially correlated, giving rise to the halo effect (Figure 4), as
agents carry information about local stiffness to surrounding
regions. Intriguingly, this emergent behavior results in more
efficient self-healing (Figure 5).

The halo effect (Figure 3) is reminiscent of how a physiological
state is related to the underlying network dynamics (Bashan
et al., 2012). Specifically, the halo describes the spatiotemporal
evolution of inflammation that first grows around an initial injury
site and then decays away as healing approaches completion.
The same dynamics are evident in the halo (Figure 6).
These dynamics coincide with the time decay of the injury
itself (Figure 5A), and are significantly affected by cell-ECM
interactions. For example, if the agents adhere to a stiffness-
biased random walk, the spread of the halo peaks sooner,
and both the halo and the initial injury resolve more quickly
compared when there are no cell-ECM interactions in the case
of a pure random walk (Figure 6A). Interestingly, when the
time variation of halo size is plotted on a time scale normalized
by the inverse of agent numbers, the halo dynamics become
nearly independent of agent numbers (Figure 6B). The dynamics
therefore result from the rate of local self-healing characterized
by how fast the system approaches the fixed point relative to the
speed of agent migration.

The existence of the halo demonstrates that our model exhibits
a process known as durotaxis in which directed migration of cells
is influenced by substrate stiffness (Lo et al., 2000). Our model
results further demonstrate that durotaxis contributes to the
efficiency of self-healing (Figure 5), suggestive of its evolutionary
advantages. However, simulating sustained exposure to a noxious
stimulus in the face of impaired reparative function (by
periodically setting agent activity to zero representing highly
active agents) prevents the network model from returning to
equilibration after injury. Furthermore, durotaxis accelerates
aberrant tissue remodeling (fibrosis formation) by providing a
positive feedback through which cells preferentially migrate to
stiffer members, which in turn increases the overall stiffness
of halos. Indeed, comparing the images in Figures 7C,F, it is
evident that durotaxis increases stiffness in the neighborhood of
hot spots (red-colored members), which leads to a higher overall
network stiffness.

The structural alterations that take place in fibrotic tissue
reflect both excess collagen deposition (Kirk et al., 1986)
and enhanced cross-linking (Reiser et al., 1986). Of these,
dysregulated collagen cross-linking resulting in structurally and
functionally abnormal collagen fibrils may bear most of the
responsibility for the elevated stiffness seen in fibrosis (Jones
et al., 2018). Imbalances in anabolic and catabolic processes are
also a fact, however. For example, matrix metalloproteinase-1

(MMP-1), the key enzyme responsible for collagen digestion, was
found to be significantly decreased and its inhibitor increased
in a rat model of pulmonary fibrosis (Hu et al., 2015). These
pathological changes can be represented in our network model
by reducing D and increasing P, both of which elevate the fixed
point in stiffness (Figure 1). In contrast, having agents perform
a stiffness-biased random walk, to mimic how fibroblasts are
activated on stiffer ECM (Asano et al., 2017) with a directionality
toward stiffer regions (Lo et al., 2000), alters the dynamics
of self-healing but not the value of the fixed point. These
dynamics are accelerated during repair of a single isolated injury
(Figure 6), but also accelerate the formation of chronic fibrosis
in the face of a chronic insult (Figures 7G,H). We recently used
an agent-based model to show that cell-ECM interactions can
give rise to the characteristic honeycomb features seen in the
lung periphery in pulmonary fibrosis (Wellman et al., 2018).
The model of the current study complements this finding by
showing that cell-ECM interactions can also contribute to the
development of fibrosis in the presence of misguided self-healing
due to the sustained application of non-equilibrium forces by an
environmental insult.

Finally, our model also suggests insights related to the
changing self-healing of biological tissue as an organism ages.
When the parameter q is increased to reflect an elevation
in the threshold at which agent activity switches between
production and digestion, the stiffness fixed point increases and
the rate of self-healing decreases. The same effect occurs when
either the ECM digestion rate (D) or production rate (P, not
shown) are reduced from their baseline values (Figure 1). The
corresponding halo dynamics are distinctly different from the
baseline (Figure 8A) suggesting that changes in internal signaling
affect the spatial extent of the inflammatory response to injury
as well as its resolution (Figure 8B). Reductions in D and P are
biologically consistent with aging. For example, both the turnover
of collagen (Pierce et al., 1967; Mays et al., 1991) and the activity
of lysyl oxidase, a key extracellular enzyme in collagen and elastin
processing, decrease with age (Poole et al., 1985). Additionally,
β1 integrin, which plays a key role in ECM stiffness sensing
(Gershlak and Black, 2015), is downregulated in aged human skin
(Giangreco et al., 2010). Since integrins physically link cells to
the ECM in order to allow bi-directional signaling (Hynes, 2002),
the loss of integrins can be interpreted as decoupling the cell
from the ECM in aging. In our model, ECM sensing by cells is
represented by the stiffness-biased random walk of the agents.
When this sensing is reduced in the model, the halo size further
increases (Figure 8A) and the rate of self-healing becomes slightly
slower (Figure 8B).

The simple model presented here has many limitations. First,
the differential equations (Eqs 6 and 7) neglect all intracellular
structures and processes as well as different cell types. Indeed,
stable two-cell systems including macrophages and fibroblasts
displaying cell-cell contacts are essential to homeostasis (Zhou
et al., 2018). Our model utilized a single effective agent and
we focused on its interaction with the ECM. The various
cytokines and cell types of the immune system are known to
contribute to self-healing locally (Brazzola et al., 2003; Anand
and Tiwary, 2010; de-Campos et al., 2010; Wang et al., 2013)
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and to wound healing (Wilson et al., 2001). These responses
are implicitly lumped together in our model as the single agent
activity level, but this precludes the possibility of representing
the individual relative roles of the different players, many of
which can significantly modulate the time course of the healing
process (Ohshima and Sato, 1998; Kato et al., 2011). Also, the
network model is only a 2-dimensional system without the
spatial heterogeneity of structure that is characteristic of real
tissues, nor does it contain ancillary structures such as airways
that can contribute to pulmonary fibrosis (Miller et al., 2019).
Specific bond ruptures and physical self-healing by reforming
bonds in the network, as in cross-linked nanogels, have been
neglected (Duki et al., 2011). Although a previous model of
chondrocytes included cellular random walk, cell behavior was
not connected to tissue healing (Vaca-Gonzalez et al., 2017).
In the present study, the interaction between the ECM and
the cells is also greatly simplified. For example, although we
allowed for durotaxis, no intracellular mechanisms are associated
with it, and cellular migration itself is either purely random or
biased walk based on only the single factor of stiffness. The
processes associated with aging are also extremely complex. For
example, aging may slow or completely block cell migration
following injury (Moraga et al., 2015), which may further slow
the self-healing dynamics, yet we considered only the removal
of bias from cell migration as a consequence of aging in
our model. Finally, in aiming to develop the simplest possible
conceptual model capable of capturing the essence of self-
healing, we have limited ourselves to a dynamic system with
only a single fixed point. An interesting, but somewhat more
complicated possibility for aberrant healing arises in systems
with more than one fixed point in which an interaction with the
environment may potentially push the system into the basin of
attraction of a different attractor that represents chronic disease
(Anafi and Bates, 2010). In the context of a two-cell system
including macrophages and myofibroblasts, bi-stability of the
circuit can help explain how stimulus magnitude, duration and

its repetitive nature leads to fibrosis (Adler et al., 2020). While
our analytic model neglects these details, the network approach
allows us to explore the spatial aspects of the healing or fibrosis
dynamics. Future work should investigate how a more detailed
network-agent model is able to account for the specific cellular
and macroscopic features of the tissue during the evolution
of self-healing.

In conclusion, we have developed a computational model
that exhibits three key properties necessary for successful self-
healing. The model includes the non-linear interactions between
two essential variables, agent activity and stiffness, imposed on a
distributed elastic network. The model recapitulates the growth
and resolution of inflammation and repair around a site of tissue
injury, and shows how misguided self-healing leading to fibrosis
can arise in the presence of a persistent external irritant, and how
factors related to aging can impair and retard the healing process.
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