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Genome-wide DNA methylation analysis
reveals that mouse chemical iPSCs have
closer epigenetic features to mESCs than
OSKM-integrated iPSCs
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Cizhong Jiang 4 and Hongjie Yao1,3

Abstract
Induced pluripotent stem cells can be derived from somatic cells through ectopic expression of transcription factors or
chemical cocktails. Chemical iPSCs (C-iPSCs) and OSKM-iPSCs (4F-iPSCs) have been suggested to have similar
characteristics to mouse embryonic stem cells (mESCs). However, their epigenetic equivalence remains incompletely
understood throughout the genome. In this study, we have generated mouse C-iPSCs and 4F-iPSCs, and further
compared the genome-wide DNA methylomes of C-iPSCs, 4F-iPSCs, and mESCs that were maintained in 2i and LIF.
Three pluripotent stem cells tend to be low methylated overall, however, DNA methylations in some specific regions
(such as retrotransposons) are cell type-specific. Importantly, C-iPSCs are more hypomethylated than 4F-iPSCs. Bisulfite
sequencing indicated that DNA methylation status in several known imprinted clusters, such as: Dlk1-Dio3 and Peg12-
Ube3a, in C-iPSCs are closer to those of mESCs than 4F-iPSCs. Overall, our data demonstrate the reprogramming
methods-dependent epigenetic differences of C-iPSCs and 4F-iPSCs and reveal that C-iPSCs are more hypomethylated
than OSKM-integrated iPSCs.

Introduction
Embryonic stem cells (ESCs) and induced pluripotent

stem cells (iPSCs) have great therapeutic potential for
regenerative medicine and new drug screening1. Induced
pluripotent stem cells can be achieved by several techni-
ques, such as somatic cell nuclear transfer, cell fusion,
exogenous transfection of transcriptional factors, and
small-molecule treatment2–5. However, there are

concerns that reprogramming may introduce subtle spe-
cific defects that could impact the safety of iPSCs6,7.
Similar arguments continue as to whether these repro-
grammed cells are completely equivalent in both function
and character to genuine ESCs8. Previous studies have
shown that the global expression patterns and epigenetic
modifications were very similar between ESCs and 4F-
induced iPSCs9,10, but there are yet some key differences,
such as 4F-iPSCs have a unique gene expression sig-
nature, including microRNAs (miRNAs) and long non-
coding RNAs11,12. Besides, 4F-iPSCs have genomic copy-
number variations13. And the reactivation of c-Myc can
cause tumor formation in chimeric mice derived from 4F-
iPSCs14.
Epigenetic differences have also been observed between

4F-iPSCs and ESCs. DNA methylation is an important
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Fig. 1 Profiles of CpG methylation in mESCs, C-iPSCs, and 4F-iPSCs for CpGs with ≥10-fold coverage. a Density scatter plots of CpG
methylation levels between mESCs, C-iPSCs, and 4F-iPSCs. Spearman’s R is indicated. b Histograms showing the distribution of CpG methylation
levels (%) in mESCs, C-iPSCs, 4F-iPSCs, and MEFs across the entire genome (All), promoters with different CpG density (HCPs, ICPs, and LCPs),
interspersed repeat elements (LINEs, SINEs, and LTRs) and other genomic regions excluding promters and LINEs, SINEs, and LTRs. c Pie charts
representing the frequency of CpGs grouped by methylation levels
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epigenetic modification in regulation of gene expression,
genomic stability, X chromosome inactivation, and
genomic imprinting. It is regarded as an obstacle in
somatic cell reprogramming15,16, and there are strong
hints that DNA methylation is altered in 4F-iPSCs. For
example, differential DNA methylation distinguishes
human iPSCs and hESCs6,17. DNA hypermethylation in
4F-iPSCs reduces their ability to differentiate toward a
hematopoietic cell fate18. Similarly, abnormal DNA
hypermethylation in 4F-iPSCs leads to aberrant silencing
at the Dlk1–Dio3 imprinted gene cluster, which decreases
the developmental potential of 4F-iPSCs into chimaeric
and 4n complementation-competent-iPSCs mice19. These
epigenetic abnormalities remain a concern for the utility
and safety of 4F-iPSCs in regenerative and clinical
medicine.
Small chemical molecules can regulate cell signaling

pathways and the epigenetic status of cells to control cell
fates20. For example, the small molecules valproic acid
(VPA, a histone deacetylase inhibitor) and vitamin C (Vc)
have both been reported to prevent the abnormal silen-
cing of the Dlk1-Dio3 locus in 4F-iPSCs19,21. Chemical
iPSCs (C-iPSCs)4,22,23 and 4F-iPSCs have been suggested
to have similar characteristics to mouse embryonic stem
cells (mESC). However, their epigenetic equivalence
remains incompletely unclear.
Here we investigated epigenetic DNA methylation fea-

tures of three different pluripotent stem cells (C-iPSCs,
4F-iPSCs, and mESCs). Our results reveal that C-iPSCs
are globally hypomethylated compared to 4F-iPSCs and
the DNA methylation status of imprinted regions of
mESCs is closer to that of C-iPSCs than 4F-iPSCs.

Results
C-iPSCs, 4F-iPSCs, and mESCs all share a similar DNA
methylome globally
To profile DNA methylation in C-iPSCs, we first gen-

erated C-iPSCs (Supplementary Figure 1a) from mouse
embryonic fibroblasts (MEFs) as previously reported22.
The established C-iPSC lines expressed high levels of
pluripotency marker genes, such as Oct4 and Nanog
(Supplementary Figure 1b). The gene expression levels of
pluripotency markers and DNA methylation status at
Nanog promoters were similar among C-iPSCs, mESCs
and 4F-iPSCs, which were induced by Yamanaka factors
(Supplementary Figure 1c and d). To gain insight into the
DNA methylomes of C-iPSCs, 4F-iPSCs, and mESCs, we
performed reduced representation bisulfite sequencing
(RRBS)24, which interrogated 1,106,981 CpG sites.
The global DNA methylation profiles were highly

reproducible between replicates (R> 0.9, Supplementary
Figure 1e) and highly correlated between these cells
derived using different methods (R> 0.922, Fig. 1a). DNA
methylation levels were generally low in all three

pluripotent cell types compared with MEFs, but promi-
nently bimodal in 4F-iPSCs (Fig. 1b). The bimodality was
less prominent in C-iPSCs and was absent in mESCs
(Fig. 1b). To explore this bimodality in detail, we broke
down the CpG sites into different classes (Fig. 1b). The
results indicated that the methylation levels of high-CpG-
density promoters (HCP) and intermediate-CpG-density
promoters (ICP) were near-indistinguishable among the
three pluripotent stem cells, even in MEFs, whereas the
profiles in low-CpG-density promoters (LCP) were closer
between mESCs and C-iPSCs than to 4F-iPSCs and MEFs
(Fig. 1b). In addition, LCP methylations in both 4F-iPSCs
and MEFs were bimodal (Fig. 1b). An important class of
DNA that is methylated is the long/short-interspersed
repeat elements (LINEs, SINEs) and long-terminal repeats
(LTRs) that are generally suppressed by DNA methylation
in somatic cells, and are mostly demethylated and active
in both the reprogramming cells and mESCs25–27. Ana-
lysis of our DNA methylation data indicated a substantial
difference in the methylation of LINEs, SINEs, and LTRs
and they were all hypermethylated in 4F-iPSCs, which is
similar to MEFs, but showed demetylation in mESCs and
C-iPSCs (Fig. 1b).
We further examined the distribution of all CpGs

grouped by methylation levels: high (≥0.8), intermediate
(≥0.3 and <0.8), or low (<0.3). There was no significant
difference in intermediate methylation levels, but the low
and high methylations showed cell-specificity, emphasiz-
ing this change in bimodality. Notably, 4F-iPSCs were
globally hypermethylated compared to mESCs (26.3% in
4F-iPSCs vs. 2.8% in mESCs) and C-iPSCs were in
between (13.2%) (Fig. 1c). Taken together, iPSCs and
mESCs overall share a globally similar DNA methylome
with highest portion of hypermethylated CpGs in 4F-
iPSCs, second in C-iPSCs, and least in mESCs.

C-iPSCs are more DNA hypomethylated than 4F-iPSCs in a
genome-wide scale
We next identified 31,693 (about 3% of all CpGs) and

157,365 (about 14% of all CpGs) strongly hypermethylated
CpG sites in C-iPSCs and 4F-iPSCs compared with
mESCs, respectively (for strongly hypermethylated sites,
the differences of methylation level were set as >0.333.
Fisher’s t test p value <0.05 according to Model-based
Analysis of Bisulfite Sequencing data (MOABS)). Most of
the strongly hypermethylated CpG sites were common
between C-iPSCs and 4F-iPSCs (Fig. 2a). This suggested
that mESCs were closer to C-iPSCs than 4F-iPSCs, at least
from the perspective of the strongly hypermethylated
CpGs. Comparison of the common 29,756 strongly
hypermethylated CpGs showed that the DNA methylation
levels were significantly higher in 4F-iPSCs than in C-
iPSCs (Fig. 2b). We further compared the DNA methy-
lomes of 4F-iPSCs and C-iPSCs, and identified 14,749
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CpGs and 593 differentially methylated regions (DMRs)
that were strongly hypermethylated in 4F-iPSCs, and only
311 CpGs and 21 DMRs that were strongly hypomethy-
lated in 4F-iPSCs (Supplementary Figure 2a). This con-
firmed 4F-iPSCs had higher levels of DNA methylation
compared to C-iPSCs. The strongly hypermethylated
CpGs of each cell type were largely located in intergenic
and intronic regions (Fig. 2c and Supplementary Fig-
ure 2b), in agreement with the bimodality seen in the
LINEs/SINEs and LTRs (Fig. 1b), which are often
intergenic.

Promoter methylation levels in C-iPSCs but not in 4F-iPSCs
resemble those in mESCs
DNA methylation of gene promoters is associated with

chromatin configuration and gene expression. So we
further compared DMRs of promoter regions among 4F-
iPSCs, C-iPSCs, and mESCs. Compared with mESCs,
strongly hypermethylated DMRs were clustered into three
classes (Fig. 3a). The class 1 showed that DNA methyla-
tion levels (>80%) in C-iPSCs and 4F-iPSCs were both
higher than the levels in mESCs. The class 2 showed that
4F-iPSCs (around 80%) were hypermethylated compared
to mESCs and C-iPSCs (around 50%) were in between.
The DNA methylation levels in class 3 of C-iPSCs were
closer to mESCs compared with those in 4F-iPSCs. GO
analysis indicated that the genes that have the similar
DNA hypomethylation levels between C-iPSCs and
mESCs were involved in chromosome organization dur-
ing meiotic cell cycle, meiotic nuclear division, and
synapsis (Fig. 3b).
To gain insights into the difference of promoter

methylation levels between the induced pluripotent cell
types, we profiled DNA methylation and compared the

DMRs of gene promoters between 4F-iPSCs and C-iPSCs.
Clustering analysis showed that methylation levels in the
DMRs of these promoters were similar between C-iPSCs
and mESCs (Fig. 4a). Profiling analysis of the expression
levels of the corresponding genes also clustered C-iPSCs
and mESCs together (Fig. 4b). Moreover, most
those genes that were repressed in 4F-iPSCs wereactivated
in C-iPSCs and mESCs. Of particular interest is Impact, a
gene preferentially expressed in neurons and modulating
neurite outgrowth28. Impact was hypermethylated in 4F-
iPSCs but hypomethylated in C-iPSCs and mESCs
(Fig. 4c), which were confirmed by bisulfite sequencing
(BS-seq) (Fig. 4d). Quantitative Real-time Polymerase
Chain Reaction (qRT-PCR) analysis showed that the
expression of Impact was significantly decreased in 4F-
iPSCs (Fig. 4e). In addition, we observed similar correla-
tions between gene expression and methylation status in
promoter DMRs in the imprinted Snrpn/Snurf loci
(Supplementary Figure 3a–c). However, a small group of
genes including Magel2, Trpc5, and so on showed a
methylated promoter, but were expressed, while Prpf39
was demethylated in 4F-iPSCs but methylated in mESCs
and C-iPSCs and was corrsepondingly expressed only in
4F-iPSCs (Fig. 4a, b).

The DNA methylation and transcription profiles of
imprinted genes in C-iPSCs are more similar to mESCs than
4F-iPSCs
We noticed that, among our list of DMR genes,

there were several well-known imprinted genes, such as
H19, Peg10, and Impact. The murine genome contains
around 150 imprinted genes that are typically located in
clusters29. Importantly, imprinted genes have important
roles in mammalian development30. Therefore, we next
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focused on the DNA methylation and transcription levels
of these imprinted genes. We calculated the methylation
levels in the known imprinted clusters that spread over 20
kb–3.7Mb of DNA31, such as the Dlk1-Dio3, Peg12-
Ube3a, H19-Igf2, Mest-Copg2, Ddc-Grb10, Peg3-Usp9,
Kcnq1ot1−Cdkn1c loci. The results indicated that mESCs
and C-iPSCs showed similar hypomethylation levels in the
DMRs, whereas 4F-iPSCs were hypermethylated (Fig. 5a).
Consistently, expression profiles of the genes within these
imprinting regions clustered mESCs and C-iPSCs toge-
ther (Fig. 5b). The Dlk1-Dio3 imprinting cluster was
hypermethylated in 4F-iPSCs. In contrast, this cluster was
hypomethylated in C-iPSCs and mESCs (Fig. 5a, c). The
cluster contains the intergenic germline-derived DMR
(IG-DMR), whose methylation patterns are established in
the germline. The IG-DMR, located 70 kb downstream of
Dlk1 to 15 kb upstream of Gtl2, is believed to be a control
element for this imprinted gene cluster32,33. The methy-
lation levels of IG-DMR in C-iPSCs resembled those of
mESCs, but those in 4F-iPSCs were the highest, which
was confirmed by BS-seq (Fig. 5d). Correspondingly, the
genes in Dlk1-Dio3 cluster were aberrantly silent in 4F-
iPSCs, including Meg3 and Mirg (Supplementary

Figure 4a and b). What’s more, validated germline DMRs
(gDMRs), which usually function as imprinting control
elements, were hypermethylated in 4F-iPSCs and hypo-
methylated in mESCs and C-iPSCs (Supplementary
Figure 5).
Aberrant methylation in DMRs in the imprinted clus-

ters can lead to diseases such as Prader–Willi syndrome
(PWS), a complex neurogenetic disorder, caused by loss
of expression of paternally imprinted genes located on
human chromosome 15q11-q1334,35. The PWS imprinted
cluster in human has its orthologous locus on mouse
chromosome 7C, that is, the Peg12-Ube3a cluster36. In
addition, multiple studies have identified the 5′ untrans-
lated region of the Snrpn gene, which has been identified
as the PWS Imprinting Center (IC).
Our data showed that all three DMRs within Peg12-

Ube3a cluster were hypermethylated in 4F-iPSCs (Fig. 5a)
and consistently, their target genes Snhg14, Snurf/Snrpn,
Ndn, and Peg12 were silenced in 4F-iPSCs (Fig. 5b). In
contrast, interestingly, the DMRs in Snrpn/Snurf loci were
hypomethylated in C-iPSCs and mESCs (Supplementary
Figure 3b) and therefore, the target genes were tran-
scribed. Contrarily, expression level of another target gene
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Magel2 was positively correlated to methylation levels in
the DMRs (Fig. 4a, b), implying a more complex reg-
ulatory system than just DNA methylation (Fig. 6).

Discussion
Collectively, our studies indicated that C-iPSCs were

more hypomethylated than 4F-iPSCs and their DNA
methylation status was closer to mESCs than to 4F-iPSCs.
Notably, this may correlate with the different develop-
ment potentials of C-iPSCs and 4F-iPSCs, which are
highlighted by the fact that 4F-iPSCs contribute to chi-
meras to a lesser extent 10–50%19, while C-iPSCs generate
chimeras as about 100%22. This reduced development
potential of 4F-iPSCs may be also partly explained by
abnormal silencing of the specific imprinted genes.
We also noted that repeat elements (LINEs, SINEs, and

LTRs) in both C-iPSCs and 4F-iPSCs tend to be hyper-
methylated, and especially in 4F-iPSCs, in contrast to
mESCs. This hypermethylation of DNA levels might be
involved in the silencing of retrotransposons in C-iPSCs
and 4F-iPSCs. The role of repeat elements in pluripotency
is complex and they can be both beneficial and deleter-
ious25, for example many long-non-coding RNAs are
derived from repeat elements and are required to main-
tain pluripotency12,37. Reprogramming mimics early
embryonic development, where retroelements of specific
families show embryonic stage-specific demethylation
before inner cell mass stage and then de novo DNA
methylation occurs, while other elements remain higher
methylation levels throughout development24. Unlike C-
iPSCs and mESCs, the methylation levels of repeat ele-
ments in 4F-iPSCs are somewhat similar to mouse
somatic cells. The lack of correct DNA demethylation of
repeat elements in 4F-iPSCs might imply an incomplete
reprogramming.
Besides, our results showed that C-iPSCs and 4F-iPSCs

have differences in the pattern of DNA methylation in
non-coding regions (Fig. 1c). These non-coding regions
may include promoters and distal regulatory elements,
such as enhancers and transcription factor binding sites.
Growing evidence suggests that cell- and tissue-specific
changes in DNA methylation are associated with non-
coding sequences38–41. Many studies have suggested that

super-enhancers, which regions of the genome occupied
by multiple transcription factors, cofactors, chromatin
regulators, and transcription apparatus, are associated
with the expression of key cell identity genes42,43 and
many tissue-specific enhancers are hypomethylated in
tissues where the target genes are expressed, but are
hypermethylated in tissues where the target genes are
silent40,41. Thus, we hypothesize that the differences in
DNA methylation on non-coding regions may regulate
the expression of target genes.
In addition, previous studies reported that human iPSCs

created from PWS patients using the four pluripotency
factors OCT4, SOX2, KLF4, and MYC retained the
molecular signature of PWS including hypermethylation
of SNRPN and NDN44. Mouse models lacking the Snrpn/
Snurf gene showed a postnatal lethality and surviving
mice showed growth retardation similar to PWS pheno-
type34. And the NDN gene encodes the protein necdin and
Necdin-null mouse model showed respiratory defect that
was also similar to those found in PWS patients34. Our
findings suggest that 4F-iPSCs, although mostly similar to
mESCs and C-iPSCs, have abnormal DNA methylation
and expression at some key imprinted genes. Thus these
differences may be not only derived from the original
cells, but also a widespread phenomenon. The mechan-
isms that might cause this imprinting disorder require
further studies.
Overall, this study is the first report, which demon-

strates the DNA methylation profiles of C-iPSCs in a
genome-wide scale, and compares the differential DNA
methylation at imprinted regions among C-iPSCs, 4F-
iPSCs, and mESCs. Taken together, we provide a strong
evidence that chemical reprogramming might be better
than transcription factor-integrated reprogramming.

Materials and Methods
Mice
C57BL/6J, CBA/CaJ, and 129S4/SvJaeJ mice were pur-

chased from the Jackson Laboratory. C57BL/6J, CBA/CaJ,
and 129S4/SvJaeJ were used for generating OG2-MEFs.
Animal experiments were performed according to the
guidelines for the Care and Use of Laboratory Animals of
the National Institutes of Health.

(see figure on previous page)
Fig. 4 The effects of DNA methylation in promoter DMRs on gene expression among C-iPSCs, 4F-iPSCs, and mESCs. a Hierarchical clustering
of methylation in the promoter DMRs between 4F-iPSCs and C-iPSCs. The red fonts are imprinted genes. b Hierarchical clustering of the expression
profiles of genes associated with the DMRs in a. The red fonts are imprinted genes. c Representative DNA methylation profiles of the imprinted gene
Impact. Red vertical lines are DNA methylation levels. Gray vertical lines are sequenced cytosine counts. CGIs from UCSC genome browser, DMRs
identified in this study, and the published germline DMRs (gDMRs) are shown at the bottom. The arrow indicates the transcription direction of
Impact. d Bisulfite sequencing analysis of DMR within Impact as labeled in c. Each open and filled circle represents a methylated and non-methylated
CpG, respectively. The percentage of DNA methylation is shown. e Expression levels (qRT-PCR) of Impact in the three cell types. The data are
presented as the mean ± SEM of experiments performed in triplicate (***p value <0.001, Student’s t test)
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Cell culture
Plat-E cells were maintained in DMEM high-glucose

media (Hyclone) supplemented with 10% FBS (Excell).
OG2-MEFs were maintained in Dulbecco’s high-glucose
modified eagles medium (DMEM) containing 15% fetal
bovine serum (FBS, Gibco), 1 mM non-essential amino
acids (Gibco), 1% GlutaMAX (Gibco). Mouse E14 ESCs,
4F-iPSCs, and C-iPSCs were maintained on gelatin-coated
plates in a mESC culture medium containing DMEM high
glucose (Gibco), 15% FBS (Gibco), 1% GlutaMAX (Gibco),
1% non-essential amino acids (NEAA, Gibco), 1 mM
sodium pyruvate (Gibco), 1% penicillin–streptomycin
(Gibco), 0.055 mM 2-mercaptoethanol (Life Technolo-
gies), 1000 U/ml leukemia inhibitory factor (LIF,

Millipore), and supplemented with 2i (3 μM CHIR99021
(Selleck) and 1 μM PD0325901 (Selleck)).

C-iPSCs generation
Chemical iPSCs were generated from mouse OG2-

MEFs using small-molecule cocktails, as previously
described22. OG2-MEFs were plated 50,000 cells per well
of a six-well plate. The next day (day 0), the culture was
changed into stage 1 medium: knockOut DMEM (Gibco)
supplemented with 10% KnockOut™ serum replacement
(KSR, Gibco), 10% FBS (Gibco), 1% GlutaMAX (Gibco),
1% NEAA (Gibco), 0.055 mM 2-mercaptoethanol (Life
Technologies), 1% penicillin–streptomycin (Gibco), 100
ng/ml bFGF (Origene) and the small-molecule cocktail

(see figure on previous page)
Fig. 5 The effects of DNA methylation in DMRs within imprinting clusters on gene expression among C-iPSCs, 4F-iPSCs, and mESCs. a
Hierarchical clustering of methylation levels in DMRs within imprinting regions between 4F-iPSCs and C-iPSCs. The names of imprinted gene clusters
where DMRs locate are indicated on the right. b Hierarchical clustering of the expression profiles of the genes within the imprinted gene clusters. The
names of the imprinted gene clusters where the genes are located are indicated after the comma. The four genes in red are used in the model
schema (Fig. 6). c The methylation levels of imprinting control region near Meg3 locus. Red vertical lines are DNA methylation levels. Gray vertical
lines are sequenced cytosine counts. CGIs from UCSC genome browser, DMRs identified in this study, and the published germline DMRs (gDMRs) are
shown at the bottom. The arrow indicates the transcription direction of Meg3. d Bisulfite sequencing analysis of IG-DMR regulating expression of
Meg3 and Mirg shown in Supplementary Figure 4. Each open and filled circle represents a methylated and non-methylated CpG, respectively. The
percentage of DNA methylation is shown
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VC6TFAE (0.5 mM VPA (Sigma), 20 μM CHIR99021
(Selleck), 10 μM 616452 (Selleck), 5 μM tranylcypromine
hydrochloride (Tocris), 50 μM Forskolin (Enzo Life Sci-
ences), 0.05 μM AM580 (Tocris), and 5 μM EPZ004777
(Selleck)). On day 12, the cells were replated at 150,000
cells per well of a six-well plate. During days 12–16,
concentrations of bFGF, CHIR, and forskolin were
reduced to 25 ng/ml, 10 μM, and 10 μM, respectively. On
day 16, the culture was changed into stage 2 medium
containing 25 ng/ml bFGF, 0.5 mM VPA, 10mM
CHIR99021, 10 mM 616452, 5 mM tranylcypromine, 10
mM forskolin, 0.05 mM AM580, 0.05 μM DZNep
(Tocris), 0.5 μM 5-Aza-2′-deoxycytidine (Enzo Life Sci-
ences), and 5 μM SGC0946 (Selleck). On day 28, the
culture was transferred into stage 3 medium: mix DMEM/
F12 (Invitrogen) and Neurobasal (Invitrogen) with a
proportion of 1:1, 1% N2 supplement (Invitrogen), 2%
B27 supplement (Invitrogen), 1% GlutaMAX (Gibco), 1%
NEAA (Gibco), 0.055 mM 2-mercaptoethanol (Life
Technologies), 1% penicillin–streptomycin (Gibco), 3 μM
CHIR99021 (Selleck), 1 μM PD0325901 (Selleck), and
1000 U/ml leukemia inhibitory factor (LIF, Millipore).
After another 8–12 days, mESC-like and green fluorescent
protein-positive C-iPSC colonies emerged and were then
picked up for expansion and characterization. Any med-
ium was changed every 4 days.

4F-iPSCs generation
30,000 OG2-MEFs were plated in a six-well plate and

then infected twice with retroviral supernatants generated
with Plat-E cells. Plat-E cells were transfected pMAXs-
Oct4/Sox2/Klf4/c-Myc using modified polyethylenimine.
OG2-MEFs were infected with equal volumes of the four
supernatants of each OSKM transcription factor con-
taining polybrene at a final concentration of 8 μg/ml.
Infected cells were cultured with mESC medium and
renewed daily. Green fluorescent protein-positive 4F-
iPSCs colonies appeared about day 10 post infection and
were picked up day 14 for expansion.

Immunofluorescence
Cells were washed twice with PBS and then fixed in 4%

paraformaldehyde at room temperature for 20min. After
fixation, cells were treated with 0.3% Triton
X-100 in PBS containing 10% goat serum at room

temperature for 15min. Cells were then incubated with
primary antibodies at 4°C overnight. The primary anti-
body used for cell immunofluorescence was anti-NANOG
(Novus Biologicals). And then the cells were washed for
three times and were incubated with corresponding sec-
ondary antibody in a cassette at room temperature for 1 h.
Then the cells were washed for three times with PBS and
then nuclei were stained with DAPI (Sigma). Images were

captured with an inverted microscope (DMI4000, Leica
Microsystems).

Quantitative real-time PCR
Total RNA was collected using the TRIzol reagent

(MRC). Complemetary DNAs were synthesized from 1 μg
RNA by using First-Strand cDNA synthesis Kit
(TOYOBO) with Oligo18 (dT) and Random Primer. PCR
was carried out using SYBR green (Genstar) and per-
formed on a CFX Real-Time System (Bio-Rad).

Bisulfite sequencing
DNA was extracted using TIANamp Genomic DNA Kit

(TIANGEN). Bisulfite modification of the isolated DNA
was performed using EpiTect Bisulfite Kit (QIAGEN).
The bisulfite-modified DNA was amplified by PCR or
nested PCR using TaKaRa EpiTaq™ HS (for bisulfite-
treated DNA) (Takara). To purify the PCR products, the
DNA fragments were separated by electrophoresis using a
2% agarose gel. Then the bands were excised and purified
with the TIANgel purification kit (TIANGEN). The PCR
products were cloned into the pMD18-T Vector (Takara).
Randomly picked 10 clones from each sample were
sequenced.

RNA-seq and data analysis
RNA sequencing libraries were sequenced on an Illu-

mina Hiseq 4000 platform and 150 bp paired-end reads
were generated. Sequencing reads were aligned to anno-
tated mouse transcripts (mm10) using TopHat v2.0.1345.
High-quality mapped read pairs were retained for eva-
luation of gene expression using Cuffdiff v2.2.146 with
default parameters. Expression levels (FPKM, fragments
per kilobase per million mapped reads) for each gene were
converted to a Z-score for hierarchical l clustering ana-
lysis. Genes with no expression in all three cell types were
removed before plotting heatmaps.

Reduced representative bisulfite sequencing and data
analysis
Chemical iPSCs, 4F-iPSCs, and mouse ESCs were col-

lected. Genomic DNA was digested with MspI (NEB) and
libraries were size-selected (170–370 bp) on an agarose gel
followed by bisulfite conversion. Libraries were sequenced
on an Illumina HiSeq 2500 sequencer as paired-end 50-bp
reads.
Sequencing reads of RRBS were aligned to mouse

reference genome (mm10) using BSMAP v2.9047 with up
to 8% mismatches. Only uniquely mapped pairs were
retained for analysis of DNA methylation. MOABS
v1.3.248 was used to merge replicates and measure CpG
methylation levels. Only the CpGs with ≥10-fold coverage
in all samples were kept for differentially methylated CpG
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sites (DMCs) and DMR calling by mcall tool in MOABS
with default parameters. Totally 1,106,981 CpGs were
obtained. Strong hyper– or hypo–methylated (methylation
differences >33.3%, p value <0.05) DMCs and DMRs were
retrieved from MOABS output for further analysis
according to Fisher’s exact test method.
Promoters were defined as −1 to 1 kb of the tran-

scription start sites. Promoter classes based on CpG
density (HCP, ICP, and LCP) were obtained by Bio-
conductor package compEpiTools v1.6.449 using R v3.3.0.
HCP, ICP, and LCP were defined as previously pub-
lished50. Genomic locations of CpG islands and inter-
spersed repeat families (LINEs, SINEs, LTRs) were
downloaded from UCSC genome browser. The gDMRs
were downloaded from: https://atlas.genetics.kcl.ac.uk/51

and converted to the coordinates of mm10 genome
assembly. The DMRs that are overlapped with a promoter
are defined as promoter DMRs. Imprinting-region DMRs
were defined in a similar manner.
Strong hypermethylated promoter DMRs in C-iPSCs

that are at least 33.3% higher than mESCs were defined
strong hypermethylated promoters DMRs in C-iPSCs
compared to mESCs. The strong hypermethylated pro-
moters DMRs in 4F-iPSCs compared to mESCs were
defined in the same way. We merged the overlapped
DMRs from these two sets of strong hypermethylated
promoters DMRs and re-calculated the methylation level
of the newly merged DMRs for each cell type. The
methylation level of a DMR was calculated as the averaged
methylation level of CpGs within the DMR.
In order to compare all DMRs between every two

samples together, overlapped DMRs were merged and
methylation ratio of merged DMRs were defined as the
averaged methylation ratio of CpGs within the merged
DMRs. We applied K-means (K= 3) method to clustering
promoter DMRs into three classes. The genes in each
cluster were re-ordered by official symbol.

Statistical analysis
Data are presented as mean values± SD unless other-

wise indicated in figure legends. For statistical comparison
of two groups, we performed two-tailed Student’s t test.
Differences in means were considered statistically sig-
nificant at p< 0.05. Significance levels are: *p< 0.05; **p
< 0.01; ***p< 0.001.
Comparisons between two CpGs or methylation regions

were performed using Fisher’s exact test (p< 0.05 was
considered significant).

Accession numbers
The RNA-seq and RRBS data sets have been deposited

in the Gene Expression Omnibus (GEO) under accession
number GSE92985. MEF RRBS data sets were down-
loaded from GEO under accession number GSE5274115.

Primers
Primers for quantitative PCR

Primers Sequence (5′–3′)

Oct4-forward GGCTTCAGACTTCGCCTCC

Oct4-reverse AACCTGAGGTCCACAGTATGC

Sox2-forward AGGGCTGGGAGAAAGAAGAG

Sox2-reverse CCGCGATTGTTGTGATTAGT

Nanog-forward AAGCAGAAGATGCGGACTGT

Nanog-reverse ATCTGCTGGAGGCTGAGGTA

Impact-forward GTGAAGAAATCGAAGCAATGGC

Impact-reverse GGTACTCACTTGGCAACATCA

Snurf-forward TCCAGGTCAAACGTCGAAGG

Snurf-reverse CGTGGGTACAAGTGACACTCTT

Meg3-forward TTGCACATTTCCTGTGGGAC

Meg3-reverse AAGCACCATGAGCCACTAGG

Mirg-forward GCGGTCAACACTGGGTACTT

Mirg-reverse CCTGAGGACCAATTCAGCGT

Primers for bisulphite sequencing analysis

Primers Sequence (5′–3′)

Nanog-forward GATTTTGTAGGTGGGATTAATTGTGAATTT

Nanog-reverse ACCAAAAAAACCCACACTCATATCAATATA

Snrpn/Snurf-outside forward TATGTAATATGATATAGTTTAGAAATTAG

Snrpn/Snurf-outside reverse AATAAACCCAAATCTAAAATATTTTAATC

Snrpn/Snurf-inside forward AATTTGTGTGATGTTTGTAATTATTTGG

Snrpn/Snurf-inside reverse ATAAAATACACTTTCACTACTAAAATCC

IG-DMR-outside forward GTGTTAAGGTATATTATGTTAGTGTTAGG

IG-DMR-inside forward ATATTATGTTAGTGTTAGGAAGGATTGTG

IG-DMR-reverse TACAACCCTTCCCTCACTCCAAAAATT

Impact-forward TGGATGAGGTGTATAATTTT

Impact-reverse CAAAACAAAACTAAACCTAC
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