
ARTICLE

Received 10 Jun 2016 | Accepted 7 Feb 2017 | Published 23 Mar 2017

Inelastic collisions of ultracold triplet Rb2 molecules
in the rovibrational ground state
Björn Drews1, Markus Dei�1, Krzysztof Jachymski2, Zbigniew Idziaszek2 & Johannes Hecker Denschlag1

Exploring and controlling inelastic and reactive collisions on the quantum level is a main goal

of the developing field of ultracold chemistry. For this, the preparation of precisely defined

initial atomic and molecular states in tailored environments is necessary. Here we present

experimental studies of inelastic collisions of metastable ultracold Rb2 molecules in an array

of quasi-1D potential tubes. In particular, we investigate collisions of molecules in the absolute

lowest triplet energy level where any inelastic process requires a change of the electronic

state. Remarkably, we find similar decay rates as for collisions between rotationally or

vibrationally excited triplet molecules where other decay paths are also available. The decay

rates are close to the ones for universal reactions but vary considerably when confinement

and collision energy are changed. This might be exploited to control the collisional properties

of molecules.
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R
ecent advances in the preparation of ultracold molecular
samples in well-defined quantum states1–7 sparked
increasing interest in studying molecular collisions and

chemical reactions on a pure and fundamental level8–12. Such
experiments were first carried out with highly excited
molecules13–24 (also in the context of Efimov physics25–30),
which can vibrationally relax in a collision. For molecules in the
vibrational ground state this decay is barred, but other interesting
reaction paths remain. First investigations of reactive or inelastic
loss of singlet molecules in the rovibronic ground state with polar
KRb and RbCs have recently been carried out5,31–34. Besides the
electronic ground state X1�þg , the metastable triplet state a3�þu
is of special interest for collision experiments. If collisionally
long-lived, such triplet molecules would allow for many
interesting applications, such as tunable Feshbach resonances,
due to their sizeable magnetic moment. To investigate chemical
reactions between cold molecules, optical lattices are a convenient
testbed as they allow for either isolating the molecules from each
other or letting them collide. In addition optical lattices offer the
possibility to control the dimensionality of the scattering process
and to tune the interaction35–38. On the basis of this approach, it
has been shown that strong inelastic collisions induce correlations
and can inhibit particle loss in a molecular sample, a
manifestation of the quantum Zeno effect15,34.

In this work, we present measurements on ultracold collisions
of metastable triplet molecules that are internally in their lowest
energy state. Specifically, we use 87Rb2 dimers of the a3�þu state
which are in the lowest hyperfine level of the rovibrational
ground state. As reference measurements, we carry out collision
experiments with rotationally excited molecules (rotational
quantum number R¼ 2) and with vibrationally highly excited
Feshbach molecules. Initially, the dimers are prepared in a cubic
3D optical lattice with at most a single molecule per lattice site
(see Methods). By quickly ramping down one of its directions, the
lattice is converted into an array of quasi-1D potential tubes
(Fig. 1a). Subsequently, molecules within the same tube collide
with tunable relative energies on the order of mK� kB, far above
the Tonks gas regime of the work of Syassen et al.15. A single tube
is typically filled with only a few molecules and can be considered
as a closed few-body system since tunnelling between the tubes is
negligible.

Whenever a collision between two molecules is inelastic or
reactive, enough energy is released to expel all products out of the
lattice. This is because the lattice depths are comparatively
shallow, being on the order of about 10 mK� kB, which
corresponds to B210 kHz� h. After a given interaction time t
we measure the total number of remaining Rb2 molecules N(t)
and the width of the whole cloud sc

z(t) along the tubes. From the
observed decay of N we conclude that a large part of the

molecules is already lost in the first possible collision, quite
independently of the internal vibrational excitation. Using a
simple model we extract the decay rate constants and investigate
how they depend on the confinement of the potential tubes.
These results are then compared to predictions of a quantum
defect model39,40.

Results
Collisions of Feshbach molecules. In the following, we first
discuss the collision experiments with Rb2 Feshbach molecules as
this will help us analysing the data for the v¼ 0 states. Figure 2a
shows three data sets of N(t) corresponding to different con-
finements of the potential tubes. We observe a strong loss of
molecules within the first tens of milliseconds. It is striking that
the decay takes place in a step-wise fashion which, after B100 ms,
gives way to a much slower exponential decay with a corre-
sponding time constant of 41 s. This slow exponential decay is
similar to the one we observe in a deep 3D optical lattice (Fig. 2a,
inset), which is due to background gas collisions and spontaneous
photon scattering41. Figure 2b shows that the width sc

z oscillates
synchronously to the steps.

We interpret these dynamics as follows: as one direction of the
3D lattice is quickly ramped down (within 400 ms), the particles
are suddenly released from their individual lattice sites into one-
dimensional (1D) tubes. Along these tubes there is a harmonic
confinement with trap frequency oz due to the Gaussian intensity
profile of the 2D lattice laser beams. The molecules will
synchronously undergo an oscillatory motion along this direction
with a period T¼ 2p/oz, while being strongly confined
transversally. As a result, the width of the observed cloud sc

z
oscillates with 2oz (Fig. 2b). Whenever the cloud is small and
dense, the probability for molecular encounters and losses is
increased. On the other hand, if the cloud is large the dimers are
separated from each other and N(t) stays almost constant. Thus,
the longitudinal oscillatory motion explains the step-like decay of
the molecules. Once all inelastic collisions have taken place the
fast losses stop and the remaining signal corresponds to single
molecules in the tubes. This regime is typically reached after
50–100 ms.

Modelling of collision dynamics and analysis. To model the
molecular decay in a quantitative way, we first reconstruct the
distribution of the molecules in our 3D optical lattice. The
molecules are initially produced from a Gaussian-shaped cloud of
ultracold atoms in the optical lattice via magnetic Feshbach
ramping (see Methods). We assume Poisson statistics for the
atomic occupation of each individual lattice site. Only lattice sites
that are occupied by exactly two atoms will finally be occupied by
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Figure 1 | Initial spatial distribution of molecules. (a) Illustration of molecules confined in an array of quasi-1D traps (potential tubes) within which

they can collide. (b) Random-generated Gaussian-shaped molecular cloud (red dots) of 4.3� 104 Feshbach molecules which matches the observed

molecular distribution as determined by the absorption images in the y, z- and the x,y-plane. (c) Histogram of the molecular occupation of tubes as inferred

from b. The red bars count the number of tubes with a given filling, while the green bars count the total number of molecules located in these tubes.
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a single molecule. All other lattice sites will end up empty. Thus, a
given total atom number and cloud size fixes the initial molecular
distribution, see Fig. 1b. We have verified that the predicted cloud
size and total number of the Feshbach molecules indeed agree
with our measurements (see Methods). Taking the molecule
distribution of Fig. 1b the histogram of the resulting filling of the
1D tubes is depicted in Fig. 1c. The average occupation is B2.2.
The histogram helps us to gain additional insights. If we assume
inelastic two-body collisions to be the only source of particle loss,
then the number of molecules remaining after a decay time of
E100 ms equals the number of tubes with an odd initial filling.
Evenly occupied ones, by contrast, end up empty. By comparing
the experimentally measured fraction of remaining particles
to this prediction we can check the model for consistency
(see Supplementary Note 1 and associated Supplementary Fig. 1).

We now discuss the dynamics within a single 1D tube in more
detail. Starting with a classical treatment, we consider each
molecule as a point-like particle, which is initially localised and at
rest in a single lattice site of the 3D lattice. The molecules are all
released exactly at the same time and consequently meet in the
centres of the tubes precisely at t¼T/4¼p/(2oz). At that
particular moment the molecular cloud size ideally vanishes along
the z-direction, inelastic collisions take place and the total
molecule number decreases abruptly. In our measurements,
however, we do not observe such abrupt steps, but rather
smoothed ones (Fig. 2a). We explain this fact by a non-vanishing
initial velocity distribution of the molecules as a result of the
Heisenberg uncertainty relation. Therefore, we leave the classical
picture of point-like particles and rather describe each molecule i
as a 1D quantum mechanical wave packet Ciðz; tÞj j2/ exp

½ � z� wiðtÞð Þ2=
ffiffiffi
2
p

swp
z ðtÞ

� �2�, which is centred at wi(t) and has
the width swp

z ðtÞ (cf. Fig. 3a). This leads to a finite width in the

molecule’s velocity distribution, initially given by Dv(0)E:/
(mswp

z (0)), where m is the molecular mass. As t progresses,
wi(t), swp

z ðtÞ and Dv(t) oscillate with oz, 2oz and 2oz, respectively
(Supplementary Note 2). The dynamics for three particles in a
tube is depicted in Fig. 3b (upper part). As expected, the collision
times are now somewhat smeared out, however, every particle will
still pass by every other one in the 1D tube within T/2 (assuming
that no collisions occur in the meantime). Whenever two
molecules collide, there is a certain likelihood for an inelastic
process. A collision between two molecules i and j is possible as
long as the spatial overlap Zij¼

R
Cij j2 Cj

�� ��2dz of their wave
packets (cf. Fig. 3b, lower part) does not vanish. To describe the
loss rate in a single 1D tube we choose the following ansatz (see
Supplementary Note 3 for a derivation)

dN
dt

� �
¼� �K1D

X
i 6¼ j

ZijðtÞFðtÞ; ð1Þ

where we sum twice over all molecular pairs (i, j).
FðtÞ¼4=

R
Ciðz; tÞCj z0; tð ÞþCi z0; tð ÞCjðz; tÞ
�� ��2dz dz0 is a nor-

malization factor. �K1D is the mean decay coefficient. We note that
in the limit of high tube occupation numbers �K1D describes the
dynamics of a 1D thermal gas with density n via the rate equation
_n¼� 2 �K1D n2.
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Figure 2 | Dynamics of Feshbach molecules for various confinements.

(a) Decay of the molecule number N(t) in an ensemble of quasi-1D traps

with longitudinal trap frequencies oz¼ 2p� (23.6, 33.4, 49.0) Hz, and

transverse frequencies or¼ 2p� (8.0, 11.6, 17.2) kHz (blue, green, red). The

continuous lines are fitted model calculations. The inset shows the typical

long-time behaviour of the decay in the quasi-1D traps (red circles)

together with the slow decay of immobile molecules in a deep 3D lattice

(oz,r¼ 2p� 17.2 kHz) (blue squares). N0 denotes the number of molecules

at t¼0 and the continuous lines are guides to the eye. (b) Measured

longitudinal width sc
z of the molecular cloud. The continuous lines are

damped cosines. All data points in a,b are averages over B20

measurements and the error bars indicate the standard mean error.
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Figure 3 | Dynamics of molecular wave packets in a quasi-1D potential

tube. (a) During the preparation (to0) the molecules are separated by the

deep 3D lattice, which suppresses any interaction. At t¼0 they are

released into the quasi-1D tube as Gaussian wave packets. Their centre

positions wi as well as their width swp
z oscillate with oz and 2oz,

respectively. (b) For the example of three molecules in a tube we show the

dynamics of wi(t), swp
z (t) (shaded areas) and of the pairwise overlap Zij(t).
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We use equation (1) to analyse the measured decay curves and
to extract �K1D. For this, we fit the solution of equation (1) (see
Methods) to the measurements. Indeed, the only free fitting
parameter in our model is �K1D. This is because we can
experimentally determine the initial spatial distribution of the
molecules, and the initial width swp

z (t¼ 0) of the molecular wave
packets is derived by calculating the release dynamics from the
3D optical lattice into the 1D tubes (see Supplementary Note 2
and associated Supplementary Fig. 2). For a given molecular
sample we assume swp

z (t¼ 0) to be identical for all particles. The
values of swp

z (t¼ 0) for the present work range between 0.17 to
0.26alat, where alat¼ 532 nm is the lattice constant. Generally, the
width swp

z (t¼ 0) determines how smoothed out the decay steps
are, while �K1D determines their relative heights. Therefore, a
variation in swp

z (t¼ 0) does not have a strong influence on the
extracted rate coefficient �K1D. As can be seen in Fig. 2a the fitted
curves agree well with the measurements. Our results for the
decay rates are �K1D¼ð2:8; 3:6; 5:5Þmm s� 1 for the correspond-
ing radial trap frequencies of or¼ 2p� (8.2, 11.6, 17.0) kHz,
respectively.

We now get back to Fig. 2b. A strong damping of the
oscillations of the cloud size sc

z(t) along the tubes is observed,
which at first might be unexpected for 1D systems where
thermalization is generally suppressed42. We attribute the
damping mainly to the fact that the reaction rate increases with
collision energy (as will be shown below) and therefore particles
with higher kinetic energy are lost faster. A further discussion also
of other possible contributions to the damping is provided in
Supplementary Note 4. In addition, we would like to note that the
observed oscillating cloud size in Fig. 2b is generally larger than
expected from our model calculations. This is due to limitations
in the effective imaging resolution (see Methods).

Collisions of vibrational ground state molecules. Next, we study
the inelastic collisions of the Rb2 triplet v¼ 0 molecules that
are produced in precisely defined internal quantum states via
coherent optical transfer starting from the Feshbach state (see
Methods). Figure 4b,c shows decay curves of these dimers with
rotational quantum number R¼ 0 and R¼ 2, respectively. As for
the Feshbach molecules, the observed loss is almost entirely due
to collisions since the measured lifetime in the absence of
molecular encounters is on the order of several seconds43. For
direct comparison, we also present in Fig. 4a a data set obtained
with Feshbach molecules. Within 5% the laser intensities of the
optical lattice are the same for all three data sets. Remarkably, the
measurements clearly reveal that the decay of molecules in state
v¼R¼ 0 takes place on a similar timescale as compared to the
v¼ 0, R¼ 2 molecules or the highly excited Feshbach molecules.
This is not obvious because the relaxation paths are potentially
different for these states. Specifically, while the Feshbach
molecules can vibrationally relax within the triplet potential
a3�þu , our v¼R¼ 0 molecules are already energetically in the
absolute lowest level of the triplet manifold, also with respect to
the hyperfine and Zeeman structure (see Methods). Thus, in an
inelastic or reactive collision of two of our v¼R¼ 0 molecules
either a Rb trimer must form or at least one of the two dimers
must undergo a spin flip towards the singlet electronic ground
state. Nevertheless, judging from our measurements presented
here, there is no indication for a suppression of the molecular loss
rate due to these restrictions, which is an important result of our
experiments. These findings go along with theoretical predictions
for collisions of polar triplet molecules where a spin flip of the
electronic state was not suppressed either44.

The step-like loss discussed earlier for the Feshbach molecules
is also visible in the data on the deeply bound states, albeit less

pronounced. The softening of the steps is caused by smaller initial
wave packet widths swp

z (t¼ 0) of the v¼ 0 molecules since their
polarizabilities at a wavelength of l¼ 1,064 nm are by factors
between two and three higher as compared to the Feshbach
molecules45. This leads to a stronger lattice confinement for the
same laser intensities and, in addition, to an earlier non-adiabatic
release of the wave packets when the lattice is ramped down.

Tuning of reaction rates. We now investigate the dependence of
the reaction rate coefficients on the confinement and collision
energy. For this purpose, we measure decay curves for various
trap frequencies or of the tubes. Generally, each of these trap
frequencies corresponds to a different collision energy Ecol,
because in our current setup we cannot tune or and Ecol

independently as both are controlled via the laser intensity I of
the optical lattice. Specifically, orp

ffiffi
I
p

and the collision energy
scales as Ecolpw2

zpI due to the initial potential energies
of the particles. The decay rate constants �K1D are shown as black
circles in Fig. 5 where we use the average trap frequency

or¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2

x þo2
yÞ=2

q
as a scale for radial confinement (Note that

the v¼ 0, R¼ 2 state exhibits different polarizabilities in x- and
y-direction45).

We gain additional insights about the dependencies of the rate
coefficient from theoretical considerations. For this, we use a
quantum defect reaction model where an inelastic process takes
place at short range with probability Pre (refs 39,40). On the basis
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(a) Feshbach, (b) (v¼0, R¼0) and (c) (v¼0, R¼ 2) molecules. The laser

beam intensities of the 2D lattice are the same within 5% for a–c, resulting in

the trap frequencies provided in the insets. Each data point consists of 10–30
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are fitted model calculations based on equation (1). The dashed vertical lines

mark multiples of the time p/oz, indicating when the cloud size sc
z is maximal.
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of the experimental observation that the majority of the molecules
is lost in their first encounter with another molecule, quite
independently of the initially prepared molecular state, we expect
the reaction probability Pre to be close to unity. In the limit that
Pre is unity, we are in the universal regime and the resulting
s-wave scattering length can be written in a simple form
a3D ¼ �að1� iÞ (see Methods for the general formula with
Prea1). Here �a¼ 2pR6/G2(1/4) is the mean scattering length of
the van der Waals potential46, G is the gamma function and
R6¼ (2mC6:

� 2)1/4 where m is the reduced mass of the molecules.
The C6 coefficient is C6E17,550 a.u. (C6E18,800 a.u.) for the v¼ 0
molecules (Feshbach molecules), respectively47. In free space
these parameter values would correspond to universal reaction
rate constants39 K3D¼4h�a=m � 1:26�10� 10 cm3 s� 1 and
1.35� 10� 10 cm3 s� 1, respectively, which roughly agree with
measured reaction rate constants for 87Rb2 Feshbach molecules15,24.

The description changes when reducing the dimensionality
of the scattering process35,48. Generally, a system enters the
quasi-1D regime for large trap aspect ratios ox;oy � oz and
low enough collision energies Ecolo2:ox,y. For our experiments,
we estimate the average maximal energies to be a factor of two to
three below this boundary (see Supplementary Note 4 and
associated Supplementary Fig. 3) and ox,y/oz is at least 4300
for the three investigated molecular states. Thus, the system
can be described by an effective 1D model characterized by
the interaction potential VðzÞ¼ ‘ 2

ma1D
dðzÞ with complex 1D

scattering length a1D (refs 49,50), which is a function of
�a and the trap confinement (see Methods). Parametrizing a1D

as a1D¼ (a1D� ib1D)� 1 allows for writing the universal 1D
reaction rate constant in the form35

K1D¼
4‘ k2

m
b1D

k2þ a2
1Dþb2

1Dþ 2kb1D
; ð2Þ

where :k is the relative momentum of the colliding molecules.
The rate constant K1D can be considered a function of the
collision energy Ecol, since Ecol¼ :2k2/(2m). In addition, through
the connection between 1D and 3D scattering lengths, K1D also
depends on the transverse confinement or, that is, ox and oy (see
equation (6) in Methods). In the low-energy limit, k-0, the 1D
rate constant K1D vanishes as k2, in contrast to 3D where rate
constants generally approach a constant value48. This is a
manifestation of the change of Wigner threshold laws under
confinement. To compare scaling of the 1D and 3D cases in more

detail we examine the decay rates Gi¼2Kini, where iA{1D, 3D},
and n1D represents a 1D density of molecules. In the low-energy
limit, the ratio G1D/G3D is proportional to (kd)2� d2/�a2�
(n1D/d2)/n3D (refs 35,48), where d is the transverse confinement
size, as given by the harmonic oscillator length (see Methods). We
note that n1D/d2 can be thought of as an equivalent 3D density of
the confined system. The decay rate ratio strongly depends on
both confinement and collision energy and indicates that at low
enough temperatures and strong confinement the 1D gas would
be much more stable than the 3D one.

Figure 5 displays the full dependencies of the universal K1D on
collision energy and confinement as described by equation (2) for
both the Feshbach and the v¼ 0 molecules. We note, however,
that the calculated values of K1D cannot directly be compared to
the experimentally determined values of �K1D for two reasons.
First, the measured �K1D are only given as a function of
confinement or and the corresponding average collision energies
are not constant. Second, we have to take into account the
dynamics of the molecules and their oscillating energy distribu-
tion within the lattice. Therefore, we calculate an approximate
theoretical �K1D by time-averaging over K1D according to

�K1D orð Þ¼

P
i 6¼ j

R
ZijðtÞFðtÞK1D EcolðtÞ;ox;oy

� �
dt

P
i 6¼ j

R
ZijðtÞFðtÞdt

: ð3Þ

An alternative approach for comparison to the experimental data
is described in Supplementary Note 5 (see also Supplementary
Fig. 4). In equation (3), the summations cover all possible
colliding pairs of molecules (i, j) in the whole sample with their
respective collision energy Ecol. The theoretical calculations for
�K1D assuming the universal reaction are shown in Fig. 5 as white
solid lines. The universal model reproduces the overall slopes of
the data, but generally underestimates the measured decay rate
constants. This can be explained by a slight non-universal
character of the inelastic collisions for all three investigated states
as will be shown in the following.

To account for non-universality in our calculations, we use the
full expression of a3D as given by equation (5) of the Methods
section. The theoretical values of �K1D are calculated, again using
equations (2) and (3). The non-universal model introduces two
free fit parameters, the short-range parameter s and the reaction
probability Pre (see Methods). The white dashed lines in Fig. 5
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As error bars we give the 95% confidence interval of the fits. The solid white lines are the calculations for �K1D according to equation (3) assuming
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show the results of fits of this non-universal model to the data.
For the Feshbach and the v¼ 0, R¼ 0 molecules good agreement
with the measurements is achieved for a wide range of parameter
values of s at reaction probabilities Pre between 0.4 and 0.9. The
enhancement of the reaction rate relative to the universal regime
is due to a shape resonance caused by a near-threshold bound
state. For the v¼ 0, R¼ 2 state the best agreement with the data is
obtained when maximizing the calculated rate which is achieved
for PreE0.8 and a negative s. However, still some discrepancy
remains. These rotationally excited molecules feature a partial
spatial alignment of the molecular axes45. Specifically, they collide
with their axes pointing dominantly perpendicular to the
longitudinal direction of the tubes, which is in contrast to the
R¼ 0 molecules where the axis distribution is isotropic. This leads
to additional quadrupole-quadrupole interactions. We checked,
however, that these interactions are far too weak to significantly
influence the reaction rates.

Discussion
In conclusion, we presented the experimental determination of
reaction rates for deeply bound triplet molecular states. In
general, we observe that the majority of the molecules are already
lost in the first encounter. We also demonstrate that the decay
rate constant in 1D depends on the confinement strength and the
relative energy of the molecules. This offers the possibility to tune
the inelastic interaction by adjusting the trap parameters. In this
context, it could also be insightful to extend the collision
experiments to the quasi-2D and 3D regimes since theory
predicts that the dimensionality influences the energy dependence
of the reaction rates35–38. Our measurements indicate that
inelastic collisions of Rb2 molecules are characterized by rate
constants close to universality. It would be interesting to pursue
the investigation further, by mapping out how the rate constant
depends individually on the confinement strength and the relative
energy of the molecules. Furthermore, stereochemical aspects can
be investigated by adjusting the relative alignment of the
molecular axes via the preparation of specific rotational states45.
The presented experimental results together with the provided
theoretical model have to be considered as a step that might pave
the way for a fundamental understanding of ultracold chemical
reactions and their spatiotemporal control.

Methods
Preparation of cold molecules. The molecules are created in an optical lattice
which consists of three perpendicular, retro-reflected laser beams of wavelength
l¼ 1,064 nm. For this, a thermal sample of roughly 106 87Rb atoms at a
temperature of B1 mK is loaded into this lattice such that a significant number of
sites is doubly occupied. The atoms reside in the lowest Bloch band of the 3D
optical lattice and the optical potential is deep enough such that tunnelling is
strongly suppressed. To first approximation the atoms are normally distributed in

configuration space p
Q

q¼x;y;z exp q2=
ffiffiffi
2
p

sc
q

� 	2

 �

with the widths of

sc
x;y;z(t¼ 0)E(26, 27, 26) mm. The atomic occupation of each individual lattice site

is described by Poisson statistics. The atoms are in the electronic ground state with
the total angular momentum quantum numbers f¼ 1 and mf¼ 1. By using mag-
netic Feshbach association at 1007.4 G we create weakly bound s-wave molecules at
lattice sites occupied with exactly two atoms41,51. All remaining atoms are removed
in a subsequent purification step41, such that a pure molecular sample is obtained.
The molecular cloud has a size of sc

x;y;z(t¼ 0)E(22, 24, 23) mm after production
and contains B4.5� 104 Feshbach molecules. The uncertainties for the given
values are B10%. Afterwards, for a large part of our experiments, the molecules are
transferred from the Feshbach state to the vibrational ground state v¼ 0 of the
energetically lowest triplet potential a3�þu . This is done via stimulated Raman
adiabatic passage (STIRAP)1,45 with a transfer efficiency of B80%. We prepare the
molecules either in one of two quantum levels: The first one is described by the
quantum numbers R¼ 0, I¼ 3, F¼ 2, mF¼ 2 where I, F, mF denote the total
nuclear spin, the total angular momentum and its projection, respectively. This
level is energetically the absolute lowest level of the triplet state, see52. The second
level is rotationally excited by two units of angular momentum and has the
quantum numbers R¼ 2, I¼ 3, F¼ 4, mF¼ 4. Compared to the R¼ 0 level

it has B2 GHz� h higher energy, see52. The clouds of the v¼ 0 molecules
(both R¼ 0 and R¼ 2) are smaller than the cloud of Feshbach molecules, that is,
sc

x;y;z (t¼ 0)E(19, 20, 18)mm, and their particle numbers range from 2.5� 104 to
3.2� 104. For the given values the uncertainties are again B10%.

Measuring the molecule number and cloud size. To measure the total number N
and the cloud size sc

x;y;z of the molecules in the 1D tubes at a particular point in
time the 3D lattice is quickly switched on. This locks the molecules in their current
positions. If they are in a v¼ 0 state we transfer them back to the Feshbach state
using STIRAP and subsequently dissociate them by magnetically ramping back
over the Feshbach resonance. The resulting atoms are suddenly released from the
optical lattice and after a short (200 ms) time of flight the atom cloud is imaged
using standard absorption imaging for another 200 ms. We note that in our imaging
procedure the number of molecules is in general underestimated and the measured
cloud size is too large. In Supplementary Note 6 (see also Supplementary Fig. 5)
we discuss the underestimation of the particle number in detail and derive a
correction, which is applied to all our measurements. The overestimated cloud size
is a result of the limited resolution of B4 mm of the imaging optics and of the
expansion of the atomic cloud during time of flight, and during absorption as well
as due to tunneling in the 3D optical lattice shortly before detection. This tunneling
is enhanced because a sizeable fraction of molecules will be excited to higher Bloch
bands when they are rapidly reloaded back into the 3D lattice. This leads to an
overestimation of the molecular cloud size sc

x;y;z of B3 mm. Therefore the relative
influence is largest on smaller clouds. While we present the originally measured
values for sc

x;y;z in the text (see also Fig. 2b), we used corrected values for the
simulations.

Determination of trap frequencies. Both, the radial (ox,y) and longitudinal (oz)
trap frequencies are determined from measurements with Feshbach molecules.
We use modulation spectroscopy43 to obtain ox and oy, respectively, while oz is
inferred from the periodicity of the steps in the molecular decay curves (cf. Fig. 2).
The corresponding trap frequencies for the deeply bound v¼ 0 states are
derived by comparing their known polarizabilities to the ones of the Feshbach
molecules43,45. As a consistency check, we find agreement between the so-predicted
and the experimentally observed periodicity of the decay steps for both v¼ 0 states
(Fig. 4).

Numerical integration of the rate equation. To numerically integrate
equation (1) we use the random number generated distribution of molecules
(Fig. 1b), which assigns an initial location wi(t¼ 0) to each particle i. Next, we
propagate the wave packets of all molecules in small time steps Dt. The decay
probability of each molecule pair (i, j) during Dt is given by Zij

�K1DFDt. If an
inelastic collision takes place, both involved particles are removed from the sample.

Scattering in quasi-1D geometry. Since in our setup R6odx;y;z¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=ðmox;y;zÞ

p
,

the collision in the presence of the trap can be described within the pseudopotential
approximation with (in general) energy-dependent 3D scattering length50,53.
In this treatment the interaction potential is replaced by the regularized
Dirac delta function and in addition an effective 1D model can be derived49,
using VðzÞ¼ ‘ 2

ma1D
dðzÞ. The resulting 1D scattering length a1D is connected to the

3D one via54,

a1D¼�
d2

y 1�C a3D=dy
� �

2a3D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox=oy

p : ð4Þ

Here C is a numerical factor depending only on the transverse trap anisotropy
ox/oy. For the R¼ 0 state (and the Feshbach state) C¼ � z(1/2)E1.46, where z
denotes the Riemann zeta function, while for the R¼ 2 state CE1.57. The complex
valued 3D scattering length can be written as40,

a3D¼�a sþ y
1þð1� sÞ2

yð1� sÞþ i

� 

: ð5Þ

Here y is defined via Pre¼ 4y/(1þ y)2, where Pre denotes the short-range inelastic
process probability. The parameter s is the value of the scattering length in the
absence of inelastic collisions in units of �a.

The short-range reaction probability Pre approaches unity in the limit y-1.
Inserting y¼ 1 into equation (5), one observes that the scattering length
approaches a3D¼ �a(1� i) regardless of the value of s. This means that the reaction
dynamics becomes universal in the sense that it is independent of the short-range
details of the potential, which normally determine the scattering length. For y¼ 1,
equation (4) can be rewritten as

a1D¼�
d2

y

2�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox=oy

p � �aC
dy
þ 1

2
þ i

2

� 

: ð6Þ

Data availability. The data that support the findings of this study are available
from Björn Drews on reasonable request.
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