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Abstract
In precision oncology, immune check point blockade therapy has quickly emerged as novel strategy by its efficacy, where
programmed death ligand 1 (PD-L1) expression is used as a clinically validated predictive biomarker of response for the therapy.
Automating pathological image analysis and accelerating pathology evaluation is becoming an unmet need. Artificial Intelligence and
deep learning tools in digital pathology have been studied in order to evaluate PD-L1 expression in PD-L1 immunohistochemistry
image. We proposed a Dual-scale Categorization (DSC)-based deep learning method that employed 2 VGG16 neural networks, 1
network for 1 scale, to critically evaluate PD-L1 expression. The DSC-based deep learning method was tested in a cohort of 110
patients diagnosed as non-small cell lung cancer. This method showed a concordance of 88% with pathologist, which was higher
than concordance of 83% of 1-scale categorization-based method. Our results show that the DSCbased method can empower the
deep learning application in digital pathology and facilitate computer-aided diagnosis.

Abbreviations: IHC = immunohistochemistry, NSCLC = non-small cell lung cancer, PD-L1 = programmed cell death ligand 1,
ROC = receiver-operating characteristic, TPS = Tumor Proportion Score, WSI = whole-slide images.
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1. Introduction

The application of classical machine learning methods to solve
complex tasks in the field of medical images analysis has shown
the ability of automatically learning pathologic classification
features.[1–3] Compared to the classical machine learning
methods, which rely heavily on the selection of hand-crafted
features, deep learning methods are more effective in resolving
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more complicated tasks such as image recognition/classifica-
tion.[4–7] Although lacking of high-quality annotation dataset
and the uninterpretability of image features related to the
concluded prediction limit the application of deep learning
methods in clinical practice, deep learningmethods have still been
widely used in biomarker analytics such as ki67-index estimation
and HER2 status estimation,[8–10] and cancer stage diagnosis
especially in grading, classification, and metastasis detec-
tion.[11,12] From the training image sets, deep learning methods
learn and discover the pathogenic features, among which many
are not visually apparent or readable to pathologists. However
those features may better represent the disease status than the
other known features.[13,14]

Programmed cell death ligand 1 (PD-L1) is a major immune
checkpoint biomarker for immunotherapies,[15] and higher PD-
L1 expression on tumor cells has been associated with greater
efficacy.[16–19] Therefore PD-L1 expression status was approved
as companion diagnosis by FDA (eg, 22C3 for Pembrolizumab in
non-small cell lung cancer [NSCLC]) along the drug approval.[20]

Besides the approved companion diagnosis, multiple PD-L1
immunohistochemistry (IHC) assays (including 22C3, 28-8,
SP263, and SP142) have been developed to effectively detect PD-
L1 expression status in different cancer types. Given the nature of
IHC assays, different system yields different evaluation scoring
grades.[21] In clinical practice, calculation of Tumor Proportion
Score (TPS) usually requires an experienced pathologist to count
the PD-L1-positive tumor cells and PD-L1-negative tumor cells
under a microscope, while a tumor tissue section often contains a
population of many thousands of cells. The calculated result will
provide valuable information for an oncology doctor to
determine whether the patient will potentially benefit from
immunotherapy. Moreover, factors regarding to intra-tumor,
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inter-observer, and inter-assay heterogeneities, often led to
challenges for a pathologist to evaluate an accurate TPS score.[21]

Lung cancer is the most commonly diagnosed cancer and the
leading cause of cancer death.[22] NSCLC is the predominant
histological type of lung cancer, and comprises approximately
80% to 85% of all lung cancers.[23] There are a few pilot studies
about leveraging machine learning methods to evaluate PD-L1
expression status in NSCLC. Taylor et al presented an automated
image analysis approach, which was based on a feedback machine
learningmethod, to evaluate PD-L1 expression on both tumor and
immune cells in NSCLC. The results of the automated method
showed good concordance with the pathologists’ scores.[24]

However, the approach largelydependedonhand-crafted features,
such as statistics of cell shape and nuclear texture; those features
were essential to accurately reflect cell morphology, but were often
difficult to adapt to new data sets.[25] Kapil et al also tried a pixel-
based deep learningmethod to predict the PD-L1 expression status
inNSCLC. They used the auxiliary classifier generative adversarial
networks to generate large amount of fake images to construct the
prediction model, and the model’s accuracy was concordant to
some extents with visual scoring by pathologists. Their study
indicated that the proposed method using the area instead of cell
count to calculate TPS score was a feasible solution.[26]

Instead of counting cell number or calculating cell area on
pixel-level, in this article we tried to use a patch-based method to
evaluate the PD-L1 expression level in NSCLC stained by 22C3
clone. We constructed a novel deep learning framework, named
as Dual-scale Categorization-based VGG16 (DSC-VGG16),
which employed 2 VGG16 neural networks, one network for
one scale, in order to obtain a more accurate TPS score. Using 1%
or 50% as the TPS cutoff points, our results showed that the TPS
scores of DSC-VGG16 model were highly consistent with that of
pathologists, and DSC-VGG16 model performed better than the
VGG16 network with one-scale categorization based method.

2. Materials and methods

2.1. Specimens

From January 2018 to January 2020, a Total of 300 NSCLC
samples were collected in Changhai hospital and Changzheng
hospital (Shanghai, China). All the samples were processed in the
3DMed Clinical Laboratory, which is accredited by College of
American Pathologists and certified by Clinical Laboratory
Improvement Amendments. PD-L1 IHC was performed with the
PD-L1 IHC 22C3 pharmDx kit on the Dako Autostainer Link 48
platform according to the kit’s manufacturer recommendations.
All immune-stained slides were digitally scanned into whole-slide
images (WSI) under a resolution of 0.5mm/pixel (20� magni-
Table 1

List of training, validation, and testing sets for modeling in patch cat

Model Patch category Training

DSC-macro TP 5400
TN 5400
IP 5400
OT 5400

DSC-micro TP1 400
TP2 400
TP3 400

DSC= Dual-scale Categorization, IP= PD-L1 positive immune cells patch, OT= other regions patch, TN=
maximum counts of PD-L1 positive tumor cell, TP2 = patch that represent 50% PD-L1 positive tumor
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fications) using PRECICE 500 (manufactured by UNIC Tech
Company, Beijing). No personalized health information was
obtained and required, therefore only information of samples’
tumor type and their corresponding PD-L1 expression data were
kept in this study. This study was approved by the Changzheng
Hospital Ethics Committee (2018-021-01).
2.2. Training, validation, and test sets

A total of 110 samples (61.82%, TPS <1%; 27.27%, TPS: 1%–

49%; and 10.91%, TPS ≥50%) were selected for testing; and 190
sampleswere selected for training and validation. Four categorized
regions, PD-L1-positive tumor cells (TP) regions, PD-L1-negative
tumor cells (TN) regions, PD-L1-positive immune cells (IP,
including macrophage and lymphocyte cells) regions, and the
other (OT) regions, were manually labeled onWSIs of the training
and validation samples by 2 in-house pathologists.
In the training and testing process, the annotated regions were

divided into patches of 128 � 128 pixels size and also classified
into 4 categories: TP, IP, TN, and OT, which were called the
macro scale categories. There were 6800 patches in each
category. Some of the TP patches, especially those obtained
from samples with weak PD-L1 expression, were composed of
both PD-L1-positive tumor cells and PD-L1 negative tumor cells.
Furthermore, 1500 TP patches were further classified into three
so called “micro categories”: TP1 represents the patches that
contain the maximum counts of PD-L1-positive tumor cell, TP2
represents 50% PD-L1-positive tumor cell of TP1, and TP3
represents 25% PD-L1 positive tumor cell of TP1 (Table 1).
2.3. Modeling

Our model was deployed on deep learning framework Keras
version 2.2.4, on top of Tensorflow version 1.13.1,[27] and based
on VGG16 model (from Keras) composed of 4 different types of
layers: convolutional layers, max-pooling layers, fully connected
layers, a soft-max layer. The VGG16 model was initialized with
ImageNet pretrained weights,[28] and the last 7 layers were
unfrozen for training. Flatten layer and dense layer were
specifically added after convolutional layers. Rectified linear
unit (ReLU)was chosen as our activation function in dense layers
and dropout layer was added to avoid over fitting. Stochastic
gradient descent was used as the optimizer, and the learning rate
was 0.01. Input patch sizewas set as 128� 128 pixels. Batchwith
256 labeled patches was chosen. One Nvidia RTX 2080Ti was
used to train “DSC-marco" (for classifying 4 macro categories)
and “DSC-micro" model (for classifying 3 microcategories)
(Fig. 1).
egory.

Validation Testing Total no.

1000 400 6800
1000 400 6800
1000 400 6800
1000 400 6800
50 50 500
50 50 500
50 50 500

PD-L1 negative tumor cells patch, TP= PD-L1 positive tumor cells patch, TP1: patches that contain the
cell of TP1, TP3 = patch that represent 25% PD-L1 positive tumor cell of TP1.



Figure 1. Proposed dual-scale categorization method based on VGG16 architecture presented in this study. The input patch size is 128� 128 pixels. DSC-marco
model was trained and used for classification of the 4 cells patch groups. DSC-mirco model was trained and used for classification of the three TP patch groups.
The final classification of TN, TP1, TP2, TP3 were used for TPS calculation. (TP1 represent the patches contain the maximum counts of PD-L1 positive tumor cell,
TP2 represent 50% PD-L1 positive tumor cell of TP1 and TP3 represent 25% PD-L1 positive tumor cell of TP1.). DSC = Dual-scale Categorization.

Wang et al. Medicine (2021) 100:20 www.md-journal.com
2.4. TPS evaluation

PD-L1 expression status is assessed based on tumor proportion
score (TPS by PD-L1 IHC. Manual evaluation is performed by 2
certified pathologists, respectively.
TPS is scored as the percentage of viable tumor cells presenting

partial or complete PD-L1 expression at the cell membrane
relative to all viable tumor cells:

TPS ¼ PD� L1 staining tumor cells
Totaltumor cells

ð1Þ

In this article, TPSVGG16 was defined as the percentage of PD-
L1-positive tumor cells patches among all tumor cells patches.
The numbers of TP patches and TN patches were evaluated by
DSC-marco model, and the numbers of TP1 patches, TP2
patches, and TP3 patches were evaluated by DSC-micro model.
Hence, TPSVGG16 was defined as in the following:

TPSVGG16
TP1þ TP2�50%þ TP3�25%

TotalTPþ TN
ð2Þ
2.5. Statistical analysis

Standard statistical testes were used to analyze the data, including
Concordance Correlation Coefficient and Cohen k. All statistical
tests were two-sided, and statistical significance was considered
where P values <.05.
The primary outcome of the deep learning system is the patch

class prediction, whereas the sensitivity and specificity of our
3

receiver-operating characteristic (ROC) targeted were based on
the whole slide prediction. This complicated the ROC analysis
because the sensitivity/specificity of patches is not monotonically
correlated to that of their residing whole slide, and more
importantly we did not have a “criterion standard” of the patch
classification from pathologists. To still perform the analysis, we
used the predicted TPS as the input of the analysis. Youden index
was calculated to find the optimal cutoff points with the higher
sensitivity and specificity.

3. Results

3.1. Patch classification by DSC-macro and DSC-micro
models

In DSC-macro model, patches in a WSI were classified into 4
patch groups: TN patch groups, TP patch groups, IP patch
groups, and OT patch groups (Fig. 2). In DSC-micro model, TP
patches were further classified into three subgroups. Two sets of
testing patches were used to evaluate the performance of DSC-
macro and DSC-micro models on patch classification. DSC-
macro model performed well on classifying the four patch groups
(Table 2), with the F1 scores for each classification >95%. In the
testing sets, 7.5% PD-L1-positive tumor cell patches were
wrongly classified as positive immune cell patches, and <1%
positive immune cell patches were wrongly classified as positive
tumor cell patches. Due to the relatively smaller size of training
dataset, DSC-micro model could not perform as well as DSC-
macro in classifying the sub-groups of TP patches (Table 2), with
F1 scores for each class ranging from 59.18% to 84.21%.

http://www.md-journal.com


Figure 2. Example of classification result by Dual-scale Categorization-macro model. (A) Original programmed death ligand 1 (PD-L1) immunohistochemistry (IHC)
images Scale bar: 0.5mm. (B) Visualization of patch classification result, PD-L1 positive tumor cell patches are presented through red channel, PD-L1 positive
immune cell patches are presented through green channel, PD-L1 negative tumor cell patches are presented through blue channel. (C) Original PD-L1 IHC images
corresponding to the red box in 1A, Scale bar: 0.05mm. (D) Visualization of the predicted PD-L1 positive tumor cell regions corresponding to the red box in 1A. (E)
Original PD-L1 IHC images corresponding to the green box in 1A, Scale bar: 0.05mm. (F) Visualization of the predicted PD-L1 positive immune cell regions
corresponding to the green box in 1A.
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3.2. TPS prediction by DSC-VGG16 and VGG16-macro
model under different cutoff values

DSC-VGG16 model was tested on 110 independent NSCLC
samples. In clinical practice, PD-L1 expression level in tumor cells is
classified by TPS into 3 groups: TPS <1% (negative expression),
TPS: 1%–49% (weakly positive expression), and ≥50% (highly
positive expression).[29]Weused 2 different cutoff points to evaluate
the expression level of PD-L1 in NSCLC, and compared DSC-
Table 2

Patch categorization with DSC-macro model in four cell patches
groups and patch categorization with DSC-micro model in 3 TP
patches groups.

Model Patch category Sensitivity Specificity F1 score

DSC-macro TN 98.00% 99.17% 97.76%
TP 91.50% 99.67% 95.06%
IP 99.00% 96.92% 95.08%
OT 96.00% 99.08% 96.60%

DSC-micro TP1 80.00% 95.00% 84.21%
TP2 80.00% 83.00% 74.77%
TP3 58.00% 81.00% 59.18%

DSC = Dual-scale Categorization.
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VGG16 model-based TPS score with pathologist-based TPS scores.
Under the 1% cutoff point, the F1 score of DSC-VGG16 and
VGG16-macro model for predicting positive expression groups
were 90.24% and 87.23%, respectively. Under the 50% cutoff
point, the F1 score of DSC-VGG16 and VGG16-macro model for
predicting highly positive expression groups reached 81.82% and
73.33%, respectively. Under all different cutoff points, DSC-
VGG16 model had higher specificity, but lower sensitivity,
compared with those of VGG16-macro model (Table 3).
3.3. Comparison of dual scale model DSC-VGG16 and
single macro scale model DSC-macro

The prevalence of PD-L1 expression level for DSC-VGG16model
and DSC-macro model were, respectively, 63.64% and 52.73%
for negative expression, 27.27% and 30.91% for weekly positive
expression, and 9.09% and 16.36% for highly positive
expression (Table 4). The concordance between the DSC-
VGG16 model and pathologists reached a higher agreement
than the concordance between the DSC-macro model and
pathologists (Cohen k: 0.79 vs 0.68; Concordance Correlation
Coefficient: 0.88 vs 0.83, Table 5).
TPS scores of 12 samples were inconsistent between DSC-

VGG16 model and the pathologists (Table 4), and the discordant



Table 5

The concordance analysis between deep learning method and
pathologists.

Pathologist

Cohen k LCC

DSC-VGG16 0.79 (95 CI: 0.68–0.90) 0.88 (95 CI: 0.83–0.92)
DSC-macro 0.68 (95 CI: 0.56–0.80) 0.83 (95 CI: 0.76–0.88)

CI = confidence interval, DSC-VGG16 = Dual-scale Categorization-based VGG16, LCC =
Concordance Correlation Coefficient.

Table 3

The overall sensitivity and specificity and F1 score using DSC-
VGG16 and DSC-macro model for TPS prediction under different
TPS cutoff points.

Cutoff points Model Sensitivity Specificity F1 score

1% DSC-VGG16 88.10% 95.59% 90.24%
VGG16-macro 97.62% 83.82% 87.23%

50% DSC-VGG16 75.00% 98.98% 81.82%
VGG16-macro 91.67% 92.86% 73.33%

DSC-VGG16 = Dual-scale Categorization-based VGG16, TPS = Tumor Proportion Score.

Wang et al. Medicine (2021) 100:20 www.md-journal.com
number of samples grew to 20 in the comparison between the
scores of DSC-macro and pathologists. Of 68 negative (TPS <
1%) samples determined by pathologists, 11 was predicted as
positive (TPS <1%) by DSC-macro model, and the number
decreased to 3 by DSC-VGG model. Meanwhile, among the 30
pathologist-confirmed weak positive (TPS: 1%–49%) samples,
the misclassification number was 8 by DSC-macro model and 6
by DSC-VGG model. However, the 8 misclassified samples by
DSC-macro model consisted of 7 that fell into the category of
strong positive (TPS>50%), whereas only 1 of 6 was falsely
predicted as strong positive (TPS>50%) by DSC-VGG model.
The negative-preferring nature of DSC-VGG model was also
clear in the 12 samples that our pathologists believed to be strong
positive (TPS>50%), as 3 samples were predicted to be weak
positive (TPS: 1%–49%) which was only 1 for DSC-macro
model.
Overall, DSC-VGG16 model would generate a more accurate

TPS score than DSC-macro model. However, the proposed DSC-
VGG16 model was prone to predict a lower TPS scores than the
pathologists’ scores for a small percent of samples, which might
be attributable to the low performance of DSC-micro model on
subgroup patches classification.
3.4. Finding the optimal cutoff points of DSC-VGG166
model to predict TPS

ROC curve was used to find the optimal cutoff points of DSC-
VGG166 model to predict TPS with the higher sensitivity and
specificity. Under 1% cutoff point, the area under curve for
distinguishing between positive samples versus negative samples
was 0.97 (Fig. 3), and we found 0.7% was the optimal cutoff
point of DSC-VGG166 model with sensitivity and specificity
were 0.976 and 0.926, respectively. Under 50% cutoff point, the
area under curve for distinguishing between strong positive
samples versus negative and week positive samples was 0.99
(Figure 3), and we found 24.8% was the optimal cutoff point of
Table 4

The distribution of TPSs calculation by DSC-VGG16, DSC-macro
model and pathologists at different TPS range.

Pathologist-based TPS scores

<1% 1%–49% ≥50%

DSC-VGG16 based TPS scores <1% 65 5 0
1%–49% 3 24 3
≥50% 0 1 9

DSC-macro-based TPS scores <1% 57 1 0
1%–49% 11 22 1
≥50% 0 7 11

DSC-VGG16 = Dual-scale Categorization-based VGG16, TPS = Tumor Proportion Score.
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DSC-VGG166model with sensitivity and specificity were 1.0 and
0.939, respectively.

4. Discussion

PD-L1 has gained widespread acceptance as a predictive
biomarker in NSCLC to identify potential treatment respond-
ers.[29,30] In clinical practice, it is important to accurately evaluate
the PD-L1 expression level. However, it is often impossible to
manually count tumor cells used for calculating the TPS due to
the huge number of cells in a tissue. In this condition, the
pathologist will prefer to select the representative region and
semi-quantitatively evaluate the TPS value by evaluating the
target area. However, the process is tedious, time consuming and
also subjective.[31,32] Moreover, it is known that tumor tissue is
very complex and heterogeneous, and PD-L1 may also be
expressed by lymphocytes, macrophages, or dendritic cells.[33]

Such factors may lead to the quality and reliability being affected
due to interobserver variation between pathologists.
Classical machine learning methods have been developed to

overcome these challenges. These methods try to mimic experts’
cognition of cells using highly generalized hand crafted features,
and calculate the TPS by counting the tumor cell.[24,34] However,
numerous statistical parameters need to be adjusted to accurately
capture the cell morphology, and these parameters are difficult to
adapt to new data sets, making these methods difficult to be
automated.[35] A Rule-based methods combined with machine
learning was propose to automated to detect CD8+ and PD-L1+
cells in single marker images, and demonstrated that a combined
signatures of PD-L1+ tumor cells and CD8+ tumor infiltrating
lymphocytes may allow better identification of responders to
durvalumabmonotherapy compared with manual PD-L1 scoring
alone.[36] Deep learning methods have been developed to resolve
this problem. Kapil et al established a deep learning method that
could detect target cells at pixel level, and they took the ratio
between the pixel counts of the detected positive tumor cell
regions to the pixel count of all detected tumor cell regions as TPS
score. Their results showed promise of deep learning method in
solving this problem, and indicated that using the area instead of
cell count to calculate TPS score was feasible.[26] Many
biomarker evaluations need cell count to be quantitatively
evaluated, it is reasonable to use patch numbers to represent the
cells it contains. More importantly, a patch may have more
features information than that of a single cell contains. Pitkäaho
et al proposed a patched-based deep learning model to calculate
her2 expression scores. The model calculated the her2-positive
tumor cell patches instead of tumor cell counts to evaluate the
her2 expression status, and the accuracy of the model in patches
classification reached 97.7%.[37] The results in this study also
indicated the patched-based deep learning method had the
potential to resolve the cell counting issue.

http://www.md-journal.com


Figure 3. ROC curve and area under the curve for Tumor Proportion Score prediction under 1% and 50% cutoff points of Dual-scale Categorization-based VGG16
model. ROC = recesiver-operating characteristic.
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PD-L1 can be expressed in the membrane or cytoplasm of
normal tissue cells, including various immune cells, and necrotic
cells, which should be excluded from evaluation in the 22C3
assay.[38] PD-L1 IHC false positivity will be brought in generally
due PD-L1 positive immune cells and histiocytes lie between PD-
L1 negative tumor cells which may be misinterpreted as
positive.[39] In our established patch-based model, positive
tumor cell patches were easily predicted as positive immune cell
patches by the DSC-macro model. The deep learning method
proposed by Kapil et al also showed that PD-L1-positive
macrophage regions and PD-L1-positive tumor cell regions were
easily to be mistaken as each other. Organizational structure was
an important feature for cell of classification,[35] and this
information could be obtained from a patch contains dozens
of cells or more, but not from a single cell. We speculated that a
patch with a size large than 128� 128 pixels might provide more
information to discriminate these PD-L1-positive tumors cells
from other PD-L1-positive cells. Input size with 256x256 pixels is
worth trying in future study, and a cell counting method may
need to be incorporated into the patch-based model to improve
the accuracy.
Considering the heterogeneity of PD-L1 expression in tumor

tissue, the positive and negative of the tumor cells may coexist in
the same patch, especially those patches obtained from samples
with weak PD-L1 expression. In this situation, among all the
tumor cells patches (TP and TN), treating all the TP patches as
the same level of PD-L1 expression unit may introduce bias in the
calculation of TPS. To resolve this problem, we employed a
second classification model to further classify the PD-L1 positive
patches to get a finer result. It turned out this extra step made our
model more accurate. In this study, we divided the TP patches by
PD-L1-positive tumor cell count into 3 categories, we believed
that the accuracy of the DSC-VGG16 model could be further
improved if we increase the categories of the TP subgroups and
the materials used for training DSC-micro model. We found
6

0.7% was the optimal cutoff point of DSC-VGG166 model for
distinguishing between positive samples versus negative samples.
This remind us that in ourmodel, predicted TPSwith 0.7% to 1%
need carefully checked as 5-week positive samples were fell into
this interval. In view of the critically unbalanced classes (Table 4),
more positive samples are needed for further ROC curve analysis
under 50% cutoff point.
Before these patched-based deep learning methods are applied

into clinical practice to evaluate quantitative index, there are 2
points we suggest to be considered. First, patch size needs to be
selected carefully according to the specific problem we need to
solve. As shown in our results, patch with 128 � 128 pixels may
be suitable in the evaluation of PD-L1 expression status.
However, patches with 128 � 128 pixels may loss some tissue
structure features, and these features may be useful for
discriminating the subtle differences between the normal tissue
and highly differentiated tumor region or between the PD-L1-
positive immune cell and PD-L1-positive cancer cell. Moreover, it
is inevitable that more cells will be cut in half in small patches,
and a patch containing these kind of cells is difficult to classify.
Although a larger size is worth trying, it should be cautioned that
a patch with large size will contain more than one cell type which
may cause trouble for classification. Second, when the tissue is
too small, it must be aware that using patch to present the target
cell may cause large calculation deviations. In the situation of
evaluation of a PD-L1-negative expression sample with small
tissue size (such as needle biopsies), false-positive sample may
occur if a PD-L1-negative tumor cell patch is predicted as a
positive tumor cell patch. We have tried to produce more patches
from images by allowing patch overlap but had little effect on the
final results.
In summary, this study provides evidence that the patch-based

dual-scale categorization method is cost-effective and accurate in
evaluation of PD-L1 expression status and has great clinical
application value. However, we need more data to demonstrate
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the practicality of our proposed method, especially considering a
wide range of commercially available PD-L1 IHC kits which
utilize different antibodies, different manufacturers, and different
cutoff scores to detect or quantify tumor PD-L1 expression.
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