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Abstract

Background Prostate cancer (PCa) is a leading cause of mortality and genetic factors can influence tumour aggressiveness.
Several germline variants have been associated with PCa-specific mortality (PCSM), but further replication evidence is
needed.

Methods Twenty-two previously identified PCSM-associated genetic variants were genotyped in seven PCa cohorts (12,082
patients; 1544 PCa deaths). For each cohort, Cox proportional hazards models were used to calculate hazard ratios and 95%
confidence intervals for risk of PCSM associated with each variant. Data were then combined using a meta-analysis
approach.

Results Fifteen SNPs were associated with PCSM in at least one of the seven cohorts. In the meta-analysis, after adjustment
for clinicopathological factors, variants in the MGMT (rs2308327; HR 0.90; p-value = 3.5 x 1072) and 114 (rs2070874; HR
1.22; p-value = 1.1 x 10~°) genes were confirmed to be associated with risk of PCSM. In analyses limited to men diagnosed
with local or regional stage disease, a variant in AKT1, rs2494750, was also confirmed to be associated with PCSM risk (HR
0.81; p-value = 3.6 x 1072).

Conclusions This meta-analysis confirms the association of three genetic variants with risk of PCSM, providing further
evidence that genetic background plays a role in PCa-specific survival. While these variants alone are not sufficient as
prognostic biomarkers, these results may provide insights into the biological pathways modulating tumour aggressiveness.

Introduction clinical and pathological features assessed at diagnosis,

including Gleason score, tumour stage, and serum prostate-

For men in many developed countries, prostate cancer
(PCa) is the second leading cause of cancer-related deaths.
While PCa mortality rates have been declining, the number
of PCa deaths in Western countries is projected to be sus-
tained for decades based on aging of the populations [1].
Traditionally, clinicians have assessed a man’s likelihood
of having a biologically aggressive prostate tumour using
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specific antigen (PSA) level [2]. Researchers have postu-
lated that genomic biomarkers may be able to distinguish
indolent from aggressive PCa tumours, and several studies
have identified tissue-based biomarkers [3, 4]. Testing pri-
mary tumour tissue for prognostic biomarkers may help
identify cases at higher risk for PCa-specific mortality
(PCSM) [5] and who would benefit most from being treated
aggressively early in the disease course. We postulate that it
is also important to consider the host’s genetic background
and its potential influence on PCa outcomes.

To address this issue, our group previously assessed
germline genetic variants in genes from specific biological
pathways hypothesised to affect metastatic progression,
to determine if genotype was related to PCSM [6].
Twenty-two PCSM-associated variants were identified in a
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Seattle-based discovery cohort, and validation in a Swedish
cohort confirmed that the variants in five genes, LEPR,
CRY1, RNASEL, IL4 and ARVCF, were significantly asso-
ciated with PCSM. Subsequent studies provided additional
evidence for replication of the ARVCF variant in the Phy-
sicians’ Health Study (PHS) participants with PCa [7] and
variants in RNASEL, XRCC1 and AKT]I in PCa cases par-
ticipating in the family-based Prostate Cancer Genetic
Research Study (PROGRESS) [8]. As these prior studies
had some shortcomings, including a limited number of
deaths due to PCa, we sought to further evaluate this panel
of 22 SNPs in relation to PCSM in additional independent
patient cohorts, and in a meta-analysis yielding greater
statistical power from combining these new datasets with
previously studied cohorts.

Patients and methods
Study populations—new PCa cohorts
Melbourne PCa cohorts

The Melbourne cohorts were from the Prostate Cancer
Research Programme of the Cancer Council Victoria. The
Melbourne Collaborative Cohort Study (MCCS) is a pro-
spective cohort study of 41,514 participants, which has been
described elsewhere [9]. The MCCS is matched to cancer
registries in all Australian states and national death indices
to ascertain cancer diagnoses and deaths. For this study,
DNA samples were available for 1100 PCa cases, including
147 who died of PCa. The Early-Onset Prostate Cancer
Family Study (EOPCFS) is a population-based family series
of 1428 men diagnosed with PCa and has been described
elsewhere [10]. Cases were ascertained using the
population-based Victorian Cancer Registry (VCR) and
1531 unrelated cases with a DNA sample were available for
this study, including 91 confirmed PCa deaths. Clinical data
were obtained from the VCR and were limited to diagnosis
age and Gleason score.

Finnish PCa cohort

The Finnish cohort consists of PCa cases from hereditary
PCa families and from a case-control study population,
described elsewhere in detail [11, 12]. All 2629 cases were
of Finnish heritage. PCa diagnoses were confirmed using
medical records and survival data were obtained through
annual updates from the Finnish Cancer Registry. For PCa
deaths (n = 281) identified via annual linkage to the Cancer
Registry, underlying cause was confirmed using medical
records.

United Kingdom (UK) PCa cohort

The UK cohort comprises men diagnosed with PCa and
recruited for the UK Genetic Prostate Cancer Study
(UKGPCS), which has been described elsewhere [13]. Of
the 1560 cases available for this study, diagnoses and
clinical-pathological data were confirmed using medical
records. Vital status and cause of death were obtained from
the National Health Service Information Centre and Central
Register, with a total of 221 PCa-specific deaths.

Study populations—previously analysed PCa
cohorts

Seattle family-based PCa cohort

The PROGRESS [14] includes cases from high-risk her-
editary PCa families. Ascertainment, eligibility criteria and
data collection for this study have been described pre-
viously [14, 15]. Medical records were obtained for 961
PCa cases and were used to extract clinical data on Gleason
score, stage of disease, and serum PSA level at diagnosis.
Death certificates confirmed underlying cause (PCSM or
other), date and age at death. For this cohort, 957 cases of
European ancestry had DNA available for genotyping,
including 98 men who died of PCa [8].

Swedish PCa cohort

The Swedish population-based PCa cohort comprises cases
enroled in Cancer of the Prostate in Sweden, which has
been described elsewhere [6, 16]. For the current study,
2875 cases of European descent had DNA available for
genotyping and 501 had PCa confirmed as the underlying
cause of death [17]. Clinical data were obtained from the
Swedish cancer registry.

PHS PCa cohort

The PHS began as a randomised, double-blind placebo-
controlled trial of aspirin, and f-carotene for the prevention
of cardiovascular disease and cancer and has been described
in detail elsewhere [18]. The 1430 PCa cases in this study
were previously chosen for a nested case-control study [19]
and are restricted to self-reported Caucasians. For these
analyses, 194 PCa deaths and 11 men with bone metastases
were included [7]. Clinical data were abstracted from
medical records.

All studies were approved by their local Institutional
Review Board or Human Research Ethics Committee.
Written informed consent was obtained from all study
participants.
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Genotyping

Twenty-two candidate SNPs [6] were genotyped for this
validation study. The MassARRAY iPLEX system
(Sequenom, Inc.) was used to genotype the Swedish and
Finnish samples, and 20 of the 22 SNPs in the PROGRESS
samples. The remaining two SNPs (PROGRESS) and all 22
SNPs were genotyped in the Australian cohorts using
TagMan assays (Applied Biosystems). The PHS samples
were genotyped using BioTrove OpenArray Technology
(Applied Biosystems) and the UK samples were genotyped
on the Infinium OncoArray 500K BeadChip (Illumina,
Inc.). Two SNPs failed genotyping in the Swedish cohort,
rs228697 and rs1029153. In the UK cohort, nine of the 22
SNPs were replaced with a surrogate SNP that was in strong
linkage disequilibrium (LD; /=0.85) with the original
SNP (Supplementary Table 1).

Blind duplicate samples were distributed evenly across
all genotyping batches from each study cohort. Con-
cordance for the 22 SNP genotypes was 100% for the 53
Finnish duplicates, 99% for the 24 EOPCFS duplicates,
97% for the 21 MCCS duplicates and >93% for the 16 UK
duplicates. Samples with 25 failed SNPs were removed
from further analyses (n =49 Finnish, n =110 EOPCEFS,
and n =384 MCCS cases). One Finnish case was removed
due to missing follow-up data. Quality control (QC) results
for the Swedish, PROGRESS and PHS studies have been
reported previously [6-8]. After QC measures, 12,082 PCa
cases, including 1544 confirmed PCa deaths, were available
for analysis.

The minor allele frequencies (MAF) for the 22 SNPs in
men who did not die of PCa from each patient cohort are
shown in Supplementary Table 2. For most SNPs, the MAF
is fairly similar across the cohorts with the exception of the
Finnish cohort. Several SNPs in the Finnish cohort have a
MAF at least 10% higher than what was found in the other
cohorts, e.g., rs1137100, rs627839, rs4583514, and
rs2070874. The distribution of MAF for the three SNPs
associated with PCSM for each group of patients (alive,
other cause of death, and PCa-specific death) for each
cohort is shown in Supplementary Table 3, excluding the
PHS (only summary genotyping data were available) and
Swedish (missing other cause death information) cohorts.

Statistical analyses

Hazard ratios (HR), 95% confidence intervals (95% CI) and
p-values for each SNP in relation to PCSM were calculated
using Cox proportional hazards regression models for each
of the seven independent cohorts. Men were followed from
date of diagnosis to date of: (1) PCa-specific death; (2)
death from another cause; or (3) last follow-up. Those who
died of other causes and survivors were treated as censored
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observations. The minor allele of each SNP in the Seattle-
based PCa discovery cohort was considered the “at risk”
allele. For each SNP, two Cox models were tested. In the
first model, both the genetic model (additive, dominant, or
recessive) and clinicopathological covariates (age at diag-
nosis, Gleason score, stage, diagnostic PSA, and primary
treatment) that were found to be significant in the original
Seattle cohort were fixed [6]. In the second model, the
genetic model remained fixed based on the original Seattle
cohort, but the clinicopathological covariates were allowed
to vary according to the best-fitting model for each cohort.
Missing indicator variables were included if clin-
icopathological covariates had some (but not all) missing
data. For both Australian cohorts, only two covariates (age
at diagnosis and Gleason score) were considered in these
models due to missing data.

We then performed meta-analyses to aggregate evidence
across these studies using the R package, Metafor [20]. Data
from the original Seattle-based discovery cohort were not
included in the meta-analyses. We fitted an intercept-only
linear model for each SNP, with log HRs estimated from the
seven cohorts as the outcomes, and weighted by the inverse
of their corresponding standard error squares. The first
meta-analysis was run based on the coefficients estimated
with the combination of covariates that were significant in
the original Seattle cohort (first model) and the second was
based on the best fitting covariates for each cohort (second
model). As we were testing an a priori defined hypothesis
for each SNP, an association was considered statistically
significant if the nominal p-value was <0.05 (one-sided
test). A one-tailed test was used because for validation we
required that the effect of the risk allele on PCSM be in the
same direction as in the original Seattle dataset [6].

Due to the different MAFs in the Finnish cohort and
missing clinicopathological covariates in the Australian
datasets, sensitivity analyses were performed where the
Finnish or both the Finnish and Australian datasets were
excluded. In other sensitivity analyses, men diagnosed with
distant or unknown stage PCa were excluded due to
uncertainty in defining the process of metastatic progression
to lethality in such patients, and to evaluate SNP associa-
tions in men diagnosed with less advanced disease.

Results

The characteristics of the seven genotyped PCa cohorts are
presented in Table 1. Overall, there were 12,082 cases with
genotyping data from across the studies, of which 1544
(12.8%) had died of PCa.

As different cohorts may have different underlying
genetic  susceptibilities and distributions of clin-
icopathological features, each cohort was first evaluated
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Table 1 Characteristics of the seven independent prostate cancer cohorts
Swedish PROGRESS PHS Australia (EOPCFS) Australia (MCCS) Finnish UK

Sample size 2875 957 1430 1531 1100 2629 1560
Age at diagnosis (years)

Mean 65.8 64.5 70.5 52.9 67.9 68.6 61.7

Range 44.6-80.4  40.0-87.0 45.5-100.9 38.0-87.0 47.0-86.0 37.0-95.0  36.9-88.9
Follow-up time (years)

Mean 6.0 12.73 11.0 8.1 8.5 9.1 38

Range 0.3-8.6 0.3-32.6 0.01-27.9  0.9-18.2 0.01-24.5 0.1-31.9 0.01-11.1
Age at death (years)

Mean 71.2 80.5 84.2 61.0 76.4 77.7 67.7

Range 48.5-85.7  54.0-99.0 60.9-104.3  42.9-89.9 53.1-91.7 44.2-105.6  41.7-94.2
PCa-specific mortality

No* 2374 (82.6) 782 (81.7) 1225 (85.7) 1439 (94.2) 953 (86.6) 2196 (83.5) 1335 (85.6)

Yes 501 (17.4) 98 (10.2) 205 (14.3) 91 (5.8) 147 (13.4) 281 (10.7) 221 (14.2)

Unknown® 0 (0) 77 (8.0) 0 (0) 1(0.1) 0 (0.0) 152 (5.8) 4(0.3)
Stage

Local 1885 (65.6) 623 (65.1) 1293 (90.4) NA NA 1910 (72.7) 967 (62.0)

Regional 651 (22.6) 240 (25.1) 54 (3.8) NA NA 467 (17.8) 324 (20.8)

Distant 266 (9.3) 27 (2.8) 54 (3.8) NA NA 203 (7.7) 105 (6.7)

Missing 73 (2.5) 67 (7.0) 29 (2.0) NA NA 49 (1.9) 164 (10.5)
Gleason score

<6 1375 (47.8) 561 (58.6) 662 (46.3) 744 (48.6) 527 (47.9) 1187 (45.2) 627 (40.2)

7 782 (27.2) 204 (21.3) 424 (29.7) 617 (40.3) 285 (25.9) 753 (28.6) 523 (33.5)

8-10 467 (16.2) 80 (8.4) 192 (13.4) 116 (7.6) 146 (13.3) 410 (15.6) 289 (18.5)

Missing 251 (8.7) 112 (11.7) 152 (10.6) 54 (3.5) 142 (12.9) 279 (10.6) 121 (7.8)
Diagnostic PSA level (ng/mL)

<4 148 (5.1) 77 (8.0) 116 (8.1) NA NA 217 (8.3) 272 (17.4)

499 993 (34.5) 360 (37.6) 558 (39.0) NA NA 1114 (42.4) 641 (41.1)

10-19.9 651 (22.6) 157 (16.4) 206 (144) NA NA 654 (24.9) 285 (18.3)

220 1003 (34.9) 130 (13.6) 136 (9.5) NA NA 574 (21.8) 293 (18.8)

Missing 80 (2.8) 233 (24.3) 414 (28.9) NA NA 70 2.7) 69 (4.4)
Primary therapy

Radical prostatectomy 713 (24.8) 501 (52.4) 579 (40.5) NA NA 823 (31.3) 415 (26.6)

Radiation therapy 682 (23.7) 256 (26.8) 383 (26.8) NA NA 624 (23.7) 707 (45.3)

Androgen deprivation 927 (32.2) 21 (2.2) 119 (8.3) NA NA 149 (5.7) 208 (13.3)

Active surveillance 488 (17.0) 51 (5.3) 91 (6.4) NA NA 970 (36.9) 183 (11.7)

Other 22 (0.8) 42 (4.4) 21 (1.5) NA NA 15 (0.6) 47 (3.0)

Missing 43 (1.5) 86 (9.0) 237 (16.6) NA NA 48 (1.8) 0

NA not available
 Died of other causes

® Died but unknown cause of death

independently for associations between the 22 SNP geno-
types and risk of PCSM. Fifteen SNPs were significantly
associated with PCSM in at least one of the seven cohorts,
and the risk alleles of four SNPs, rs1137100 (LEPR),
rs2070874 (IL4), 1s2494750 (AKTI), and 1rs5993891
(ARVCF), were associated with PCSM in two of the cohorts
(Supplementary Table 4).

Meta-analysis of the seven cohorts confirmed that two
SNPs were associated with PCSM (Table 2). The Inter-
leukin 4 (IL4) SNP, rs2070874, was associated with PCSM
under the same genetic model adjusted for the same cov-
ariates as in the original Seattle discovery cohort (dominant;
adjusted for age at diagnosis; p=1.1 x 107%), and also
when clinicopathological covariates were included in the
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Table 2 Meta-analysis results of 22 SNPs genotyped in seven prostate cancer cohorts

SNP Gene Risk allele Discovery cohort genetic Hazard 95% CI° p—valuef Hazard 95% CI° p—valuef
frequency® model® & adjustment ratio ratio®
covariates®

rs1137100 LEPR G: 0.27 Dom-ACP 1.01 0.91-1.12 NR 0.98 0.88-1.08 0.35
1s228697"  PER3 G: 0.11 Dom-ACP 1.33 1.14-1.55 NR 1.24 1.07-1.44 NR
rs635261  RNASEL C: 0.36 Rec-ACP 0.96 0.82-1.11 0.31 0.92 0.80-1.06 0.18
rs627839  RNASEL T: 0.47 Dom-ACP 1.05 0.94-1.18 0.24 1.07 0.96-1.19 0.17
rs4583514 MSH2 A:0.38 Dom-ACP 1.03 0.92-1.14 0.35 1.04 0.94-1.15 0.28
rs4608577 MSH2 G: 0.17 Add-A 1.02 0.94-1.11 0.34 1.03 0.95-1.13 0.27
1s523349  SRD5A2 G: 0.29 Dom-A 1.08 0.99-1.19 NR 1.07 0.97-1.19 NR
rs12467911 SRD5A2 T: 0.28 Dom-A 1.10 1.00-1.20 NR 1.09 0.99-1.21 NR
rs11710277 SEMA3F G: 0.09 Dom-ACP 1.03 0.89-1.20 0.35 0.95 0.83-1.09 NR
rs11205 HSDI17B4 G: 0.39 Rec—-ACP 1.06 0.92-1.21 NR 1.06 0.93-1.21 NR
rs2070874 IL4 T: 0.16 Dom-A 1.14 1.04-1.26 0.01 1.22 1.10-1.35 1.1 x 1073
rs1799964 TNF C: 0.21 Dom-A 1.07 0.98-1.18 NR 1.06 0.96-1.17 NR
rs4645959 C-MYC  G: 0.04 Add-ACP 1.11 0.92-1.35 NR 1.24 1.03-1.50 NR
1s1029153" CXCLI2 C: 031 Add-A 1.04 0.95-1.14 NR 1.04 0.95-1.14 NR
rs2839685 CXCLI2 T:0.15 Rec—-ACP 0.71 0.45-1.14 NR 0.66 0.41-1.05 NR
rs2308327 MGMT  G:0.13 Add-A 0.93 0.84-1.02 0.11 0.90 0.81-0.99 0.03
rs10778534 CRY1 C: 0.36 Dom-A 1.03 0.94-1.13 0.28 1.03 0.93-1.13 0.32
1s2494750 AKTI G: 0.07 Add-ACP 0.92 0.79-1.08 0.21 0.92 0.79-1.06 0.16
rs1799814 CYPIAI  A:0.05 Add-ACP 1.09 0.90-1.32 NR 1.05 0.88-1.27 NR
1s25487 XRCCI  A: 036 Add-A 0.95 0.89-1.02 0.11 0.94 0.88-1.01 0.09
rs915927  XRCCI  G:0.43 Dom-A 1.03 0.94-1.14 0.30 0.98 0.89-1.10 NR
1s5993891 ARVCF  T: 0.05 Dom-ACP 0.92 0.76-1.12 0.25 0.89 0.75-1.06 0.14

# Based on the Seattle prostate cancer discovery cohort

> Dom dominant model; Rec recessive model; Add additive model

¢ Adjusted for age at diagnosis (A) or age + clinicopathological (ACP) factors (Gleason score, stage, PSA, primary treatment)

4 Both the genetic model and adjustment covariates were fixed based on the Seattle discovery cohort

¢ One-sided 95% confidence intervals

f NR not replicated (HR is in the opposite direction to the HR in the discovery cohort)

€ The genetic model was fixed based on the Seattle discovery cohort, but the adjustment covariates vary across the seven cohorts

" These SNPs were not genotyped in the Swedish cohort

SNPs with statistically significant evidence for validation in the overall meta-analysis are shown in boldface.

model and best-fitted to each cohort (p = 1.1 x 107%). The
OS-methylguanine-DNA methyltransferase (MGMT) SNP,
rs2308327, was also associated with PCSM when analysed
using the same genetic model as determined using the ori-
ginal Seattle-based cohort, but only when clin-
icopathological covariates were included in the model
(additive; p=3.5 x 107%). Three other SNPs, rs228697
(PER3), 1s12467911 (SRD5A2), and rs4645959 (c-MYC)
were associated with PCSM in the meta-analysis, but the
direction of association was opposite to that observed in the
original Seattle discovery cohort, so these variants were not
considered validated (Table 2).

A sensitivity analysis was performed to evaluate the
SNP-PCSM associations when patients presenting with
distant or unknown stage were excluded. The results for the
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IL4 and MGMT SNPs were robust to this sensitivity ana-
lysis. In addition, when limiting the analysis to men diag-
nosed with local or regional stage there was confirmatory
evidence that the SNP (rs2494750) in AKTI was associated
with PCSM under the same genetic model adjusted for the
same covariates as in the original Seattle discovery cohort
(additive; adjusted for clinicopathological covariates; HR =
0.81, 95% CI 0.67-0.98, p =3.6 x 10'2), and also when
clinicopathological covariates were included in the model
and best-fitted to each cohort (HR=0.83, 95% CI
0.70-0.98, p =3.1 x 1072).

Other sensitivity analyses excluded the Finnish and/or
Australian datasets. When the Finnish cohort was excluded
the association between PCSM and rs2070874 (IL4) geno-
type remained significant whereas the association with
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rs2308327 (MGMT) was attenuated (Supplementary
Table 5). When both Australian cohorts were excluded from
the analyses, results for the /L4 and MGMT SNPs were
similar to those shown in Table 2. The ATKI SNP was also
associated with PCSM (HR = 0.83; 95% C1 0.70-0.98; p =
0.04) under an additive genetic model, allowing clin-
icopathological covariates to vary by cohort to obtain the
best-fitting model. Lastly, results for /L4 and MGMT var-
iants (Table 2) were similar after excluding the Finnish and
both Australian cohorts.

Discussion

Twenty-two PCSM-associated variants were previously
identified in a Seattle-based discovery cohort, yet sub-
sequent individual replication studies have only confirmed
subsets of these variants. In this large meta-analysis of
12,082 PCa patients from seven cohorts, we confirm asso-
ciations between two SNPs, rs2070874 (IL4) and rs2308327
(MGMT), and risk of PCSM. In addition, the meta-analysis
highlighted an association with an AKT/ SNP in the subset
of men diagnosed with less advanced PCa (i.e., local or
regional stage disease) or when both Australian datasets
missing stage data were excluded. Findings from sensitivity
analyses were robust for the /4 and MGMT SNPs, and
provide supportive evidence that variants in three genes
(IL4, MGMT, and AKTI) may play a role in mediating PCa
aggressiveness. Previous studies have shown that MGMT
and AKT] variants are not associated with overall PCa risk
[21-24] and while a nominal association has been observed
between risk and the II4 variant, rs2243228 [22], this
variant is not linked to rs2070874 (r2 =0.0127). However,
another /L4 variant, 152243250, which is in complete link-
age disequilibrium with rs2070874, was recently associated
with Gleason score 7-10 PCa in men randomised to the
finasteride arm of the Prostate Cancer Prevention Trial [25].
A study in 2011 found nominal evidence to suggest that
AKT1] genetic variation had a possible role in relation to risk
of more aggressive PCa [22], but the results were not
confirmed in larger studies (i.e., OncoArray data). Collec-
tively, these results have a number of important implica-
tions in relation to PCa outcomes. First, they support the
hypothesis that underlying genetic background can influ-
ence an individual’s risk of PCSM. Second, a deeper
understanding of this genetic predisposition could even-
tually lead to early risk stratification and the discovery of
therapeutic targets for treating high-risk cases. In fact, 114,
MGMT, and AKTI have well documented roles in carci-
nogenesis and they, or their receptors, have been suggested
as therapeutic targets for PCa.

In the immune system, IL4, a T helper type 2 (Ty2)
cytokine, regulates the survival, growth, and differentiation

of B and T lymphocytes [26], mast cells [27], and endo-
thelial cells [28] through activation of the Type I IL4
receptor (IL4R). In tumorigenesis, studies of the effects of
IL4 are conflicting; early work suggested the cytokine had
anti-tumour effects [29, 30], but more recent studies have
demonstrated tumorigenic effects, including the promotion
of cancer cell survival and proliferation [31], greater
migration and invasion [32], enhanced metabolism for
tumour growth [33] and higher metastatic tumour burden
[32]. In PCa, studies have shown that IL4 levels are ele-
vated in hormone refractory disease [34], that IL4 can
activate the androgen receptor when androgen is ablated or
present at very low levels [35], and that overexpression of
IL4 enhances the growth of androgen-sensitive LNCaP cells
in androgen-deprived conditions [36]. In epithelial cancer
cells, IL4 exerts its effects through the Type II IL4R
(reviewed in [37]), which was found to be overexpressed in
PCa cell lines, primary cultures established from fresh
prostate tumours and prostate tumour specimens [38].
Notably, several therapies have been designed to target the
IL4/ILAR signalling axis through its role in asthma and
allergy (reviewed in [37]). While therapies specific to the
Type II IL4R are still in the discovery phase, a Pseudo-
monas endotoxin-based IL4 chimeric protein, IL4-CTX,
which targets both IL4 receptors, has been shown to cause
remission of xenograft tumours developed from two PCa
cell lines, DU145 and LNCaP [38]. This is particularly
relevant to our finding that the rs2070874 variant of /L4 is
associated with a greater risk of PCSM, and it is possible
that cases carrying this variant could benefit from adjuvant
treatment with emerging Type II IL4R therapies.

The MGMT protein is responsible for repair of DNA
adducts generated by alkylating agents. Alkylation of DNA
involves the addition of an alkyl group to the O%-position of
guanine, which induces mutation and malignant transfor-
mation due to methylguanine:thymine mispairing during
DNA replication [39]. MGMT repair occurs through the
covalent transfer of the alkyl group to its active site, which
results in a conformational change, ubiquitination and a
rapid degradation of the protein [40]. While MGMT has an
important role in preventing carcinogenesis through its role
in DNA repair, MGMT activity in tumours treated with
chemotherapeutic O%-alkylating agents is actually detri-
mental, reducing the sensitivity of the cancer cells to che-
motherapy. MGMT protein levels have been shown to vary
widely both within and between individuals [41], and there
is evidence to suggest this is due to inherited genetic var-
iation [42], which also alters MGMT activity [43]. Margi-
son and colleagues [42] have shown that the variant alleles
of two SNPs in perfect linkage disequilibrium, rs2308321
(I143V) and rs2308327 (K178R), are associated with a
higher level of MGMT activity and are more resistant to
inactivating pseudosubstrates. This may be due to more
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efficient repair of bulky adducts as a result of the rs2308321
amino acid change, which is within the MGMT-binding
pocket and in close proximity to the active site C145 [43].
Here, we observed that the rs2308327 variant was asso-
ciated with a reduced risk of PCSM, suggesting that
inheritance of the more active protein form may protect
cases from developing a high frequency of mutations in
genes critical for tumorigenesis and that push the tumour
toward an aggressive phenotype. However, cases carrying
the rs2308327 variant may also be more resistant to che-
motherapeutic O%-alkylating agents and may benefit from
concurrent treatment with an MGMT inactivator, such as
lomeguatrib [44].

AKT1I is a member of the AKT family of serine/threonine
kinases, and within the PI3K/AKT pathway, plays a key
role in cellular metabolism, growth, proliferation, differ-
entiation, and survival [45, 46]. The PI3K/AKT pathway
also has a central function in epithelial to mesenchymal
transition (EMT), a key process in tumour progression and
metastasis [47]. Furthermore, alterations in the PI3K/AKT
pathway have been reported in both primary and metastatic
prostate tumours [48], including constitutive activation of
AKT1 via loss of the inhibitory phosphatase, PTEN [49-51],
and the development of docetaxel resistance has been linked
to this pathway in PCa patients [52]. The involvement of
AKT1 in cancer development and progression has made it a
target for therapeutic intervention [53-55] and several
Phase I and II trials, predominantly in breast cancer patients,
are currently underway testing AKT/ or PI3K/AKT path-
way inhibitors.

Our study also illustrates how MAFs that vary sub-
stantially across populations can impact estimates of risk.
This is particularly striking in the Finnish population where
the MAF of several gene variants (MSH2, HSD17B4, 114,
and CXCLI2) is quite different to that of the other study
populations. As the II4 rs2070874 variant is more common
in the Finnish PCa cohort, it may also be more frequent in the
overall Finnish population, thus explaining why this variant
is more strongly associated with PCSM when this cohort is
removed from the meta-analysis, especially as the association
may be driven by Swedish and Australian cohorts (Supple-
mentary Tables 4 and 5). Whereas the MAF for the MGMT
variant is similar across the populations and its association
with PCSM is attenuated when the Finnish cohort is
removed; this may be due to a loss of power as the asso-
ciation between MGMT and PCSM appears to be driven by
all and not individual cohorts. These findings demonstrate the
importance of considering underlying variant frequencies
when combining data from different populations.

A limitation of our study was the level of missing clin-
icopathological data for some PCa patient cohorts. For
example, we were unable to stratify Gleason score 7
patients into Gleason pattern 3 + 4 versus 4 + 3, restricting
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our ability to evaluate associations for these two distinct
tumour grades that have different survival outcomes. We
were able to exclude men with missing data on stage and
men with distant stage disease, which demonstrated robust
findings for IL4, MGMT, and AKTI variants in men diag-
nosed with localised or regional stage disease. It should also
be noted that there was no central review of pathology
slides to assign Gleason score, therefore there may have
been some tumour grade misclassification across cases in
these cohorts; but it is unlikely that such misclassification
would differ substantially between cohorts or that it would
be influenced by genotype. In addition, while all but two of
the PCa cohorts had information available on primary
treatment, we did not have information on secondary
therapies that may have been used to treat PCa progression
and could have varied between populations. There is cur-
rently no evidence that the /L4, MGMT, or AKTI variant
alleles alter response to therapy, and it seems unlikely that
use of secondary treatment(s) by patients in these PCa
cohorts would vary substantially by genotype. Another
limitation of our study is that all of the cohorts were com-
prised of patients of European ancestry. Men of African
ancestry have a higher PCa mortality rate compared to men
of European ancestry [56, 57], and future studies of these
genetic variants in relation to PCSM are imperative in that
high-risk population.

Understanding which genetic pathways are involved in
mediating PCa progression to a fatal endpoint may lead to
the discovery of novel prognostic biomarkers and ther-
apeutic targets. While the II4, MGMT, and AKTI risk
alleles confirmed in this study are insufficient as prognostic
biomarkers on their own, the identification of further bio-
markers in the same or similar biological pathways may
lead to the development of a biomarker panel that could
improve stratification of cases at diagnosis into low-risk and
high-risk categories [58]. Such information could be useful
to decide on initial and adjuvant treatments, clinical trial
enrolment, early salvage therapy and more intensive sur-
veillance in men at higher risk of PCSM. Furthermore, as
our study suggests a common genetic susceptibility across
several international PCa cohorts, such a panel may be
relevant at a global level.
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