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Abstract: We have developed a photochemical ATRA/ATRC reaction that is mediated by halogen
bonding interactions. This reaction is caused by the reaction of malonic acid ester derivatives
containing bromine or iodine with unsaturated compounds such as alkenes and alkynes in the
presence of diisopropylethylamine under visible light irradiation. As a result of various control
experiments, it was found that the formation of complexes between amines and halogens by halogen-
bonding interaction occurs in the reaction system, followed by the cleavage of the carbon–halogen
bonds by visible light, resulting in the formation of carbon radicals. In this reaction, a variety
of substrates can be used, and the products, cyclopentenes and cyclopentanes, were obtained by
intermolecular addition and intramolecular cyclization.

Keywords: halogen-bonding; ATRA reaction; ATRC reaction; radical reaction; photoreaction

1. Introduction

Cyclic compounds are ubiquitous in natural products and artificially synthesized func-
tional molecules. They also have wide applications in various areas of organic chemistry,
such as medicinal and materials chemistry [1–3]. Consequently, the efficient preparation
of cyclic systems continues to be an important area of modern organic chemistry. The
formation of such cyclic systems by carbon–carbon bond formation has increasingly been
achieved by the use of free radical cyclization protocols [4].

Atom transfer radical addition (ATRA) was pioneered by Kharasch approximately
70 years ago, and the ATRA reaction of halogen compounds to alkenes is a powerful
and atom-economical way to form carbon–carbon and carbon–halogen bonds simultane-
ously [5–7]. An intramolecular version of this reaction, known as atom transfer radical
cyclization (ATRC), has been extensively exploited and refined into a versatile and pow-
erful tool for organic synthesis, and provides a convenient route to the construction of
cyclic frameworks [8,9]. It has long been known that a wide range of metal complexes,
such as copper [10], iron [11], ruthenium [12], palladium [13], and nickel [14], can catalyze
such ATRC reactions under thermal conditions. However, the radical generation process
generally requires a high reaction temperature and is difficult, due to certain competitive
side reactions that generate reactive intermediates.

Recently, metal-based photoredox catalysis and organo-photocatalysis that are driven
by visible light have further expanded the potential of the ATRC technology (Figure 1a) [15].
In 2012, Stephenson et al. developed an intramolecular ATRA reaction of unsaturated
hydrocarbons with bromomalonates as side chains, which is promoted by a visible light
photoredox catalysis [16]. Subsequently, visible-light-responsive photocatalysts, based
on Ir and Ru mediating the ATRC reaction, have been developed [17–19]. Moreover,
non-metallic photocatalysts such as organo-photocatalyst were also developed. For ex-
ample, in 2019, Zhu et al. described a visible-light-driven chlorotrifluoromethylative and
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chlorotrichloromethylative cyclization approach by using organo-photocatalysts; a series
of chlorotrifluoromethylated and chlorotrichloromethylated pyrrolidines, piperidines, and
cyclopentanes were obtained in moderate to good yields [20]. Additionally, a visible-
light-mediated intermolecular radical cyclization approach to access the heterocycle was
developed by using Eosin Y as the catalyst for the hydrogen atom transfer [21]. However,
methods for the synthesis of cyclic systems through an intermolecular ATRC process have
not been extensively developed. Therefore, the development of a novel and efficient strat-
egy for the intermolecular ATRC reactions between alkyl halides with alkynes would be
extremely valuable.
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Recently, we have reported that the in situ generated halogen-bonding complex of an
alkyl halide with pyridines enabled the ATRA reactions of olefins (Figure 1b) [22]. The
carbohalogenation of olefins with carbon tetrabromide generated a variety of products
in moderate to good yields when irradiated at 450 nm. In addition, we reported further
applications for this reaction, which apply them to a bromomalonate ester instead of a
carbon tetrabromide [23].

Therefore, inspired by the methodologies developed, we started to challenge the
advantages of the intramolecular ATRA/ATRC process that 2-halogenmalonate-containing,
unsaturated functional groups could react with alkynes or alkenes, leading to the construc-
tion of substituted cyclopentenes or cyclopentanes (Figure 1c).

2. Results and Discussion

Based on the previous report for a halogen-bonding-initiated ATRA reaction, this study
was initiated by examining the intramolecular ATRA/ATRC reaction between ethynyl-
benzene (1a) and dimethyl 2-allyl-2-bromomalonate (2a), which were chosen as reaction
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partners using the halogen-bonding approach (Table 1, see Tables S1–S5 for full detail for
optimization study). First, the wavelength of the light was evaluated by using 5.0 mol% of
4-Ph-pyridine as the catalyst. Various wavelengths of the light were explored, showing that
420 nm was the most effective and gave 3a in 50% isolated yield (Entries 1–4) [24]. When
the reaction was carried out without a catalyst, it was found that the reaction proceeded
under UV light (Table S5). Therefore, it is suggested that the yield of the reaction, when irra-
diated by 380 nm LED, was increased by the background reaction without halogen-bonding
interactions. Next, we examined the impact of solvent concentration on the outcome of the
reaction (Entries 3 and 5–7). The dramatic effect of doubling solvent volume is also worth
noting (cf. Entries 3 and 5) [25]. Since the lone pair of 4-Ph-pyridine reacts with the σ-hole
of the halogen in the formation of the halogen-bonding complex, we hypothesized that the
electron-donating alkyl amines would show a stronger interaction and increased reactivity.
As expected, the addition of 1.0 equiv of DIPEA (N,N-diisopropylethylamine) improved
the isolated yield to 71% (Entry 8). Surprisingly, we found that 4-Ph-pyridine as a catalyst
was not necessary (Entry 9). Amines are known to be good halogen-bonding acceptors,
and it is assumed that the use of an electron-rich alkylamine such as DIPEA would allow
the reaction to proceed without the use of pyridine, as previously reported, to yield the
corresponding product 3a [22,23]. Finally, the loading of compound 2a was increased to
3.0 equiv, which resulted in the highest reaction yield of 79% (isolated yield) (Entries 10
and 11).

Table 1. Optimization of reaction conditions.
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1 4-Ph-pyridine 380 1.0 2.5 53
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4 4-Ph-pyridine 450 1.0 2.5 0
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The scope of the photoinduced ATRA/ATRC reaction was further explored by varying
the alkyne 1 to optimize the reaction conditions (Figure 2). Various functional groups on
the benzene ring were examined, and most were tolerated under the optimized conditions.
With alkyl substitution on benzene, these compounds reacted effectively to yield the de-
sired products (3b–3d) in 65–84% yields. Halogen atoms such as fluoro, chloro, and bromo
on the aromatic ring were not affected under the present reaction conditions to afford the
corresponding products (3e–3i) in moderate to good yields, thus providing ample oppor-
tunity for further elaboration by the transition-metal-catalyzed cross-coupling reactions.
The substrates bearing electron-withdrawing (CF3, CN, Ac, CO2Me, NHAc and NHBoc)
groups on the benzene ring were also investigated and smoothly converted to products
(3j–3p) in moderate to good yields. In addition, alkynes bearing 4-phenyl, 2-naphthyl,
3-pyridyl, and 3-thyenyl could also react smoothly with 2a to afford the expected products
(3q–3t) in good yields.
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Next, various aromatic alkenes were subjected to this optimized ATRC reaction
(Figure 3). Similar to the alkynes, the styrenes were tolerated under these reaction condi-
tions and gave the corresponding product in moderate to good yields. With alkyl substitu-
tion on the benzene ring, these substrates reacted efficiently to obtain the desired products
(5a–5d) in moderate yields. Interestingly, the use of 4-MeO-substituted styrene (4e) yielded
the desired product quantitatively. Halogen atoms such as fluoro, chloro, and bromo on
the aromatic ring were not affected under the present reaction conditions to afford the
corresponding products 5f–5h in moderate yields. In addition, compounds with 4-phenyl,
2-naphthyl, and 2-pyridyl could also react smoothly with 2a to afford the expected products
5i–5k in good yields. The use of an internal alkene such as β-methylstyrene (4l) resulted in
low yield.

Additionally, we turned our attention to exploring various unsaturated α-halogenocarbonyl
compounds (2a) under standard conditions (Figure 4). Diethyl 2-allyl-2-bromomalonate
(2b) and Diisopropyl 2-allyl-2-bromomalonate (2c) were also employed and resulted in the
production of 6b and 6c in moderate yields. The reaction could be applied to other activated
organobromides, as exemplified by the construction of 6d in good yield. Pleasingly, with
dimethyl 2-allyl-2-iodomalonate (2e) acting as the carbohalogenation reagent, iodinated
product 6e was successfully obtained in moderate yield. When dimethyl 2-(2-methylallyl)-
bromomalonate 2f was employed instead of 2a, the cyclopentene ring with a quaternary
carbon center 6f was successfully synthesized in a low yield. Additionally, the homoallyl-
substituted counterpart 2g led to the corresponding product 6g in low yield. Finally, the
reaction was investigated using a malonic acid ester derivative with a propargyl group as
substrate 2h. The generated vinyl radicals underwent intramolecular addition reaction
to alkynes to give the corresponding vinyl bromides 6h in low yield. The 1H-1H NOESY
spectrum identified the geometry of the product 6h as an E-isomer.
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Further mechanistic investigations were also conducted (Figure 5). The reaction
between 1a and 2a under the optimized conditions and oxygen atmosphere resulted
in no reaction (Figure 5a). The result indicated that the photoexcited active species was
quenched by a triplet oxygen molecule [25]. Furthermore, the reaction was also investigated
under dark conditions or when heated to 60 ◦C under dark conditions, revealing that no
ATRA/ATRC product was obtained (Figure 5b). These results suggested that light is
essential for this reaction. When the reaction was examined in the absence of DIPEA, no
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desired product was obtained, indicating that DIPEA acted as a halogen-bonding donor
(Figure 5c). Moreover, the radical trapping experiments using TEMPO and galvinoxyl as a
radical trapping agent did not proceed desired reaction under the optimized conditions.
In the reaction employing TEMPO, the radical trapping product B was not given, but the
diene product 7a was obtained instead (Figure 5d) [26]. Based on a previous report, we
assume that the malonate radical A, which is formed from 2a, is trapped by TEMPO to
form the intermediate B. With the assistance of another molecule of TEMPO, intermediate
B undergoes elimination to form product 7a [27,28]. These results indicate that the present
ATRA/ATRC reaction might proceed via a radical intermediate.

Molecules 2021, 26, x 6 of 9 
 

 

is essential for this reaction. When the reaction was examined in the absence of DIPEA, no 
desired product was obtained, indicating that DIPEA acted as a halogen-bonding donor 
(Figure 5c). Moreover, the radical trapping experiments using TEMPO and galvinoxyl as 
a radical trapping agent did not proceed desired reaction under the optimized conditions. 
In the reaction employing TEMPO, the radical trapping product B was not given, but the 
diene product 7a was obtained instead (Figure 5d) [26]. Based on a previous report, we 
assume that the malonate radical A, which is formed from 2a, is trapped by TEMPO to 
form the intermediate B. With the assistance of another molecule of TEMPO, intermediate 
B undergoes elimination to form product 7a [27,28]. These results indicate that the present 
ATRA/ATRC reaction might proceed via a radical intermediate. 

 
Figure 5. Control experiments. (a) Reaction under oxygen atmosphere. (b) Reaction under dark 
condition. (c) Reaction without amine. (d) Radical trapping experiments. 

Based on the previously reported results and control experiments, the possible reac-
tion pathway for the generation of the malonate radical is shown in Figure 6. The reaction 
was initiated by the photoexcitation of the halogen-bonding complex I, which is formed 
by the reaction of 2a with DIPEA to produce the excited state I*. The photoexcitation of I’ 
led to the C-Br bond homolysis, generating the C-centered malonate radical II and the 
radical intermediate II’. Next, the resulting C-centered radical II reacted with the alkynes 
in the ATRA manner to generate the radical intermediate III. The radical intermediate III 
participates in an intramolecular radical cyclization to generate the radical intermediate 
IV. Subsequently, the radical species IV reacted with II’ to provide the corresponding 
ATRC product (route 1). Another possibility is a radical chain mechanism, where the car-
bon radical IV reacts with dimethyl 2-allyl-2-bromomalonate 2a to give the ATRC product 
and regenerate II (route 2). 

Figure 5. Control experiments. (a) Reaction under oxygen atmosphere. (b) Reaction under dark
condition. (c) Reaction without amine. (d) Radical trapping experiments.

Based on the previously reported results and control experiments, the possible reaction
pathway for the generation of the malonate radical is shown in Figure 6. The reaction
was initiated by the photoexcitation of the halogen-bonding complex I, which is formed
by the reaction of 2a with DIPEA to produce the excited state I*. The photoexcitation of
I’ led to the C-Br bond homolysis, generating the C-centered malonate radical II and the
radical intermediate II’. Next, the resulting C-centered radical II reacted with the alkynes
in the ATRA manner to generate the radical intermediate III. The radical intermediate III
participates in an intramolecular radical cyclization to generate the radical intermediate IV.
Subsequently, the radical species IV reacted with II’ to provide the corresponding ATRC
product (route 1). Another possibility is a radical chain mechanism, where the carbon
radical IV reacts with dimethyl 2-allyl-2-bromomalonate 2a to give the ATRC product and
regenerate II (route 2).
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3. Materials and Methods
3.1. General Information

Unless otherwise noted, all reactants or reagents, including dry solvents, were ob-
tained from commercial suppliers and used as received. Analytical thin-layer chromatog-
raphy (TLC) was carried out by using 0.25 mm commercial silica gel plates from Merck
(Darmstadt, Germany) (silica gel 60 F254). Flash column chromatography was performed
with Kanto (Tokyo, Japan) silica gel 60 N (Spherical, Neutral, 40–50 nm). Visualization
of the developed chromatogram was performed by a UV lamp (254 nm) and vanillin
or basic potassium permanganate stain. NMR spectra were recorded on a JEOL ECA
500 spectrometer (500 MHz for 1H NMR and 125 MHz for 13C NMR), and were internally
referenced to residual protio solvent signals or TMS (note: CDCl3 referenced at δ 7.26
and 77.0 ppm, respectively, TMS referenced at δ 0 and 0 ppm respectively). Data for 1H
NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet,
t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of doublets, ddd = doublet of
doublet of doublets, td = triplet of doublets), coupling constant (Hz), and integration. Data
for 13C NMR are reported in terms of chemical shifts (δ ppm). IR spectra were recorded
on a Perkin-Elmer (Boston, MA, USA) Spectrum 100 FTIR spectrometer and are reported
in terms of frequency of absorption (cm–1). High-resolution mass spectra (HRMS) were
obtained on a JEOL JMS-T100TD and are reported as m/z (M + H+, relative intensity).
Melting points were measured on a Yanaco (Kyoto, Japan) micro melting point apparatus
without correlation.

3.2. General Procedure for ATRA/ATRC Reaction

A Pyrex® test tube from Corning (Tokyo, Japan) (12.5 cm × 1.6 cm) containing a
mixture of alkyne 1 or alkene 4 (1.0 equiv, 0.1 mmol), α-halogencarbonyl 2 (3.0 equiv,
0.3 mmol) and N,N-diisopropylethylamine (1.0 equiv, 0.1 mmol) in ethyl acetate (0.75 mL)
was degassed via FPT cycling three times and backfilled with Ar. The tube was placed ca.
0.5 cm from 3 W 420 nm LED. The resulting solution was stirred at ambient temperature
for 20 h. The residue was concentrated in vacuo. The resulting mixture was purified by
flash column chromatography on silica gel to yield product 3, 5 or 6.

4. Conclusions

In summary, we have demonstrated that an in situ formed halogen-bonding complex
between alkynes or alkenes and DIPEA has the potential to induce ATRC reactions under
visible-light irradiation. Importantly, this transformation provides a new pathway for
the formation of two Csp3−Csp2 bonds and one Csp3−X bond in one step, highlighting
the step-economics of this protocol. This method is highly efficient, and a wide range
of functional groups were well-tolerated under mild reaction conditions. Moreover, the
substrate activation through the halogen bonding is a novel activation method that can
be used for challenging synthetic routes, since halogenbonding acceptors such as tertiary
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amines are relatively inexpensive and readily available. Further efforts are focused on
extending this new methodology to other classes of compounds, including aryl halides
with amines or phenols.

Supplementary Materials: The following are available online, Table S1: Optimization of catalyst;
Table S2: Optimization of Amines; Table S3: Screening of wavelength; Table S4: Screening of solvent;
Table S5: Screening of wavelength without amine; Table S6: Attempted alkynes for ATRA/ATRC
reaction; Table S7: Attempted alkenes for ATRA/ATRC reaction. Charts of NMR spectra (1H, 13C)
and characterization data for all compounds, are available online.
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