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In the context of the increasingly diversified blockchain technology, interoperability among 
heterogeneous blockchains has become key to further advancing this field. Existing cross-

chain technologies, while facilitating data and asset exchange between different blockchains to 
some extent, have exposed issues such as insufficient security, low efficiency, and inconsistent 
standards. Consequently, these issues give rise to significant obstacles in terms of both scalability 
and seamless communication among blockchains within a multi-chain framework. To address 
this, this paper proposes an efficient method for cross-chain interaction in a multi-chain 
environment. Building upon the traditional sidechain model, this method employs smart contracts 
and hash time-locked contracts (HTLCs) to design a cross-chain interaction scheme. This approach 
decentralizes the execution of locking, verifying, and unlocking stages in cross-chain transactions, 
effectively avoiding centralization risks associated with third-party entities in the process. It 
also greatly enhances the efficiency of fund transfers between the main chain and sidechains, 
while ensuring the security of cross-chain transactions to some extent. Additionally, this paper 
innovatively proposes a cross-chain data interaction strategy. Through smart contracts on the 
main chain, data from sidechains can be uploaded, verified, and stored on the main chain, 
achieving convenient and efficient cross-chain data sharing. The contribution of this paper is the 
development of a decentralized protocol that coordinates the execution of cross-chain interactions 
without the need to trust external parties, thereby reducing the risk of centralization and 
enhancing security. Experimental results validate the effectiveness of our solution in increasing 
transaction security and efficiency, with significant improvements over existing models. Our 
experiments emphasize the system’s ability to handle a variety of transaction scenarios with 
improved throughput and reduced latency, highlighting the practical applicability and scalability 
of our approach.
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1. Introduction

Currently, with the continuous development of blockchain technology [1–3], the application areas of blockchain are constantly 
expanding, accompanied by an increasing number of structurally diverse blockchains [4]. These blockchains are constantly updated 
and iterated and will inevitably face more complex business requirements [5]. They will begin to generate the demand for intercon-

nection and interoperability of data, assets and functions across heterogeneous chains and develop towards cross-chain applications 
[6]. However, the lack of interconnection between different blockchain systems greatly restricts and hinders the further development 
and application of blockchain technology, and the demand for interconnection of applications and data between chains has become 
an urgent problem to be solved in the path of blockchain development. Therefore, research on the expandability and interoperability 
of blockchain has become more and more popular in the current blockchain direction [7–9].

Blockchain interoperability, also known as cross-chain interoperability, focuses on realizing data interoperability [10], value 
interoperability [8] and function interoperability [11] between different blockchains. Data interoperability focuses on cross-chain 
data access and cross-chain data transfer between different blockchains. Value interoperability focuses on cross-chain asset exchange 
and cross-chain asset transfer between different blockchains. Functional interoperability aims at realizing the integration of functions 
between different blockchains, such as the cross-chain invocation of smart contracts.

Currently, mainstream cross-chain technology mainly includes four methods [12–14]: hash time locking, notary mechanism, 
side chain/relay chain technology and distributed key control. Among them, sidechain technology [15] as a cross-chain technology 
realizes asset interaction and data interaction between different blockchains through bidirectional hooks. Sidechain technology is 
great value for many problems faced by blockchain. For example, the use of sidechains can enable users to conveniently interact 
between different blockchains and securely realize the transfer of assets and data [16]. By linking a specific sidechain to the main 
chain, it can effectively alleviate the pressure of processing transactions on the main chain, thus realizing a kind of extension of the 
performance of the existing blockchain. Because the currency between the sidechain and the main chain can be converted at will, 
the sidechain does not need to maintain its own independent currency, so it can be used to realize the expansion of the performance 
of the existing blockchain [17]. Therefore, the sidechain can be used to realize the exploration of new functions, and if the functions 
of the sidechain prove to be popular, the sidechain can eventually be made the new main chain by transferring all the assets of the 
main chain to the sidechain and being abandoned for use.

In a multi-chain environment, cross-chain interaction is critical, which enables asset interaction and data interaction between 
different blockchains. This multi-chain environment is characterized by the main chain as the core chain, which connects with 
multiple side chains and realizes the interactions between the chains through cross-chain technology. A multi-chain environment with 
a main chain and multiple side chains features a core main chain, extended side chain functionality, and cross-chain interactions.

However, the current application of sidechain technology in a multi-chain environment may suffer from security risks, inconsistent 
cross-chain standards, and cross-chain performance limitations [18,19]. Although the existing two-way pegging mechanism can 
realize asset transfer between sidechain and mainchain, it suffers from centralization risk and low security. Multi-signature or joint 
pegging mechanisms achieve decentralization to a certain extent but still rely on a few entities to manage the transfer of funds 
and do not completely eliminate the problem of centralization. Simplified Payment Verification (SPV) proofs [20], while enabling 
decentralization, need to wait for confirmation cycles, reducing the efficiency of cross-chain transactions and increasing the size of 
transactions. In summary, all current two-way pegging mechanisms have a variety of problems, which makes all blockchain systems 
that adopt sidechain as a cross-chain interaction method face many risks, such as centralization and low security, as well as a 
significant impact on the time and space efficiency of cross-chain transactions.

Addressing these challenges, this paper builds upon traditional sidechain technology and enhances the bidirectional pegging 
technique used for fund transfers between main and side chains. By leveraging smart contracts and hash time-locked contracts 
(HTLCs), we have designed a cross-chain interaction scheme that enables the decentralized execution of the locking, verification, 
and unlocking phases of cross-chain transactions without the need for any third-party entities. Moreover, this approach eliminates 
the waiting period for any confirmation cycles. This not only mitigates the centralized risks associated with third-party involvement 
in cross-chain transactions but also significantly improves the efficiency of fund transfers between the main chain and side chains. 
Furthermore, it ensures a degree of security for cross-chain transactions.

The main contribution of this paper is:

∙ Aiming at the problems in the existing cross-chain technology, an efficient cross-chain interaction method is proposed to realize 
a more secure and efficient asset transfer and data exchange mechanism.

∙ In the locking, verification, and unlocking phases of cross-chain transactions, smart contracts are utilized to avoid the central-

ization risk brought about by the third party, improve the efficiency of fund transfer, and ensure the security of cross-chain 
transactions to a certain extent.

∙ Employing smart contracts for data storage on side chains facilitates secure and efficient cross-chain data exchanges, allowing 
various blockchain systems to seamlessly share information about transactions and smart contracts.

The remainder of this document is structured as follows: Section 2 provides an overview of the background related to blockchain 
interoperability, including existing solutions for cross-chain technology and pertinent research; Section 3 outlines an effective model 
for cross-chain interactions within a multi-chain setting, detailing the specific process involved in such interactions; Section 4 presents 
2

an experimental evaluation of the approach proposed in this paper; and Section 5 offers the concluding remarks of the study.
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2. Background & related work

The number of global blockchains is increasing [21], and the mutual isolation of different blockchain networks leads to the 
inability of the chains to effectively perform operations such as digital asset transfer and cross-chain communication. In recent 
times, as the variety and complexity of blockchain applications have grown, an increasing number of blockchain projects have 
started to demand and propose solutions for cross-chain functionality, leading to the swift advancement of the concept of blockchain 
interoperability.

2.1. Blockchain interoperability

Blockchain interoperability involves the transfer of information between specific blockchain systems, known as blockchain system 
instances, and various other types of systems. These other systems can encompass applications built on top of the blockchain, different 
blockchain networks, and data systems that operate outside of the blockchain infrastructure. By exchanging information, these system 
instances can share transaction data, smart contract information, etc., and realize the interaction and operation between each system.

By formally defining and modeling blockchain interoperability, a cross-chain interoperability process with precision and clarity 
can be provided to ensure a clear understanding of blockchain interoperability concepts, goals, and requirements. In addition, formal 
definitions can serve as specifications or standards that unify the way blockchain interoperability is understood and implemented, 
which makes it possible to build a cross-chain interoperability platform that takes into account various heterogeneous blockchains.

Blockchain interoperability includes exchange interoperability and transfer interoperability. The concept of swap interoperability 
is centered around the capacity for asset exchanges between distinct blockchain ecosystems. Specifically, it describes a process by 
which blockchain systems A and B can reach a new, consistent system state in a finite amount of time through the transaction 𝑇𝑠𝑤𝑎𝑝. 
Transfer interoperability, on the other hand, refers to the ability of an asset in one blockchain system to be verified and validated in 
another system. This type of interoperability involves the transfer of assets between different blockchain systems. In the following 
paper, we will provide a formal definition of blockchain interoperability and build a blockchain interoperability model.

Definition 1 (Swapping interoperability). For assets 𝑎1 ∈ 𝐴 and 𝑎2 ∈ 𝐵 in any blockchain system 𝐴 and 𝐵, the operations of Eq (1)

are executed through a transaction 𝑇𝑠𝑤𝑎𝑝:

𝑇𝑠𝑤𝑎𝑝 →A⇔ 𝑇𝑠𝑤𝑎𝑝 → B (1)

where the transaction 𝑇𝑠𝑤𝑎𝑝 is able to transform the blockchain systems 𝐴 and 𝐵 into a new consistent system state (i.e., 𝑎1 ∈𝐵∧𝑎2 ∈
𝐴) within a bounded time interval Δ𝑇 ; and there exists a consistency mechanism that is able to check the integrity condition of 𝑇𝑠𝑤𝑎𝑝
on both 𝐴 and 𝐵 at the same time.

Definition 2 (Transferring interoperability). For any asset 𝑎 in 𝐴, there exists a 𝑃𝑟𝑜𝑜𝑓 ∈ 𝐵⇔ 𝑎 ∈𝐴 that, through a transaction 𝑇𝑡𝑟𝑎𝑛𝑠, 
perform the operation in Eq (2):

𝑇𝑡𝑟𝑎𝑛𝑠 →A⇔ 𝑇𝑡𝑟𝑎𝑛𝑠 → B (2)

where transactions 𝑇𝑡𝑟𝑎𝑛𝑠, capable of converting blockchain systems 𝐴 and 𝐵 to a new consistent system state (i.e. ∃𝑎(𝑎 ∈𝐵 ∧ 𝑎 ∉𝐴)) 
within a bounded time interval Δ𝑇 .

Blockchain interoperability model: For any two existing blockchain systems 𝐴 and 𝐵, the underlying ledgers are 𝐿1 and 𝐿2
respectively. Where M processes are running on 𝐴 and 𝑁 processes are running on 𝐵. The state of a blockchain system can be altered 
through the action of processes either by committing transactions 𝑇 to the foundational ledger 𝐿 or by ceasing any interaction with 
the system. Where can write transactions 𝑇𝑀 to the ledger 𝐿1 and 𝑁 has transactions 𝑇𝑁 that can be written to the ledger 𝐿2. The 
validation function 𝑉 𝑒𝑟𝑖𝑓𝑦 can validate the result of the transaction against expectations, e.g., by specifying information such as the 
value of the transaction and the addresses of the interacting parties. Mowing the result of Verify 𝑉𝑁 is a validation of the transaction, 
while owning the result of 𝑉 𝑒𝑟𝑖𝑓𝑦 is used to validate the transaction 𝑇𝑁 . In short, 𝑀 expects to 𝑇𝑁 be written to 𝐿2, N expects to 
𝑇𝑀 be written to 𝐿1. Thus 𝑉𝑀 = 𝑉 𝑒𝑟𝑖𝑓𝑦(𝑇𝑀 ) implies that 𝑇𝑀 is valid on 𝐴, otherwise it would not be possible to write to 𝐿1(𝑉𝑁
ditto).

A formal definition of blockchain interoperability: In order to synchronize the process 𝑀 and 𝑁 , i.e., 𝑁 writes a transaction 𝑇𝑁
to 𝐿2 when and only when 𝑀 writes a transaction 𝑇𝑀 to book 𝐿1, it must satisfy 𝑉𝑁 = 𝑉 𝑒𝑟𝑖𝑓𝑦(𝑇𝑀 ) and 𝑉𝑀 = 𝑉 𝑒𝑟𝑖𝑓𝑦(𝑇𝑁 ). Since 
𝑇𝑀 and 𝑇𝑁 both transactions must be contained in both ledgers 𝐿1 and 𝐿2 to guarantee the atomicity of the asset exchange. For this 
purpose, 𝑀 has to persuade 𝑁 that it has generated a transaction 𝑇𝑀 included in 𝐿1. In other words, the process 𝑁 must confirm 
that the state of ledger 𝐿1 exists within a specified timeframe 𝑡. The correct blockchain interoperability to achieve this goal must 
have the following properties:

Definition 3 (Availability). Should 𝑀 and 𝑁 perform their operations without error, ensuring that 𝑇𝑀 and 𝑇𝑁 are correctly validated 
3

and align with anticipated outcomes (meaning both transactions are legitimate), then 𝑇𝑀 will be incorporated into 𝐿1 and 𝑇𝑁 into 
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𝐿2. Conversely, if any of the transactions fail to meet the validation criteria or diverge from expected results, both processes will 
terminate prematurely. This is specified as indicated in Eq (3):

(
𝑉 𝑒𝑟𝑖𝑓𝑦

(
𝑇𝑀

)
= 𝑉𝑁 ∧ 𝑉 𝑒𝑟𝑖𝑓𝑦

(
𝑇𝑁

)
= 𝑉𝑀 =⟂⇒ 𝑇𝑀 ∈𝐿1 ∧ 𝑇𝑁 ∈𝐿2

)

∧
(
𝑉 𝑒𝑟𝑖𝑓𝑦

(
𝑇𝑀

)
≠ 𝑉𝑁 ∨ 𝑉 𝑒𝑟𝑖𝑓𝑦

(
𝑇𝑁

)
≠ 𝑉𝑀 ⇒ 𝑇𝑀 ∉𝐿1 ∧ 𝑇𝑁 ∉𝐿2

) (3)

Definition 4 (Atomicity). To guarantee the atomicity of cross-blockchain interactions, it is critical to avoid scenarios in which 𝑀
successfully commits to 𝐿1 at time 𝑡 without 𝑁 managing to record 𝑇𝑁 prior to 𝑡, or wherein 𝑁 accomplishes a write to 𝐿2 at time 
𝑡, while 𝑀 does not successfully commit 𝑇𝑀 before 𝑡. Specifically as expressed in Eq (4):

¬
((
𝑇𝑀 ∈𝐿1 ∧ 𝑇𝑁 ∉𝐿2

)
∨
(
𝑇𝑀 ∉𝐿1 ∧ 𝑇𝑁 ∈𝐿2

))
(4)

Definition 5 (Promptness). Ultimately, if process 𝑀 operates as intended, it will successfully record a legitimate transaction 𝑇𝑀 onto 
its ledger, 𝐿1.

Definition 6 (Blockchain interoperability). Imagine two processes, where 𝑀 resides on system 𝐴 and 𝑁 on system 𝐵, each having 
transactions 𝑇𝑀 and 𝑇𝑁 that require synchronization. Then, the correct blockchain interoperability implements 𝑇𝑀 ∈ 𝐿1 and 𝑇𝑁 ∈
𝐿2 with validity, atomicity and timeliness.

2.2. Introduction to cross-chain technology

The core of cross-chain blockchain technology lies in employing technical measures across different chains to enable the move-

ment of value from one blockchain to another, as outlined by Ren et al. [22]. This facilitates the unrestricted movement of assets 
across various blockchains, whether they are of similar or different structures, paving the way for a truly interconnected blockchain 
ecosystem. In their work, Han et al. [23] conduct an in-depth analysis of current cross-chain technologies, focusing particularly on 
the challenges related to security, privacy, and operational efficiency. They suggest an interoperability framework for blockchains, 
evaluating the possible risks and problems, and organizing them by the type of technology and the intended purpose of cross-chain 
interactions. Currently, the core technologies enabling cross-chain functionality within the blockchain sphere are categorized into 
four primary types based on their foundational principles and implementation methods: notary schemes, sidechains along with relay 
systems, hash time-locked contracts, and distributed key management techniques. This document will focus on elucidating the fun-

damental principles and associated research concerning hash time-locked contracts and sidechain methodologies as employed in our 
study.

2.2.1. Hash timelock contract

As the technical basis for realizing the current atomic cross-chain digital asset transaction scheme, Nolan proposed the idea 
of atomic transfers in the BitcoinTalk forum in May 2013 [24]. Following refinement and advancement, Nolan’s methodological 
innovation found its first application in the architecture of the Bitcoin Lightning Network [25]. This technique stands as a cross-

chain solution that enables the movement of capital between diverse blockchain platforms, bypassing the need for any external 
trusted intermediaries, through the synergistic use of hash and time lock mechanisms. This approach offers a cross-chain mechanism 
designed to enable the transfer of assets across various blockchain networks without requiring third-party notarization, relying on 
the combined functionality of hash and time locks [26]. The hash house and time lock in the hash time lock are two different locking 
mechanisms. Time locks are used to restrict the execution of a specific operation within a certain period of time and will not be able 
to be executed beyond the specified time. The hash lock mechanism demands the submission of the accurate preimage for resource 
unlocking, whereas the hash time lock’s utilization focuses on safeguarding transaction security during the cross-platform exchange 
of assets between different blockchains. During the execution of the hash time lock, the counterparty who wants to unlock the locked 
asset needs to provide the original hash image for verification. Only after the verification is legitimate can the asset be successfully 
unlocked. Should there be no withdrawal of the encumbered asset within the set timeframe, the time lock mechanism ensures the 
return of all assets to the initiating account. Known as hash locking, this protocol is extensively applied in cross-chain technologies 
due to its capacity to facilitate asset exchanges that are decentralized and free from intermediaries. The parties to the transaction 
do not need to trust each other to complete the exchange of assets. Vitalik Buterin [27] has described the problem of blockchain 
interoperability and introduced the application of the hash time locking algorithm in cross-chain technology. This algorithm provides 
a reliable technical means to achieve secure asset exchange. Jinzhong Li and colleagues [28] introduced a universally adaptable 
cross-chain transaction protocol that leverages hash time-locking technology. This protocol employs cross-chain tech to address 
issues of network isolation and facilitate interoperability within the energy sector’s blockchain. Blerim Rexha and his team [29]

explored the integration of blockchain bridges into electronic voting systems, underscoring their capability to enhance both trust 
and interoperability within these systems. They utilize several techniques such as atomic swaps, sidechains, cross-chain bridges, 
token wrapping, and connectivity protocols to illustrate how blockchain bridges facilitate the exchange of data and support dual 
4

decentralization models.
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2.2.2. Sidechain

Sidechain, also known as pegged sidechain, are a kind of cross-chain technology that realizes asset transactions or data-

information interactions between different blockchains through two-way peg technology [30]. At the heart of sidechain functionality 
lies the two-way peg system, a mechanism that allows for the transfer of tokens between the main blockchain and a sidechain ac-

cording to a predetermined or formulaic exchange rate, with the provision for these tokens to be returned [31]. Three key methods 
have been developed to facilitate this two-way pegging within sidechain operations:

Centralized Method: In this approach, a single trusted authority oversees the locking and unlocking of funds on both the main 
and side chains. Its simplicity and quick transaction capability come at the cost of heightened centralization risk, potentially com-

promising the security of the transfers.

Federated or Multi-Signature Method: Building on the centralized model, this method distributes fund management across a 
consortium or group, requiring consensus (typically a majority) for transactions. While this mitigates some centralization concerns 
and retains transaction speed, the reliance on a select group may still pose risks to trust and security [32].

Simplified Payment Verification (SPV) Method: SPV confirms a transaction’s validity on the blockchain through proof of com-

putational effort. Transfers to the main chain involve locking funds to an address, which are then unlocked on the sidechain using 
SPV proofs, allowing for the transaction without further main chain interaction. This process, which mirrors for transfers back to 
the main chain, supports decentralization by eliminating third-party involvement. However, the necessity for chain synchronization 
introduces significant delays—usually a day or two—slowing down the transaction process. The need for SPV proofs also increases 
the size of transactions, thereby consuming more blockchain space [33].

Blockstream, a company joined by the core developers of Bitcoin, proposed the concept of pegged side chains in a white paper 
released in October 2014 [33], with the aim of realizing the cross-chain transfer of assets from different blockchains as well as 
the possibility of implementing more technological and financial innovations without affecting the main chain. Two-way pegging, 
fundamental to sidechain technology, is characterized by its role in facilitating the bidirectional exchange of assets across different 
blockchain networks. This mechanism is categorized into two forms: symmetric two-way peg, where the asset conversion rate is 
equal in both directions, and asymmetric two-way peg, where the conversion rates vary between the two chains. In December 
2016, Blockstream introduced the idea of sidechains equipped with strong federations [32]. This concept employs addresses that 
require multiple signatures for transactions, managed by several entities, aiming to decrease transaction times and enhance the 
interoperability between different blockchains. In May 2016, the blockchain technology firm ConsenSys, based in the United States, 
unveiled BTCRelay [34], a mechanism for enabling Ethereum to access Bitcoin blockchain data directly. Following that, in June 2016, 
Kwon outlined Cosmos [35], a new network design aimed at facilitating the integration and interoperability of different blockchain 
networks. Later, in November 2016, Wood proposed a diverse multi-chain framework in the Polkadot white paper [36], which is 
crafted to allow decentralized and trustless interactions among various consensus mechanisms.

The Zcash (ZEC) team developed the XCAT (Cross-Chain Atomic Transaction) tool [37], which realizes cross-chain atomic transac-

tions between ZEC and BTC. Bancor builds a cross-chain decentralized liquidity network based on smart contracts to realize automatic 
valuation and exchange of blockchain assets without counterparties; OneLedger provides a set of solutions for enterprise systems to 
connect with the blockchain system, which connects to various types of private, alliance, and public chains through side links and 
communicates with the enterprise-level systems through intermediate protocol layers.

3. Efficient cross-chain interaction solution in multi-chain environment

3.1. System overview

The system model in this paper uses one main chain and multiple side chains to complete the construction of the main side multi-

chain structure and uses a main side chain two-way pegged trading system to transfer funds between the main side chains. All the 
users involved in the transaction have an account in the main chain; in addition, each user also has an account in its corresponding 
side chain. The model structure of the entire master sidechain system is shown in Fig. 1.

The master chain is the first chain generated by the system, which is responsible for the confirmation of the side chains and 
guarantees that the side chains can run well. Each side chain is categorized according to its specific application scenarios and 
functions, and in each category, the side chain nodes handle the same type of transactions. Sidechains in different categories exist 
due to the existence of special functions or sidechains without monetary functions, so the transactions between them cannot be sent 
directly and need unified management by the cross-chain transaction system. Within distinct namespaces, side chains transmit their 
blocks to the main chain, where the main chain’s nodes are responsible for verifying the side chains’ nodes. This process is crucial 
for confirming the authenticity and security of the side chains’ blocks.

The two-way pegged cross-chain transaction system for the transfer of funds from the main side chain is realized entirely through 
the smart contract on the chain without introducing any third-party entity, and the entire cross-chain fund transfer process is carried 
out in accordance with the process set by the smart contract without waiting for confirmation from other parties. By implementing 
this approach, it not only mitigates the risk of centralization to a degree and enhances the overall security of cross-chain transactions 
but also enables users to swiftly execute fund transfers. This markedly boosts the efficiency of cross-chain interactions between the 
main chain and side chains.

Beyond just facilitating fund transfers between the main chain and side chains, the methodology outlined in this document also 
encompasses the exchange of data across chains. This is achieved via smart contracts deployed on the main chain, which enable the 
5

transfer of data from side chains to the main chain. Side chains push the required data to the main chain, where it is validated and 
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Fig. 1. Cross-chain interaction system model.

stored by a smart contract. This setup allows other side chains to access and retrieve this data through smart contract calls, thus 
enabling a comprehensive cross-chain data sharing mechanism.

3.2. Cross-chain transaction process

The framework for main-to-side chain cross-chain transactions proposed in this study is segmented into three distinct phases: 
initiation, confirmation, and completion. Initially, a user triggers the transaction by applying to the cross-chain mechanism, which, 
upon approval, issues a unique key based on predefined criteria. This key enables the user to secure their assets for transfer. During 
the confirmation phase, the system evaluates the user-provided information to ascertain the proper sequestration of funds. Successful 
verification progresses the transaction to the final phase. Here, the user employs the previously received key on the intended chain to 
release the assets, thereby finalizing the transfer process. The specific flow of the whole cross-chain fund transfer is shown in Fig. 2.

3.2.1. Lock-in phase

After confirming the need for fund transfers, the user signs the current account address, target chain account address, transfer 
amount, and other information and sends it to the cross-chain system. After receiving the signature, the system verifies it and 
generates the key for locking the funds after confirming that the information is correct. The following initial service Algorithm 1

includes the processes of signature verification and key generation.

Which (𝑚, 𝜎) is the user sent to the system by the message signature pair for the user’s public key 𝑝𝑘. After the system receives 
the message signature pair, it calls the versign function to verify the signature, and if the verification passes, i.e., result is 1, it calls 
the initialization function to initialize the service, and if the verification of the whole signature does not match the information, 
i.e., result is 0, it returns Verification Failed and ends the algorithm. In the initialization function, the information in the message 
sent by the user can be extracted by calling, including the source blockchain identifier 𝐼𝐷𝑆 , target blockchain identifier 𝐼𝐷𝑇 , and 
transaction amount. The system then generates the key r through a random function and calculates the hash value 𝐻𝑙𝑜𝑐𝑘 used to lock 
the funds through a hash function. In this context, the initial image 𝑟 is formed from a sequence that includes several components 
and a random value, as defined by Eq (5) and (6):
6

𝑟0 =𝑅𝑎𝑛𝑑𝑜𝑚(𝑖)𝑖∈[0,𝑛+1] (5)
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Fig. 2. Cross-chain transaction process.

Algorithm 1 Initialization service.

Input: 𝑚, 𝜎, 𝑝𝑘
Output: (𝐼𝐷𝑆 , 𝐼𝐷𝑇 , 𝑎𝑐𝑐𝑢𝑛𝑡); 𝐻𝑙𝑜𝑐𝑘

1: function VERSIGN(𝑚, 𝜎, 𝑝𝑘)

2: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑣𝑒𝑟(𝑚, 𝜎, 𝑝𝑘)
3: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 1 then

4: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛()
5: else

6: return Verification Failed

7: end if

8: end function

9: function INITIALIZATION(𝑚)

10: (𝐼𝐷𝑆 , 𝐼𝐷𝑇 , 𝑎𝑐𝑐𝑢𝑛𝑡) ← 𝑔𝑒𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑚)
11: 𝑟 ←𝑅𝑎𝑛𝑑𝑜𝑚()
12: return (𝐼𝐷𝑆 , 𝐼𝐷𝑇 , 𝑎𝑐𝑐𝑢𝑛𝑡), 𝐻𝑙𝑜𝑐𝑘 =𝐻(𝑟)
13: end function

𝑟 = (𝑀𝑢𝑙𝑡𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) + 𝑟0 (6)

In this scenario, 𝑀𝑢𝑙𝑡𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 represents a composite value obtained through a multielement mapping process, which could 
include various parameters such as geographical coordinates (e.g., latitude and longitude) of a location, along with a unique identifier 
for an enterprise organization. Additionally, 𝑟0 denotes the corresponding random number generated within the blockchain system.

After completing the initialization service, the cross-chain system will lock the same amount of currency in the target chain as 
the user needs to transfer. The steps performed by the smart contract in this process are shown in the Algorithm 2.

Where 𝑎𝑐𝑐𝑢𝑛𝑡 is the number of funds to be locked, the value of the hash lock used to lock the asset, 𝐴𝑐𝑐𝑡1 is the fund account 
of the cross-chain system in the target chain, and t1 is the time interval of locking. First the system obtains the current time from 
the timestamp on the chain as the time to start locking 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡, and then calls the function 𝑔𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒() to query the balance on 
𝐵𝑎𝑙𝑠𝑦𝑠 the account 𝐴𝑐𝑐𝑡1, if the balance is greater than or equal to the number of funds to be locked, the locking starts, otherwise it 
returns locking failure. The system calculates the locking time and deducts the number of funds locked by the user from the account 
to complete the locking. In the subsequent locking time, if the system receives the key of the hash value unlocked by the user, it 
runs the unlocking program, and if it is still not unlocked at the end of the locking time, the funds will be withdrawn to the original 
7

account.
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Algorithm 2 Systematic locking of assets.

Input: 𝑎𝑐𝑐𝑢𝑛𝑡; 𝐻𝑙𝑜𝑐𝑘; 𝐴𝑐𝑐𝑡1; 𝑡1
Output: 𝑙𝑜𝑐𝑘 𝑟𝑒𝑠𝑢𝑙𝑡
1: function LOCK()

2: 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 = 𝑔𝑒𝑡𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝()
3: 𝐵𝑎𝑙𝑠𝑦𝑠 ← 𝑔𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴𝑐𝑐𝑡1 )
4: if 𝐵𝑎𝑙𝑠𝑦𝑠 >= 𝑎𝑐𝑐𝑢𝑛𝑡 then

5: 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘 = 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 + 𝑡1
6: Decrease the assets in the 𝐴𝑐𝑐𝑡1 according to the accunt

7: return Lock successfully

8: end if

9: for i ← 0 to 𝑡1 do

10: if get key for unlocking 𝐻𝑙𝑜𝑐𝑘 then

11: Call 𝑈𝑛𝑙𝑜𝑐𝑘()
12: else

13: return Lock failed

14: end if

15: end for

16: end function

After the currency in the target chain is locked, the system signs the hash value 𝐻𝑙𝑜𝑐𝑘 and sends it to the user. After receiving 
the signature, the user verifies the validity of the signature, and after confirmation, the user uses the hash value 𝐻𝑙𝑜𝑐𝑘 to lock the 
asset in the source chain for the amount he or she wants to transfer, and the locking time is 𝑡2. The specific process is shown in the 
Algorithm 3.

Algorithm 3 User locked assets.

Input: 𝑎𝑐𝑐𝑢𝑛𝑡; 𝐻𝑙𝑜𝑐𝑘; 𝐴𝑐𝑐𝑠1; 𝑡2
Output: 𝑙𝑜𝑐𝑘 𝑟𝑒𝑠𝑢𝑙𝑡
1: function LOCK()

2: 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 = 𝑔𝑒𝑡𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝()
3: 𝐵𝑎𝑙𝑢𝑠𝑒𝑟 ← 𝑔𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐴𝑐𝑐𝑠2 )
4: if 𝐵𝑎𝑙𝑢𝑠𝑒𝑟 >= 𝑎𝑐𝑐𝑢𝑛𝑡 then

5: 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘 = 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 + 𝑡2
6: Decrease the assets in the 𝐴𝑐𝑐𝑠1 according to the accunt

7: return Lock successfully

8: for i ← 0 to 𝑡2 do

9: if get key for unlocking 𝐻𝑙𝑜𝑐𝑘 then

10: Call 𝑈𝑛𝑙𝑜𝑐𝑘()
11: end if

12: 𝑇 𝑖𝑚𝑒𝑒𝑛𝑑 = 𝑔𝑒𝑡𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝()
13: if 𝑇 𝑖𝑚𝑒𝑒𝑛𝑑 > 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘 then

14: Call 𝑊 𝑖𝑡ℎ𝑑𝑟𝑎𝑤()
15: end if

16: end for

17: else

18: return Lock failed

19: end if

20: end function

Where accunt is the number of funds to be locked, 𝐻𝑙𝑜𝑐𝑘 is the value of the hash lock used to lock the asset, 𝐴𝑐𝑐𝑠2 is the user’s fund 
account in the source chain, 𝑡2 is the time interval for locking, and 𝑡2 < 𝑡1. After obtaining the current time through the timestamp, 
the function 𝑔𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒() is called to query the balance 𝐵𝑎𝑙𝑢𝑠𝑒𝑟 on the account 𝐴𝑐𝑐𝑠2 and compare it with the number of funds to be 
locked, if the balance of the user’s account meets the requirements, the locking will be started, or else return to the locking failure. 
After the system deducts the corresponding funds from the user’s account, the lock is completed and returns the result. If the system 
receives the hash key for unlocking within the 𝑡2 time, the unlocking program is run, and if it is still not unlocked at the end of the 
locking time, the funds are returned in the same way.

3.2.2. Validation phase

After the user and the system have completed locking the assets in the source chain and the target chain respectively, the whole 
fund transfer process enters the verification stage. At this time, the user and the cross-chain system will verify the assets previously 
locked by the other party to ensure that the funds are locked according to the requirements, so as to ensure the security of the 
entire cross-chain fund transfer process. Firstly, the system will find the relevant two blockchains according to the source blockchain 
identifier 𝐼𝐷𝑆 and target blockchain identifier 𝐼𝐷𝑇 in the information submitted by the user, and then confirm whether the user 
has completed the locking of the funds on these two chains and whether the transaction amount accunt is equal to the number of 
funds locked in the smart contract; if the verification passes, then the unlocking phase will be carried out in the next step; if the 
8

verification fails, then the transaction will be canceled. In the transaction validation phase, how the system confirms that the funds 
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have been correctly locked is a key part of ensuring the security and atomicity of cross-chain transactions. Specific validation criteria 
and logic can include the following.

∙ Smart contract state checking: The system first checks the status of the smart contract associated with the transaction to ensure 
that the contract has been correctly activated or is in the expected wait-locked state. This step ensures that the initialization of 
the transaction has been completed and that the smart contract is ready to receive and lock funds.

∙ Validation of the amount of funds: The system reads the amount of funds recorded by the smart contract and compares it 
with the amount of funds declared in the transaction request submitted by the user. The validation ensures that the funds the 
user has locked in the source chain correspond to the amount they wish to transfer to the target chain. This step prevents under 
or over locking of funds.

∙ Reconciliation of hash lock information: For cross-chain transactions that use a hash-time locking mechanism, the system 
needs to verify the hash-lock information provided by the user. This includes checking that the key of the hash submitted by 
the user matches the hash value recorded in the smart contract, and that it was submitted within the specified time-lock period. 
This step ensures that both parties to the transaction have complied with the pre-agreed transaction conditions.

∙ Reconciliation of hash lock information: For cross-chain transactions that use a hash-time locking mechanism, the system 
needs to verify the hash-lock information provided by the user. This includes checking that the key of the hash submitted by 
the user matches the hash value recorded in the smart contract, and that it was submitted within the specified time-lock period. 
This step ensures that both parties to the transaction have complied with the pre-agreed transaction conditions.

∙ Verification of the accounts of both parties to the transaction: The system checks the source and target account information 
of the locked funds to ensure that the funds were transferred from the correct account and will be transferred to the intended 
account. This step prevents misdirection of funds and unauthorized transactions.

Through these specific verification criteria and logic, the cross-chain transaction system can ensure that each transaction has 
strictly followed the preset rules and conditions, thus guaranteeing the security and atomicity of the transaction. Such a validation 
process helps build trust between the two transaction participants, while reducing the risk of fund loss due to misuse or malicious 
behavior.

3.2.3. Unlocking phase

After passing the verification stage of the information, such as the locking of funds, the unlocking of funds will begin. First, the 
system will provide the key of the hash lock in the smart contract in the source chain, and then the funds will be transferred directly 
to the locked account address of the system according to the setting of the smart contract. The specific unlocking process is shown in 
the Algorithm 4.

Algorithm 4 System unlocked assets.

Input: 𝑟; 𝐻𝑙𝑜𝑐𝑘; 𝐴𝑐𝑐𝑠1; 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2
Output: 𝑢𝑛𝑙𝑜𝑐𝑘 𝑟𝑒𝑠𝑢𝑙𝑡
1: function UNLOCK()

2: 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 = 𝑔𝑒𝑡𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝()
3: if 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 < 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2 then

4: if 𝐻𝑙𝑜𝑐𝑘 =𝐻(𝑟) then

5: Unlock contract assets

6: Add the assets in the 𝐴𝑐𝑐𝑠1 according to the accunt

7: return Unlock successfully

8: else

9: return Unlock failed

10: end if

11: else

12: return Unlock failed

13: end if

14: end function

Where 𝐻𝑙𝑜𝑐𝑘 is the hash value of the locked funds, 𝐴𝑐𝑐𝑠1 is the account address of the system in the source chain, and 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2
is the time of the time lock set in the source chain smart contract. First, the current time is obtained through the timestamp to verify 
whether it is within the range of the time lock, and if it is within the range, then the next step of verification is carried out; otherwise, 
the unlocking fails and the fund withdrawal process is carried out. Then determine whether 𝑟 is the correct original hash-lock image 
by comparing the hash value 𝐻(𝑟) of the key 𝑟 with 𝐻𝑙𝑜𝑐𝑘. The asset in the smart contract can be unlocked after the verification is 
passed, and the funds will be transferred to the system’s account address 𝐴𝑐𝑐𝑠1 in the source chain. If the original image provided 
does not always agree with the hash lock then the unlocking fails.

After the system completes the unlocking, the user will get the original image 𝑅𝑟𝑒𝑐 of the hash lock through the smart contract, 
at which time the user needs to unlock the locked assets in the target chain before the specified time. As shown in Algorithm 5.

Where 𝐻𝑙𝑜𝑐𝑘 is the hash value of the locked funds, 𝐴𝑐𝑐𝑡2 is the user’s account address in the target chain, and 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1 is the 
time of the time lock set in the target chain smart contract. After obtaining the current time through the timestamp and verifying 
9

that it is at a valid time, use the acquisition of the original image 𝑅𝑟𝑒𝑐 to calculate its hash value 𝐻𝑙𝑜𝑐𝑘 and compare it with to 
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Algorithm 5 Users unlocking assets.

Input: 𝑅𝑟𝑒𝑐 ; 𝐻𝑙𝑜𝑐𝑘; 𝐴𝑐𝑐𝑡1; 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1
Output: 𝑢𝑛𝑙𝑜𝑐𝑘 𝑟𝑒𝑠𝑢𝑙𝑡
1: function UNLOCK()

2: 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 = 𝑔𝑒𝑡𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝()
3: if 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 < 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1 then

4: if 𝐻𝑙𝑜𝑐𝑘 =𝐻(𝑅𝑟𝑒𝑐 ) then

5: Unlock contract assets

6: Add the assets in the 𝐴𝑐𝑐𝑡2 according to the accunt

7: return Unlock successfully

8: else

9: return Unlock failed

10: end if

11: else

12: return Unlock failed

13: end if

14: end function

determine its validity. If the comparison is consistent, then the unlocking is successful, and the funds will be transferred to the user’s 
account address 𝐴𝑐𝑐𝑡2 in the target chain, and then the entire cross-chain fund transfer is successfully completed. If the original 
image provided is inconsistent with the hash lock, then the unlocking fails.

3.2.4. Handing of exceptions

During the transaction process, there are some abnormal situations that do not follow the expected process, such as when the 
user did not unlock the asset within the time specified or failed to unlock it in time due to the system being affected by network 
fluctuations and equipment failures. First of all, the system will monitor whether the transaction is completed within the specified 
time through the time lock mechanism built into the smart contract. If the locked funds are not correctly unlocked within the set 
time window, the smart contract will automatically trigger a timeout exception. During the initialization phase of the transaction, the 
system verifies the signature submitted by the user to ensure the authenticity of the transaction request and the identity of the user. If 
the signature verification fails, the system will immediately mark the transaction as abnormal. In addition, during the locking phase, 
the system will check whether there are sufficient funds in the user’s account to complete the transaction. If there are insufficient 
funds, the system will block the transaction from execution and log the insufficient funds exception.

In response, the system will perform a withdrawal algorithm for these situations that lead to transaction failure. The specific 
process is shown in Algorithm 6.

Algorithm 6 Asset withdrawal.

Input: 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1; 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2
Output: 𝑊 𝑖𝑡ℎ𝑑𝑟𝑎𝑤 𝑟𝑒𝑠𝑢𝑙𝑡
1: function WITHDRAW ()

2: 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 = 𝑔𝑒𝑡𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝()
3: if 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 > 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1 then

4: Unlock contract assets

5: Return the assets to the original account

6: return Withdraw successfully

7: else

8: if 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 > 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2 then

9: Unlock contract assets

10: Return the assets to the original account

11: return Withdraw successfully

12: else

13: return Withdraw failed

14: end if

15: end if

16: end function

Where 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1, 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2 is the time of the time lock set in the target and source chains respectively, and 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1 > 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2. 
If the current time 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1 is exceeded, it is determined that the time lock in the target chain has timed out, and then the system 
will unlock the funds locked by both parties and return them to the original account. If the current time 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘1 is not exceeded, 
but 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘2 is exceeded, it is determined that the time lock in the source chain has timed out, and the system will also unlock the 
funds locked by both parties and return them to the original account.

3.3. Cross-chain data interaction

The cross-chain data interaction scheme in this paper utilizes side-chain data storage smart contracts to achieve efficient and 
secure cross-chain data interaction. The scheme includes steps such as the definition of data formats and contract interfaces, data 
10

submission on the sidechain, a data verification mechanism on the mainchain, and data synchronization between the mainchain and 
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the sidechain. By adopting smart contracts, trigger mechanisms, and regular updates, the scheme proposed in this paper ensures the 
reliability, integrity, and consistency of cross-chain data interactions.

3.3.1. Data formate definition

Data format definitions define the structure and fields of cross-chain data, allowing data to be accurately understood and parsed 
between different chains. Current cross-chain data interaction schemes can use different data structures for representation, such as 
JSON (JavaScript Object Notation), XML (eXtensible Markup Language), or binary formats. In this scheme, we choose to use JSON 
as the data structure representation due to its simplicity, readability, and wide support. The following are the data structure field 
definitions for the cross-chain data in this paper:

(1) 𝐷𝑎𝑡𝑎𝐼𝑑: Unique identifier of data for data access and synchronization in the sidechain data store contract.

∙ 𝐴𝑑𝑑𝑠𝑒𝑛𝑑𝑒𝑟: The sender of the data, recording the address from which the data originated.

∙ 𝐴𝑑𝑑𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟: The recipient of the data identifies the destination address of the data.

∙ 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝: Timestamp of data, recording when the data was generated.

∙ 𝑃𝑎𝑦𝑙𝑜𝑎𝑑: The payload of data contains the actual data content. The specific content of the data is located in the payload field, 
which can be defined and extended according to specific needs, and the header of the payload field contains the hash value of 
the data content, which is used for integrity verification of the data.

∙ 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒: Digital signatures of data are used to verify the integrity of the data and the trustworthiness of the source.

To ensure data integrity, we use the following hash calculation formula Eq (7) to generate a hash of the data:

𝐻(𝑑𝑎𝑡𝑎) =𝐻𝑎𝑠ℎ(𝑃𝑎𝑦𝑙𝑜𝑎𝑑) (7)

where, 𝐻(𝑑𝑎𝑡𝑎) represents the hash value of the data, which is calculated by applying the hash function 𝐻𝑎𝑠ℎ to the 𝑃𝑎𝑦𝑙𝑜𝑎𝑑. This 
ensures the integrity and consistency of the data during transmission.

3.3.2. Data submission

When there is data generated that needs to be shared, the sender of the data can invoke the sidechain data storage contract’s 
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒.𝑠𝑢𝑏𝑚𝑖𝑡𝐷𝑎𝑡𝑎(𝑑𝑎𝑡𝑎𝐼𝑑, 𝐴𝑑𝑑𝑠𝑒𝑛𝑑𝑒𝑟, 𝐴𝑑𝑑𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒) function for data submission, the incom-

ing parameters include all the data structure fields defined earlier. The data is passed in as a string and is parsed and stored according 
to the agreed data format. After the contract receives the data, it is verified and processed accordingly. The data validation mechanism 
can include verification of the legitimacy, integrity, digital signature, etc. of the data to ensure that only valid data can be accepted 
and stored. The contract can use the storage mechanism to save the data persistently for subsequent access and synchronization 
operations.

3.3.3. Data validation

After the sidechain submits the data to be shared, the data storage contract will verify the uploaded data through the data 
validation mechanism to ensure that only valid data can be accepted and stored. The process of data validation can include a data 
legitimacy check, integrity verification, and digital signature verification.

After the data is submitted, the contract first checks the legitimacy of the submitted data to verify that the data meets the agreed 
format and field requirements. The contract uses methods such as conditional statements and regular expressions to validate the data 
and ensure that the data meets the agreed format or field requirements. If the validation fails, the contract will refuse to accept and 
store the data and return a corresponding error message to the sender.

The contract then verifies the integrity of the data to ensure that it has not been tampered with or lost during transmission. The 
contract verifies the integrity of the data by performing hash calculations on the data using a hash function and comparing it to the 
hash value of the data provided by the sender in the header of the payload field. We verify the integrity of the data by using the Eq 
(8):

𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘(𝐷𝑎𝑡𝑎𝐻𝑎𝑠ℎ,𝑆𝑡𝑜𝑟𝑒𝑑𝐻𝑎𝑠ℎ) = 𝑇 𝑟𝑢𝑒∕𝐹𝑎𝑙𝑠𝑒 (8)

If the hash value of the data does not match the hash value provided by the sender, the contract determines that the data has been 
tampered with and refuses to accept and store the data.

Finally, the contract will verify the digital signature of the data using the Eq (9):

𝑉 𝑒𝑟𝑖𝑓𝑦(𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒,𝐷𝑎𝑡𝑎,𝑃𝐾) = 𝑇 𝑟𝑢𝑒∕𝐹𝑎𝑙𝑠𝑒 (9)

where 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is the digital signature of the data, 𝐷𝑎𝑡𝑎 is the original data, 𝑃𝐾 is the public key of the sender. If the signature 
verification is successful, then return 𝑇 𝑟𝑢𝑒, otherwise return 𝐹𝑎𝑙𝑠𝑒, indicating that the data may have been tampered with or the 
sender is not trustworthy.

The sender can sign the data using a private key, and the receiver can verify the validity of the signature using the sender’s public 
key. The contract can verify the digital signature of the data when it is submitted to ensure the trustworthiness of the data. If the 
11

signature verification fails, the contract can refuse to accept and store the data.
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Table 1

Configuration information of the nodes.

Experimental environment Configuration

CPU Intel(R) Core(TM) i5-12400F CPU @ 2.50GHz

Memory 16GB

Hard disk 935GB SSD

Operating system Linux Ubuntu 22.04

Network bandwidth 1000M

3.3.4. Data access control

Cross-chain data access is an important part of the cross-chain data interaction scheme. By calling the interface function of the 
side-chain data storage contract, the access and acquisition of cross-chain data can be realized on the main chain. The smart contract 
on the main chain can call the contract function and pass the corresponding parameters to obtain specific data. The contract can 
decide whether to provide access to the data based on the permissions and verification mechanisms.

In order to ensure data security and privacy, cross-chain data access should be set up with appropriate access control mechanisms. 
Contracts set different levels of access privileges and decide whether to provide access to data based on user roles or authentication 
mechanisms. Only users or contracts with appropriate permissions can successfully access cross-chain data.

The cross-chain data interaction system will define different roles and corresponding permission levels, for example, multiple 
levels of access roles such as administrator roles (admin) and ordinary user roles (users), and at the same time, roles in different side 
chains will be assigned corresponding permission levels for each role based on relevance.

Permission modifiers (modifiers) are used in contracts to restrict access to functions. Permission modifiers can be used to de-

termine whether or not to execute a function based on a role’s permission level. Only roles with the appropriate permission level 
can successfully execute functions modified by modifiers. The access rights to the corresponding functions are restricted through the 
onlyAdmin and onlyUser permission modifiers. Only the contract deployer (admin) can call the PerformRestrictedOperation func-

tion, while only addresses added to the user list can call the PerformNormalOperation function. Before accessing cross-chain data, the 
system will perform data validation on the access request. The contract can verify the validity, integrity, and legitimacy of the data 
to ensure that only validated data can be accessed and used. In addition, the contract can record the access log of cross-chain data, 
including the identity information of the visitor, access time, access data, etc., so as to trace and monitor the data access behavior.

4. Experimental analysis

To validate the effectiveness of the cross-chain interaction model proposed in this paper and assess its performance, a blockchain 
experimental environment is simulated and constructed using an Ethernet platform. Three sets of experiments are conducted within 
this environment by establishing two private Ethernet blockchains. The methodology outlined in this paper is implemented within 
the experimental setup, with the algorithmic code stored locally on all Ethernet nodes to facilitate verification. Configuration details 
for the nodes are provided in Table 1.

This paper conducts experiments with three distinct variable groups. Firstly, we establish one main chain and several side chains 
of varying types to assess the performance of the proposed scheme against traditional methods under different transaction loads. 
Secondly, we analyze the interaction success rates of our approach and traditional methods in the presence of numerous malicious 
nodes attempting attacks. Lastly, we compare the communication overhead between our proposed cross-chain data interaction 
scheme and traditional methods when facilitating data exchange between the main and side chains.

For the purpose of comparison, we selected two widely recognized traditional schemes that have been instrumental in facilitating 
cross-chain interactions prior to our innovation: Notary Schemes: These involve a set of trusted validators (notaries) that oversee 
and facilitate transactions between different blockchain networks. While offering simplicity and direct interoperability, their reliance 
on centralized entities for validation introduces potential security vulnerabilities and centralization risks. Sidechains: Sidechains are 
auxiliary blockchains that run parallel to the main blockchain, allowing for asset and data transfer between the sidechain and the 
main chain. This method leverages a two-way peg mechanism, enabling interoperability but often at the cost of increased complexity 
and security challenges related to the sidechain’s security and consensus mechanism. We will use these traditional cross-chain 
schemes in our experiments to compare with the scheme in this paper to highlight the superiority of the scheme in this paper.

4.1. Performance testing

Since the two-way pegged cross-chain transaction system used for the fund transfer of the main and side chains in this paper’s 
scheme is realized entirely through the smart contract on the chain without waiting for the confirmation of other parties, users can 
quickly complete the fund transfer and realize the efficient cross-chain interaction of the main and side chains. In order to verify 
the fund transfer efficiency of this paper’s scheme and its performance under different transaction loads, we build a main chain and 
multiple side chains with different purposes through simulation experiments, and configure the two-way pegged transaction system 
between the main chain and the side chains to ensure that the fund transfer and data interaction functions are available, and then 
carry out fund transfers between the main and side chains, and record the submission time and confirmation time of each transaction, 
12

and then start to gradually increase the number of transactions to simulate the performance of the system under different loads, and 
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Fig. 3. Performance test experimental results.

Table 2

Malicious attack test results.

Test Scenario Proposed Method Traditional Method

Malicious Data Submission Test

Number of Attempts 20 20

Successful Submissions 0 10

Malicious Data Detected 20 0

Data Tampering Test

Number of Attempts 15 15

Successful Tampering 0 8

Tampering Detected 15 0

System Stability Test

Number of Malicious Nodes 50 50

Normal Transaction Time Normal Slightly Delayed

Defensive Test

Number of Attempts 20 20

Successful Attacks 0 12

finally obtain the system’s transaction confirmation time, throughput and other indicators under different loads. The experimental 
results for transaction confirmation time are shown in Fig. 3(a), and the experimental results for throughput are shown in Fig. 3(b).

From the experimental results, it can be seen that the transaction confirmation time gradually increases with the increase in the 
number of transactions, and the system has a high throughput in the initial stage, but the throughput gradually decreases under 
high load. The scheme in this paper shows lower transaction confirmation time and reflects higher efficiency under each transaction 
number compared to the traditional scheme. In addition, this paper’s scheme is able to maintain high throughput under high load 
and shows better scalability.

4.2. Malicious attack test

In order to verify the security of this paper’s scheme in the process of cross-chain interaction, we test whether the system can 
recognize it effectively by setting up a malicious node in the blockchain and attempting to submit malicious data, as well as tampered 
data. In this paper, we first simulate the experiments of trying to submit malicious data using malicious nodes in this paper’s scheme 
and the traditional scheme, and record the number of successful submissions. In addition this paper also simulates the data tampering 
test where the malicious node tries to tamper with the submitted data and records the results of the system detection. The results of 
the experiment are shown in Table 2.

Experimental results show that this paper’s scheme successfully identifies and blocks malicious data submission, detects data 
tampering, and performs well in defending nodes. In contrast, the traditional scheme has a high level of malicious data submission 
and data tampering, exposing its lower security performance. This scenario will verify the reliability and security of the scheme in 
13

this paper and provide practical data support for the security performance of cross-chain interactions.
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Fig. 4. Data interaction overheads.

4.3. Data interaction overhead test

In order to verify the effectiveness of this paper’s scheme in cross-chain data interaction, this paper records the communication 
overhead of the two schemes in different cases by simulating data interaction between the main side chains. First, we will choose 
different sizes of data for testing, submit these data to the main chain smart contract for verification and storage, and record the time 
required for each interaction. Then, we will simulate scenarios with different interaction frequencies, measure the time for the main 
chain smart contract to process the data and the side chain to submit the data, and calculate the average communication overhead. 
The experimental results are shown in Fig. 4.

From the above data, it can be observed that the proposed scheme in this paper has relatively low transaction size and transaction 
cost during data interaction, while the traditional scheme performs poorly in these aspects. This indicates that the scheme in this 
paper has an advantage in terms of communication overhead and is able to realize cross-chain data interaction between the main 
chain and side chains more effectively. This result is consistent with our expectations and proves the superiority of the cross-chain 
data interaction scheme proposed in this paper in terms of communication overhead.

5. Conclusion

This paper focuses on resolving the challenge of enabling interaction between digital content and assets across various blockchains 
within a multi-chain ecosystem. By building upon traditional sidechains and incorporating technologies such as smart contracts and 
hash time locks, it not only resolves security and efficiency concerns but also achieves decentralized transaction processes, mitigating 
third-party risks and improving transaction speeds. Additionally, the solution emphasizes data interchange security and consistency, 
ensuring data trustworthiness and privacy protection during cross-chain processes. Through this technological implementation, dis-

tinct blockchain systems can efficiently share data and assets, achieving true blockchain interoperability. Finally, this paper validates 
the proposed solution through performance testing and malicious attack experiments, demonstrating its effectiveness. In the future, 
we will focus on optimizing the scalability of the solutions in this paper and conducting comprehensive tests in real-world scenarios 
to address these challenges. And more in-depth research on optimizing data exchange protocols and security frameworks to en-

sure robust protection against evolving cyber threats and to adapt to the increasingly complex blockchain ecosystem. We will also 
target scalability enhancements to ensure that our solutions can handle a wide range of data interactions without compromising 
performance.
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