
BioMed CentralBMC Proceedings

ss
Open AcceProceedings
Impact of gene expression data pre-processing on expression 
quantitative trait locus mapping
Aurelie Labbe*†1,2, Marie-Paule Roth†3, Pierre-Hugues Carmichael1 and 
Maria Martinez†3

Address: 1Département de Mathématiques et de Statistique, Université Laval, Québec, G1K 7P4, Canada, 2Centre de Recherche Université Laval 
Robert Giffard, Québec, G1K 7P4, Canada and 3INSERM U563, Centre de Physiopathologic de Toulouse Purpan Toulouse, F-31300, France; 
Université Toulouse, III Paul-Sabatiere, Toulouse, F-31400, France

Email: Aurelie Labbe* - alabbe@mat.ulaval.ca; Marie-Paule Roth - roth@cict.fr; Pierre-Hugues Carmichael - pcarmich@mat.ulaval.ca; 
Maria Martinez - maria.martinez@toulouse.inserm.fr

* Corresponding author    †Equal contributors

Abstract
We evaluate the impact of three pre-processing methods for Affymetrix microarray data on
expression quantitative trait locus (eQTL) mapping, using 14 CEPH Utah families (GAW Problem
1 data). Different sets of expression traits were chosen according to different selection criteria:
expression level, variance, and heritability. For each gene, three expression phenotypes were
obtained by different pre-processing methods. Each quantitative phenotype was then submitted to
a whole-genome scan, using multipoint variance component LODs. Pre-processing methods were
compared with respect to their linkage outcomes (number of linkage signals with LODs greater
than 3, consistencies in the location of the trait-specific linkage signals, and type of cis/trans-
regulating loci). Overall, we found little agreement between linkage results from the different pre-
processing methods: most of the linkage signals were specific to one pre-processing method.
However, agreement rates varied according to the criteria used to select the traits. For instance,
these rates were higher in the set of the most heritable traits. On the other hand, the pre-
processing method had little impact on the relative proportion of detected cis and trans-regulating
loci. Interestingly, although the number of detected cis-regulating loci was relatively small, pre-
processing methods agreed much better in this set of linkage signals than in the trans-regulating loci.
Several potential factors explaining the discordance observed between the methods are discussed.

Background
Evidence for heritability of mRNA levels has been
observed in several organisms like the mouse, yeast, and
human [1-3]. Therefore, it is possible to consider tran-

script levels measured using DNA microarrays as quantita-
tive traits and localize the genes controlling them by
quantitative trait locus (QTL) analyses. However, one of
the challenges is to remove optical noise and take into
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account nonspecific hybridization in the microarray
experiments. In addition, in the Affymetrix system, each
gene is represented by 11–20 Perfect Match (PM) and Mis-
match (MM) pairs of probes, each probing a different
region of the mRNA transcript, typically within 600 base
pairs of the 3' end [4]. It is also important to find a way to
combine the 11–20 probe pair intensities for a given gene
into a single measure. Several data pre-processing meth-
ods are now available. Of several such proposed methods,
three have commonly been employed: the Robust Multi-
array Average (RMA), GeneChip RMA (GCRMA), and the
Microarray Analysis Suite 5 (MAS5) methods. A detailed
description of these methods can be found elsewhere [5-
7]. These three methods convert probe-level data to
expression values through the following sequence: 1)
background correction, 2) normalization, and 3) summa-
rizing the probe set values into one expression measure.
Regarding the background correction step, MAS5 uses the
MM probes to adjust the PM probes for probe-specific
nonspecific binding [5]. On the other hand, RMA ignores
the MM intensities and performs a global background cor-
rection [6]. GCRMA employs a hybrid approach and uses
the probe sequence information released by Affymetrix to
compute an affinity measure and describe background
noise. For Step 2, RMA and GCRMA use the same normal-
ization method based upon intensity quantiles, which
imposes the same empirical distribution of intensity to
each array. In MAS5, a baseline array is chosen and all the
other arrays are scaled to have the same mean intensity as
this array. Finally, RMA and GCRMA use the same probe
summary method, based on a robust linear model. In
MAS5, the probe summary is based on a robust average
method.

Different DNA chip pre-processing methods have been
shown to influence measures of gene expression [6,8,9].
Therefore, the choice of a pre-processing method signifi-
cantly affects linkage results obtained in genomic analyses
[10]. However, whether or not only concordant results
should be further investigated is still debated (see Petretto
et al. [11] and Chesler et al. [12] in their reply to Williams
et al. [10]). In this paper, we focus on comparing the
degree of concordance between pre-processing methods,
according to the characteristics of the traits selected for
linkage analysis.

Methods
The study is based on all 14 three-generation CEPH (Cen-
tre d'Etude du Polymorphisme Humain) Utah families.
Gene expression levels in lymphoblastoid cells of 194
individuals have been obtained using the Affymetrix
Human Focus Arrays that contain probes for 8792 tran-
scripts. Details regarding the microarray experiments are
given in Morley et al. [3].

Data pre-processing
Transcript expression data were obtained using the three
methods described above: MAS5, RMA, and GCRMA.
Expression levels in 82 individuals with technical repli-
cates were averaged over replicates. All subsequent analy-
ses were performed on log2-transformed values.

Choice of the traits for linkage analysis
It may be appropriate to restrict linkage analysis to the
traits that are expressed in the target tissue and show
detectable variation between individuals. Clearly, this is
rarely the case for all the transcripts analyzed on a micro-
array. For example, Morley et al. [3] chose to analyze less
than 50% of the measured traits, according to the ratio of
the variances of trait expressions between and within indi-
viduals. Here, we first used the detection (Present/Absent)
call generated by the Affymetrix MAS5 software to identify
transcripts that were not reliably detected. 3727 tran-
scripts were found to be significantly expressed in at least
80% of the arrays (at the significant level of 4%) and are
referred in this paper as the "expressed set". The other set
of 5065 transcripts is referred as the "non-expressed set".
Three groups of genes were selected in the expressed set of
genes, based on the distribution of their expression levels
measured by the MAS5 preprocessing method in the 194
available individuals: 1) the 100 genes with the highest
variance in the measured expression phenotype, 2) the
100 genes with the most heritable expression, and 3) 350
genes chosen at random among the top 50% genes with
the largest variance. Note that 8 genes were common to
groups 1 and 2, 22 to groups 1 and 3, and 2 to the three
groups. In addition, a fourth group consisted of the 100
top most variable genes of the non-expressed set. A total
of 3 × 650 expression phenotypes were therefore submit-
ted to linkage analysis.

Linkage analysis
The loci controlling expression levels (the quantitative
traits) of these 650 genes were localized using all auto-
somal marker data provided in the Problem 1 GAW15
dataset. Multipoint LOD scores were computed using the
variance-component linkage test with the software Merlin
[13]. In this paper, we define linkage peaks as the highest
multipoint LOD within a 20 Mb-interval. In this study, we
deemed as "linkage signals" linkage outcomes that have a
LOD score ≥ 3, not accounting for the multiple testing
problem.

Criteria to compare pre-processing methods
Several measures were defined in order to compare the
three pre-processing methods: 1) the number of linkage
signals, 2) the number of traits with at least one linkage
signal as well as the number of linkage signals per trait,
and 3) the location of the loci controlling gene expression
with respect to the position of the gene itself (cis- or trans-
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acting loci). A gene was assumed to be cis-regulated when
the locus controlling its expression level mapped within
10 Mb of the gene itself, and trans-regulated otherwise.
Finally, results obtained using two different pre-process-
ing methods were considered consistent when the dis-
tance between their linkage peaks was less than 20 Mb.
Concordance rates between two or more methods were
defined as the ratio of the number of consistent linkage
peaks between methods over the total number of linkage
peaks detected by any of the three methods.

Results
Comparison of the linkage signals detected for the three 
methods
Figure 1 gives the number of linkage signals for each pre-
processing method in parentheses as well as the concord-
ance rate between methods evaluated as described above.
Not surprisingly, more linkage signals were found for the
most heritable traits than for those with the highest vari-
ance. More linkage signals were detected with GCRMA
than with the two other methods, especially in two sets,
the set of 350 traits randomly chosen and that of 100 non-
expressed traits. In general, less than half of the linkage
signals are concordant between two or three methods.
However, these rates vary according to the group of genes
analyzed: the most important discrepancies were
observed for the set of non-expressed genes and the set of
the 350 genes chosen at random: 74% and 63.7% of the
signals, respectively, were specific to the GCRMA pre-
processing method. Furthermore, for the group of 100
non-expressed genes, 2 signals with LOD ≥ 3 were

detected with MAS5, whereas 95 and 25 signals were
detected with GCRMA and RMA, respectively. For the
three other groups, RMA was the pre-processing method
that generated the lowest rate of specific signals (from
4.7% to 11.3%).

Comparison of the number of traits with at least one 
linkage signal as well as the number of linkage signals per 
trait
Table 1 shows the number of detected eQTLs and the aver-
age number of linkage signals per trait. Again, on average,
we observe that loci regulating gene expression were
found for more genes when data were pre-processed using
GCRMA, especially in two sets of traits. In the set of the
350 traits chosen at random, a high proportion of the
linkage signals (64%) were accounted by only two of the
expression traits, SYMPK and ARG2. The same trend was
observed in the set of non-expressed traits, where 60% of
the signals were accounted by the two traits TIE1 and
FUT7.

Comparison of the cis-acting and trans-acting detected 
eQTLs
The number of cis-, cis-trans, and trans-acting loci detected
by each method is given in Table 2. Similar distributions
were obtained with all three pre-processing methods. The
majority of the detected traits are trans-regulated: from
65–68% in the set of non-expressed genes, to 76–89% in
the set of 350 variable traits. Nevertheless, for cis-regulat-
ing signals (results not shown), concordance rates
between the three methods were 44% (4/9) for the group

Concordance and discordance rates of the linkage signals between pre-processing methods (with number of linkage signals per method)Figure 1
Concordance and discordance rates of the linkage signals between pre-processing methods (with number of linkage signals per 
method).
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of 350 traits chosen at random, 100% (1/1) in the group
of non-expressed genes, 73% (11/15) in the group of the
most heritable genes, and 60% (3/5) in the group of the
most variable traits. Further, concordance rates between
GCRMA and RMA were especially high and always greater
than 75%. On the other hand, in the remaining set of sig-
nals (trans-regulators), much lower concordance rates
were obtained (<34%, for all sets of genes studied).

Discussion
As previously suggested by other studies [6,8,10], our
results confirm that pre-processing methods may also
affect linkage outcomes. However, this impact depends
on the way traits were selected for genetic analysis. Choos-
ing the traits on the basis of a high heritability value led to
a minimum discrepancy between methods. Conversely,
discrepancies were more important in the group of non-
expressed traits or in the group of variable traits chosen at
random (note that in this last group, heritability ranges

from 0% to 50%). Furthermore, we noticed that the three
pre-processing methods agree much better for cis-acting
than for trans-acting regulators.

Several factors may explain partly why the three methods
produce different results. First, as already stated in the
Background, the underlying models converting probe
level data to expression values are different from one
method to another. Although the normalization step is
not the same for the three methods, previous work has
shown that these differences have little effect relative to
that of the background correction, which entails a vari-
ance/bias trade-off. Especially, it has been shown that
background correction decreases the bias but that naïve
background correction procedures, such as MAS5 and
RMA, increase the variance [8]. GCRMA is supposed to
provide a good balance between accuracy and precision
by doing adequate non-specific binding correction. Our
study suggests that the large impact of the background
correction also applies to eQTL mapping results. Indeed,
RMA and GCRMA differ only by the background correc-
tion step, yet their concordance rates were not particularly
high. Interestingly, Irizarry et al. [8] observed that differ-
ences in precision between RMA and GCRMA were higher
in the case of genes with low expression, with GCRMA giv-
ing the smallest bias. We also observed a greater discord-
ance rate between RMA and GCRMA for the set of non-
expressed genes.

Another potential factor for explaining differences
between methods is departure from normality of the phe-
notypic distribution, especially when using a variance-
component approach. We found that, in general, GCRMA
led to the highest rate of traits failing the Shapiro normal-
ity test. Among expressed genes, these rates were 5.4, 0.8,
and 1.7% for GCRMA, RMA, and MAS5, respectively
(using a Bonferroni correction for multiple testing at level
5%). These rates might explain the large number of link-
age signals observed for a few traits with GCRMA. How-
ever, it seems unlikely that conflicting eQTL mapping
results are mainly due to differences in the gene expres-
sion distributions per se.

Table 2: Number of cis-, cis/trans, and trans-regulated traits for 
each method (proportion among traits having at least one 
linkage signal)

cis cis/trans trans

350 variable traits
MAS5 7 (19%) 2 (5%) 28 (76%)
GCRMA 4 (9%) 1 (2%) 40 (89%)
RMA 3 (8%) 1 (3%) 32 (89%)

100 most variable traits
MAS5 1 (50%) 0 (0%) 1 (50%)
GCRMA 1 (7%) 0 (0%) 13 (93%)
RMA 1 (14%) 0 (0%) 6 (86%)

100 most heritable traits
MAS5 2 (11%) 3 (17%) 13 (72%)
GCRMA 2 (9.5%) 2 (9.5%) 17 (81%)
RMA 3 (18%) 1 (6%) 13 (76%)

100 non-expressed traits
MAS5 8 (20%) 6 (15%) 25 (65%)
GCRMA 7 (19%) 5 (14%) 24 (67%)
RMA 9 (26%) 2 (6%) 23 (68%)

Table 1: Number of detected traits (having at least one linkage signal) and mean number of linkage signals per trait

No. Traits detected (%) Mean no. of linkage signals by detected trait (range)

Set of traits MAS5 GCRMA RMA MAS5 GCRMA RMA

350 random 37/350 (11%) 45/350 (13%) 36/350 (10%) 1.43 (1–4) 4.08 (1–61) 1.30 (1–3)
100 most variable 18/100 (18%) 21/100 (21%) 17/100 (17%) 1.55 (1–4) 1.85 (1–5) 1.82 (1–7)
100 most heritable 39/100 (39%) 36/100 (36%) 34/100 (34%) 6.97 (1–90) 7.8 (1–111) 4.35 (1–54)
100 non-expressed 2/100 (2%) 14/100 (14%) 7/100 (7%) 1 (1-1) 6.5 (1–30) 3.6 (1–9)
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In conclusion, the true genetic determinants of the stud-
ied traits in the GAW Problem 1 data are unknown, pre-
venting us from drawing definite conclusions on the best
and more robust pre-processing method. Further, in the
context of a genome-scan, high agreement rates across
experiments are not expected because most of the linkage
signals are likely to be false positives. It is unclear whether
it would be sound to use several pre-processing methods
in a systematic manner. Such guidelines were proposed
recently but remain controversial [10-12]. In our study,
we found very poor agreement between pre-processing
methods in the set of the non-expressed but most variable
genes (i.e., our Set 4), suggesting that filtering genes on
their detectable presence in the tissue of interest is also an
important step. To filter genes not only on their variability
but also on their presence in the tissue analyzed is one of
our main messages.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
This article has been published as part of BMC Proceedings Volume 1 Sup-
plement 1, 2007: Genetic Analysis Workshop 15: Gene Expression Analysis 
and Approaches to Detecting Multiple Functional Loci. The full contents of 
the supplement are available online at http://www.biomedcentral.com/
1753-6561/1?issue=S1.

References
1. Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M,

Spielman RS: Natural variation in human gene expression
assessed in lymphoblastoid cells.  Nat Genet 2003, 33:422-425.

2. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick
JT: Mapping determinants of human gene expression by
regional and whole genome association.  Nature 2005,
437:1365-1369.

3. Morley M, Molony CM, Weber T, Devlin JL, Ewens KG, Spielman RS,
Cheung VG: Genetic analysis of genome-wide variation in
human gene expression.  Nature 2004, 430:743-747.

4. Affymetrix: Affymetrix Microarray Suite User Guide, version 4 Santa Clara,
CA: Affymetrix, Inc. 

5. Affymetrix: Statistical Algorithms Description Document Santa Clara, CA:
Affymetrix, Inc; 2002. 

6. Irizarry R, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf
U, Speed TP: Exploration, normalization, and summaries of
high density oligonucleotide array probe level data.  Biostatis-
tics 2003, 4:249-264.

7. Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F: A model
based background adjustment for oligonucleotide expres-
sion arrays.  J Am Stat Assoc 2004, 99:909-918.

8. Irizarry R, Wu Z, Jaffee H: Comparison of Affymetrix GeneChip
expression measures.  Bioinformatics 2006, 22:789-794.

9. Zakharin SO, Kim K, Mehta T, Chen L, Barnes S, Scheirer KE, Parrish
RS, Allison DB, Page GP: Sources of variation in Affymetrix
microarray experiments.  BMC Bioinformatics 2005, 6:214.

10. Williams RBH, Cotsapas CJ, Cowley MJ, Chan E, Nott DJ, Little PFR:
Normalization procedures and detection of linkage signal in
genetical-genomic experiments.  Nat Genet 2006, 38:855-856.

11. Petretto E, Mangion J, Cook SA, Aitman TJ, Pravenec M, Schulz H,
Fischer J, Hubner N: Reply to "Normalization procedures and
detection of linkage signal in genetical-genomics experi-
ments".  Nat Genet 2006, 38:858-859.

12. Chesler EJ, Bystrykh L, de Haan G, Cooke MP, Su A, Manly KF, Wil-
liams RW: Reply to "Normalization procedures and detection

of linkage signal in genetical-genomics experiments".  Nat
Genet 2006, 38:856-858.

13. Abecasis GR, Cherny SS, Cookson WO, Cardon LR: Merlin-rapid
analysis of dense genetic maps using sparse gene flow trees.
Nat Genet 2002, 30:97-101.
Page 5 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12567189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12567189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16251966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16251966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15269782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16410320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16410320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16124883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16124883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16874319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16874319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16874319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731797
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

