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Proteome analysis of the globus pallidus from progressive supranuclear palsy,
Parkinson’s disease, and control individuals identified >10,000 proteins. Parkin-
son’s disease, oxidative phosphorylation, andAlzheimer’s disease pathwayswere
the most enriched ones. The mitochondrial electron transport chain proteins
were the key molecules downregulated in the globus pallidus of progressive
supranuclear palsy patients .
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Abstract
Background: Progressive supranuclear palsy (PSP) is a neurodegenerative dis-
order clinically characterized by progressive postural instability, supranuclear
gaze palsy, parkinsonism, and cognitive decline caused by degeneration in spe-
cific areas of the brain including globus pallidus (GP), substantia nigra, and
subthalamic nucleus. However, the pathogenetic mechanism of PSP remains
unclear to date.Unbiased global proteome analysis of patients’ brain samples is
an important step toward understanding PSP pathogenesis, as proteins serve as
workhorses and building blocks of the cell.
Methods: In this study, we conducted unbiasedmass spectrometry-based global
proteome analysis of GP samples from 15 PSP patients, 15 Parkinson disease
(PD) patients, and 15 healthy control (HC) individuals. To analyze 45 sam-
ples, we conducted 5 batches of 11-plex isobaric tandem mass tag (TMT)-based
multiplexing experiments. The identified proteins were subjected to statistical
analysis, such as a permutation-based statistical analysis in the significance anal-
ysis of microarray (SAM)method and bootstrap receiver operating characteristic
curve (ROC)-based statistical analysis. Subsequently, we conducted bioinformat-
ics analyses using gene set enrichment analysis, Search Tool for the Retrieval of
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Interacting Genes/Proteins (STRING) protein-protein interaction (PPI) analysis,
and weighted gene co-expression network analysis (WGCNA).
Results:We have identified 10,231 proteins with ∼1,000 differentially expressed
proteins. The gene set enrichment analysis results showed that the PD pathway
was the most highly enriched, followed by pathways for oxidative phospho-
rylation, Alzheimer disease, Huntington disease, and non-alcoholic fatty liver
disease (NAFLD) when PSP was compared to HC or PD. Most of the proteins
enriched in the gene set enrichment analysis were mitochondrial proteins such
as cytochrome c oxidase, NADH dehydrogenase, acyl carrier protein, succinate
dehydrogenase, ADP/ATP translocase, cytochrome b-c1 complex, and/or ATP
synthase. Strikingly, all of the enriched mitochondrial proteins in the PD path-
way were downregulated in PSP compared to both HC and PD. The subsequent
STRING PPI analysis and theWGCNA further supported that the mitochondrial
proteins were the most highly enriched in PSP.
Conclusion: Our study showed that the mitochondrial respiratory electron
transport chain complex was the key proteins that were dysregulated in GP of
PSP, suggesting that themitochondrial respiratory electron transport chain com-
plex could potentially be involved in the pathogenesis of PSP. This is the first
global proteome analysis of human GP from PSP patients, and this study paves
the way to understanding the mechanistic pathogenesis of PSP.

KEYWORDS
electron transport chain complex, globus pallidus, mass spectrometry, progressive supranu-
clear palsy, proteomics, PSP

1 INTRODUCTION

Progressive supranuclear palsy (PSP) is a neurodegenera-
tive disease clinically characterised by progressive parkin-
sonism, postural instability, vertical saccade slowing,
supranuclear gaze palsy, and cognitive decline.1 PSP affects
movement, gait, balance, speech, swallowing, vision, eye
movement, mood, behaviour, and cognition.2,3 The esti-
mated prevalence of PSP is about five to six per 100,000
worldwide, and symptoms typically begin after the age
of 60.4,5 The disease is induced by the gradual degen-
eration of cells in specific areas of the brain, including
the globus pallidus (GP), substantia nigra, subthalamic
nucleus, and frontal lobes.2,6,7 The pathological hallmarks
of PSP include the accumulation of four-repeat tau pro-
teins in neurofibrillary tangles, neuropil threads, and
tau-positive astrocytes.1 The underlying mechanisms of
pathogenesis in PSP remain unclear. PSP is generally con-
sidered sporadic, but rare familial clusters have also been
reported, and more than 10 genes with known muta-
tions linked to PSP have been reported.8 The most studied
gene in PSP is the microtubule-associated protein tau
(MAPT), which is expressed and regulated by alterna-

tive splicing in the human brain.9 MAPT H1 haplotype
homozygosity significantly predisposes to PSP, and MAPT
mutations cause familial PSP with monogenic autosomal
dominant inheritance.10 Mutations in leucine-rich repeat
kinase 2 (LRRK2), which is known as one of themost com-
mon genetic causes of Parkinson’s disease (PD), are also
suggested as a cause of PSP, although more association
studies are required.8,11–13 Mutations of dynactin subunit
1 (DCTN1), which is one of the largest subunits in the
dynactin family and is involved in cellular functions such
as cell division and transport, were observed in patients
with a clinical phenotype of PSP.14 Other geneswith poten-
tial links to PSP include bassoon (BSN), chromosome 9
open reading frame 72 (C9orf72), eukaryotic translation
initiation factor 2-alpha kinase 3 (EIF2AK3), progranulin
(GRN), myelin-associated oligodendrocyte basic protein
(MOBP), Niemann–Pick disease type C1 (NPC1), parkin
(PARK2), Syntaxin 6 (STX6), TANK-binding kinase 1
(TBK1), transactivation response element DNA-binding
protein (TARDBP), and several others.8,15
Currently, there are no disease-modifying treatments

for PSP.15,16 Symptoms of PSP are managed with medica-
tions for the treatment of other neurodegenerative diseases
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such as PD and AD, but effectiveness is limited.6,7,16,17
To develop effective treatment of PSP, a deeper under-
standing of its pathogenetic mechanisms is essential. As
such, it is crucial to identify proteins and relevant bio-
logical pathways involved in PSP pathogenesis. Since
the advent of the mass spectrometry-based proteomics
approach, this method has been considered the gold stan-
dard for protein identification and measurement. There-
fore, mass spectrometry-based proteomic analysis of the
human brain from PSP patients is essential to under-
stand the pathogenesis of this disease. Nevertheless, no
in-depth global proteome data acquired from the brains
of PSP patients is available to date. In this study, we con-
ducted mass spectrometry-based proteome analysis of GP
from 15 PSP patients, 15 PD patients, and 15 healthy con-
trol (HC) individuals. To analyse and compare these 45
samples, we employed the 11-plex isobaric tandem mass
tag (TMT)-based quantitative proteomics technology in
which samples can bemultiplexed up to 11 samples. To our
knowledge, this study is the first in-depth global proteome
analysis of the GP from PSP patients. The proteins and rel-
evant signalling pathways discovered in this study provide
a foundation for unravelling the pathogeneticmechanisms
of PSP.

2 METHODS

2.1 Collection of GP samples

We utilised GP samples from 15 PSP patients, 15 PD
patients, and 15 HC individuals. GP was selected as a well-
defined basal ganglia region known to be affected by PSP
pathology.18 The GP samples were collected from the Brain
Resource Center at the Johns Hopkins University School
of Medicine. The clinical information for the used sam-
ples is provided in Table 1 and Table S1. The inclusion
criteria for PSP are patients with neuropathologic changes
fulfilling PSP diagnostic criteria,19 age > 50 years, males
and females, and any race. The exclusion criteria for PSP
include patients with any significant neurodegenerative or
vascular comorbidity.

2.2 Sample preparation and enzyme
digestion of proteins from GP samples

AllGP sampleswere prepared by sonicating (Branson soni-
fier 250, ultrasonics, Danbury, USA) in 8 M urea and 50
mM triethylammonium bicarbonate (TEAB) on ice. The
protein amount of each samplewas quantified by the bicin-
choninic acid (BCA) protein assay (Pierce; Rockford, IL,
USA). The 45 GP samples were divided into five batches to

be analysed using 11-plex TMT. Each batch included one
master pool (MP) and one quality control (QC) sample.
The MP and QC samples were prepared by combining an
equal amount of proteins from all GP samples. The sample
order for TMT labelling was randomised to minimise the
effect of the TMT channel. The MP sample was added to
the 11th channel of each TMT experimental batch to nor-
malise the data from multiple TMT experimental batches.
The QC samples for verification of technical and biologi-
cal variations between the batcheswere divided and placed
in a channel in each batch before reduction and alkyla-
tion. For the reduction and alkylation of the proteins, 10
mM tris (2-carboxyethyl) phosphine hydrochloride (TCEP)
and 40 mM chloroacetamide (CAA) were added to the
samples and then incubated for 1 h at room temperature
(RT, 22◦C to 25◦C). Proteins were digested by LysC (Lysyl
endopeptidase mass spectrometry grade; Fujifilm Wako
Pure Chemical Industries Co., Ltd., Osaka, Japan) in a
ratio of 1:100 for 3 h at 37◦C, and then further digested
by trypsin (sequencing grade modified trypsin; Promega,
Fitchburg, WI, USA) in a ratio of 1:50 at 37◦C overnight
(for over 18 h) after diluting the concentration of urea from
8 M to 2 M by adding three volumes of 50 mM TEAB. The
samples were acidified with 1% trifluoroacetic acid (TFA)
to the final concentration and desalted with C18 Stage-
Tips (3M EmporeTM; 3M, St. Paul, MN, USA). The eluted
solution containing peptides was vacuum-dried using a
Savant SPD121P SpeedVac concentrator (Thermo Scien-
tific, Waltham,MA, USA) and then stored at−80◦C before
use.20,21

2.3 TMT labelling on the peptide
samples and bRPLC fractionation

The digested peptides fromGP sampleswere labelled using
11-plex TMT reagents to perform TMT-based quantita-
tive mass spectrometry according to the manufacturer’s
instructions (ThermoFisher Scientific,MA,USA). TheMP
sample was prepared in one tube and labelled by the 131C
channel and split into five batches. The PSP, PD, HC, and
QC samples were labelled with the rest of the channels.
All TMT labelling reactions were performed for 1 h at RT
and then quenched with 1/10 volume of 1 M Tris-HCl (pH
8.0). The samples of each batch were pooled and subjected
to prefractionation using basic pH reversed-phase liquid
chromatography (bRPLC) on an Agilent 1260 HPLC sys-
tem (Agilent Technologies, Santa Clara, CA, USA). The
TMT-labelled peptides were reconstituted in solvent A
(10 mM TEAB, pH 8.5) and loaded onto a C18 column
(Agilent 300 Extend-C18 column, 5 μm, 4.6 mm × 250
mm, Agilent Technologies). The loaded peptides were sep-
arated over the gradient of solvent B (10 mM TEAB in
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TABLE 1 Demographics of GP samples from PSP patients, HC individuals, and PD patients used in this study

No. Group Age Sex Race
PMD
(h) CERAD

Braak
stage Diagnosis

1 PSP 77 F W 2 0 3 PSP
2 PSP 65 F W 4 0 3 PSP
3 PSP 76 F W NA 0 2 PSP
4 PSP 72 F W 15 0 4 PSP
5 PSP 79 M B 12 0 3 PSP
6 PSP 85 M W 7 0 4 PSP
7 PSP 87 F W 17 0 4 PSP
8 PSP 74 F W 20 0 0 PSP, cerebrovascular disease not contributing
9 PSP 66 M W 9.5 0 4 PSP, cerebrovascular disease not contributing
10 PSP 65 M W 8 0 2 PSP
11 PSP 70 M W 6 B 0 PSP, cerebrovascular disease not contributing
12 PSP 86 F W 18.8 0 4 PSP, cerebrovascular disease not contributing
13 PSP 74 M W 18 0 2 PSP
14 PSP 70 M W 7.5 0 0 PSP, cerebrovascular disease not contributing
15 PSP 64 M W 8.5 0 0 PSP
16 HC 80 F W 6 0 0 Control
17 HC 86 F B 6 A 2 Control
18 HC 66 M W 12 0 3 Control
19 HC 70 M W 0 NA NA Control
20 HC 80 F W 8 0 0 Control
21 HC 74 M W 4 0 2 Control
22 HC 79 M W 16 0 2 Control
23 HC 87 F W 7 0 2 Control, cerebrovascular disease not contributing
24 HC 89 M W 9 0 2 Control, lacunar infarcts
25 HC 71 M W 16 0 0 Control, lacunar infarct, cerebrovascular disease not

contributing
26 HC 68 F W 12 0 2 Control
27 HC 94 M W 15 0 2 Control, asymptomatic Lewy bodies in SN and ERC
28 HC 90 F B 22 A 3 Control
29 HC 77 M W 10 0 4 Control, leukostasis from AML
30 HC 88 F W 9 0 2 Control, CVD not contributing
31 PD 60 M W 15.5 0 3 PD with dementia
32 PD 71 M W 24 0 2 PD with dementia
33 PD 83 M W 5 0 4 PD with dementia, neuro. degen, occipital infarct
34 PD 84 F W 11 0 4 PD with dementia
35 PD 65 M W 21 0 2 PD with dementia
36 PD 60 F W 18 0 4 PD with dementia, cerebrovascular disease not

contributing
37 PD 79 M W 21 0 4 PD with dementia, neurofibrillary degeneration
38 PD 72 M W 15 0 0 PD
39 PD 65 M W 6 0 0 PD, cerebrovascular disease not contributing
40 PD 95 F W 14 0 4 PD, neurofibrillary degeneration, cerebrovascular

disease not contributing
41 PD 61 F W 26 0 0 PD, juvenile PD, familial PD
42 PD 75 F W - 0 2 PD, PART
43 PD 74 F W 9.3 0 3 PD with dementia, part
44 PD 66 F W 9 0 2 PD, PART
45 PD 92 F W 17 0 2 PD

Abbreviations: AML, acute myeloid leukemia; B, Black; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; CVD, cerebrovascular disease; ERC,
entorhinal cortex; F, Female; HC, healthy control; M, Male; NA, not available; PART, primary age-related tauopathy; PD, Parkinson’s disease; PMD, post-mortem
delay; PSP, progressive supranuclear palsy; SN, substantia nigra; W, White.
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90% acetonitrile (ACN), pH 8.5) at a flow rate of 0.3
mL/min. A total of 96 fractions collected over 97 min
(the total run time of 150 min) were concatenated into
24 fractions. The concatenated samples were dried in a
SpeedVac.20–22

2.4 LC-MS/MS analysis

The prepared peptide samples were trapped onto an
Acclaim™ PepMap™ 100 LC C18 NanoViper trap column
(100μm× 2 cm, packed with 5-μm C18 particles, Thermo
Scientific) at a flow rate of 8 μL/min and resolved on an
EASY-Spray™ analytical column (75 μm × 50 cm, packed
with 2-μm C18 particles, Thermo Scientific) at a flow rate
of 0.3 μL/min using an Ultimate3000 RSLCnano nanoflow
liquid chromatography system (Thermo Fisher Scientific,
MA, USA) that was coupled with an Orbitrap Fusion
Lumos Tribrid Mass Spectrometer. The peptide separa-
tion was conducted by increasing the gradient of solvent
B (0.1% FA in 95% ACN) from 8% to 28% over 90 min.
An EASY-Spray ion source was operated at 2.4 kV. The
data acquisition for the peptides injected into the mass
spectrometer was conducted in data-dependent acquisi-
tion (DDA) mode. The MS1 scan range was set to m/z
300 to 1,800 with a 3-sec per cycle of the “top speed” set-
ting. The mass resolutions for MS1 and MS2 were 120,000
and 50,000 at an m/z of 200, respectively. Maximum ion
injection times for MS1 and MS2 were 50 and 100 mil-
liseconds, respectively. The automatic gain controls for
MS1 and MS2 were 1 and 0.05 million ions, respectively.
The higher-energy collisional dissociation (HCD) value
was set to 35%. The precursor isolation window was set
to m/z 1.5 with an m/z 0.4 offset. Dynamic exclusion
was set to 30 s with 7 ppm of the mass window. Single-
charged ions were rejected. Internal calibration was con-
ducted using the lock mass option (m/z 445.1200025) from
ambient air.20–22

2.5 Data analysis

The data analysis was conducted as described in Khan
et al. with some modifications as follows21: The ver-
sion of Proteome Discoverer was 2.2.0.388. The UniProt
database (released in May 2018) used in this study
included both Swiss-Prot and TrEMBL. The minimum
peptide length was set to six amino acids. The MS order
for the protein quantification was set to MS2. Reporter
ion abundance was calculated based on the signal-to-
noise (S/N) ratio. The average reporter ion S/N threshold
and co-isolation threshold were set to 50% and 30%,
respectively.

2.6 Western blot assay

The GP tissues were heated at 95◦C for 5 min and son-
icated in RIPA lysis buffer (150 mM NaCl, 1% NP-40, 25
mM Tris-HCl pH 7.6, 0.1% sodium dodecyl sulfate, and 1%
sodium deoxycholate) supplemented with an EDTA-free
protease inhibitor cocktail (Roche, Basel, Switzerland).
Subsequently, the lysed samples were centrifuged at 16,000
× g at 4◦C for 5 min. Protein quantification of supernatant
from each sample was performed using the BCA protein
assay (Pierce; Rockford, IL, USA). The samples were added
with 4X Laemmli buffer (BIO-RAD, Hercules, CA, USA)
containing 10% 2-mercaptoethanol and heated at 70◦C
for 10 min. The proteins were then separated on Novex
WedgeWell 4 to 20% Tris-Glycine gels (ThermoFisher Sci-
entific, MA, USA). Proteins were blotted onto a 0.2-μm
polyvinylidene difluoride (PVDF) membrane (BIO-RAD)
using wet transfer at 100 V for 1.5 h. Subsequently, the
PVDF membranes were blocked in StartingBlock (PBS)
Blocking Buffer (Thermo Scientific) at RT for 1 h. Block-
ing buffer was used to dilute the primary and secondary
antibodies. The PVDF membranes were incubated at 4◦C
overnight with one of the following primary antibodies:
anti-NDUFB11 (1:500, Invitrogen, Waltham, MA, USA),
anti-UQCRH (1:200, Invitrogen), anti-NDUFA4 (1:1,000,
Thermo Scientific), and anti-β-actin (Invitrogen). The next
day, the PVDF membranes were washed three times in
Tris-buffered saline with Tween 20 TBST (Cell Signal-
ing Technology, Danvers, MA, USA). Each wash was
performed at RT for 10 min. Subsequently, the PDVF
membranes were incubated with anti-rabbit (1:1,000, Cell
Signaling Technology) IgG secondary antibody conjugated
with horseradish peroxide (HRP) at RT for 1 h. Finally,
the membranes were washed three times again under
the same wash conditions mentioned above, followed
by incubation of the membranes with SuperSignal West
Pico PLUS substrate (Thermo Fisher Scientific, MA, USA)
for chemiluminescent detection. The membranes were
imaged using a western blot imaging system (Amersham
Imager 600, GE Healthcare, Milwaukee, WI, USA). Den-
sitometric analysis of the imageswas performed on ImageJ
software (NIH) and t-test statistical analysiswas performed
for the relative intensity of β-actin using GraphPad Prism
version 9.4.0 for Windows (San Diego, CA, USA).

2.7 Experimental design and statistical
rationale

The total number of GP samples used in this study was
45, composed of 15 PSP patients, 15 PD patients, and
15 HC individuals. We conducted sample size analysis
using the pwr package in R. When we wanted to detect
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proteins with 1.5-fold differences between groups, the
required minimum sample size was 9.4 when the signif-
icance level was 0.0001, power was 0.8, sigma was 0.208,
and delta was 0.585 ( = log2 1.5). This sigma value of 0.208
was derived from our in-house TMT proteomics experi-
ments. The significance level of 0.0001 was determined
based on our previous studies. When we identified several
thousand proteins, the majority of the proteins with a p
value< 0.0001 showed a q-value< 0.05. Based on this sam-
ple size analysis, we decided to use 15 samples per group.
The statistical analysis of the mass spectrometry data was
performed with the Perseus version 1.6.0.7 software pack-
age. The quality of mass spectrometry data was monitored
by measuring coefficient variations (CV) of QC samples
and the S/N ratios. The S/N ratios were calculated by divid-
ing standard deviations (SD) of the samples by SDs of QCs.
The protein abundance data from five batches of the TMT
experiments was normalised by dividing the abundance
data of the PSP/PD/HC samples and QCs by those of the
MPs included in each batch, followed by dividing by the
median values of each protein. The relative abundance val-
ues for each sample were log2-transformed, followed by
a z-score transformation.23,24 We removed proteins with
one or more missing values across 45 samples. To further
remove batch effects, an additional normalizationwas con-
ducted with the ComBat package in R.25 Proteins with
a q-value of <0.05 were considered significant. The fold
changes between the comparison groups were calculated
by dividing the average abundance values of each protein
from one group by the values of another group. According
to our normality test using Shapiro–Wilk test in the dplyr
package in R, the majority of the proteins showed nor-
mal distribution. Thus, p values between the comparison
groups were calculated by the student’s two-sample t-test.
Since we are conducting multiple comparisons, we calcu-
lated a false discovery rate by comparing data with and
without permutations between groups. The q-values for
the volcano plots were calculated by a permutation-based
FDR estimation in the significance analysis of microar-
rays (SAM) method, in which P values and fold-changes
were calculated before and after the permutation of sam-
ples from two groups.26 As an orthogonal method to
increase the reliability of the selection for differentially
expressed proteins between groups, we also used bootstrap
receiver operating characteristic (ROC) curve-based statis-
tical analysis.27–30 A bootstrap ROC analysis was carried
out using the fbroc package in R. Sampling with replace-
ment was repeated 1,000 times for the bootstrap ROC. The
area under the curve (AUC) of a bootstrap ROC was com-
puted for each sampling. Themean and SD values of AUCs
from 1,000 bootstrap ROC were then calculated.31,32 The
q-values of the bootstrap ROC-based analysis data were
calculated as follows: (1) The mean AUC values for non-

permuted and permuted data were sorted in descending
order for proteins with mean AUCs > 0.5 and in ascend-
ing order for proteins with mean AUCs< 0.5; (2) the ratios
of the protein numbers for the non-permuted data to the
protein numbers for the permuted data were calculated as
lowering the cut-off threshold, and the ratios were used as
q-values.

2.8 Pathway analysis

The differentially expressed proteins were used for the
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis embedded in DAVID version 6.8.33,34 Interac-
tome analysis was carried out by the STRING PPI database
version 11.35,36 The weighted gene co-expression network
analysis (WGCNA) was conducted using the R software
package.37,38

2.9 Data and software availability

The mass spectrometry data from this study have been
deposited to the ProteomeXchange Consortium (https://
www.proteomexchange.org) via PRIDE partner reposi-
tory with the dataset identifier PXD031648 and project
name “Mass spectrometry-based proteomics analysis of
human globus pallidus from progressive supranuclear
palsy patients discovers multiple disease pathways.”

3 RESULTS

3.1 Quantitative proteome analysis for
the GP samples

We conducted a quantitative proteome analysis of 45 GP
samples from 15 PSP patients, 15 PD patients, and 15 HC
individuals. For more accurate protein quantification,
we exploited the 11-plex TMT labelling method. For the
analysis of 45 GP samples using 11-plex TMT, we added
MP to the 11th channel of each TMT experimental batch to
normalise data from multiple TMT experimental batches.
A QC was placed in one of the remaining 10 channels
of each TMT experimental batch to evaluate technical
variations and the S/N ratio, as shown in Figure 1. The
extracted proteins from human GP samples were digested
with Lys-C and trypsin, followed by TMT labelling and
bRPLC fractionation. The fractionated peptides were
then analysed on an LC-MS/MS. In total, 5,223,768 of the
MS/MS spectra were acquired, and 1,278,010 spectra were
assigned to peptides, leading to the identification of 120,671
peptides and 10,231 proteins (Data S1). The numbers of
proteins identified from each batch and all five batches in

https://www.proteomexchange.org
https://www.proteomexchange.org
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F IGURE 1 Experimental strategy for the proteomic study of the GP samples from PSP patients, PD patients, and HC individuals. Five
batches of 11-plex TMT experiments were conducted to analyse the proteome of human GP brain tissue samples from 15 PSP, 15 PD, and 15
HC. MP and QC samples were prepared by combining an equal amount of protein from all 45 GP samples. MP was added to each batch after
labelling with Tag 11 in one tube. QC was split into five aliquots and processed in each batch separately. TMT tags for individual samples and
QC were determined by randomization. The proteins were digested with Lys-C and trypsin, followed by TMT labelling and prefractionation
into 24 fractions prior to mass spectrometry analysis. Proteins were identified by conducting a database search of the acquired mass spectra.

common were ∼8,500 and ∼6,900, respectively
(Figure 2A). To compare protein abundances from
five different batches, protein intensity values were
normalised by the intensity values of the MP sample in
each batch. Because the batch effect estimation by PCA
analysis showed a residual batch effect, we conducted an
additional normalisation using the ComBat package in R,
and we observed that most of the residual batch effect was
removed (Figure 2B). Subsequently, we accessed technical
variations and the S/N ratio using the QC samples. More
than 70% of proteins showed CV of <30%, and ∼90%
of proteins showed S/N ratios > 1 (Figure 2C). These
results suggest that our mass spectrometry analysis was
successfully conducted with high precision.

3.2 Statistical analysis of the proteome
data

To identify proteinswith differential expression inGP from
PSP patients compared to PD or HC individuals, statisti-

cal analyses of the proteome data were conducted using
two different approaches: SAM- and bootstrap ROC-based
analyses. In the SAM-based approach, the numbers of dif-
ferentially expressed proteins in PSP versusHC, PSP versus
PD, and PD versus HC were 325, 934, and 18, respec-
tively (Figure 3A; Tables S2–S4; and Data S2). HMGA1,
ICAM1, EMILIN1, SQSTM1, NGFR, SPP1, IGHA2, SAA1,
and so on were among the most upregulated proteins,
and MT-CO1, SLIRP, GABRB2, GJB6, APOA4, FXYD1,
and so on were among the most downregulated pro-
teins in PSP compared to HC. ICAM1, PSME2, FAM129A,
SQSTM1, ANXA1, FCER1G, S100A6, CD44, GDA, IGHA2,
and so on were among the most upregulated proteins,
and COX6B1, SLC25A12, ACSL6, ADAM22, GJB6, LGI2,
PVALB, EML2, SLC6A11, PDE10A, and so on were among
the most downregulated proteins in PSP compared to
PD. ACVR1, KLK6, SELENOP, SLC38A2, and so on were
among the most upregulated proteins and DDC, TH,
TPH2, SLC6A3, FCER1G, ADIRF, and so on were among
the most downregulated proteins in PD compared to HC
(Figure 3A).
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F IGURE 2 The evaluation of proteomic data quality from five batches of 11-plex TMT experiments. (A) The number of Identified
proteins in each batch is shown in a Venn diagram. (B) To minimise batch effects of five different 11-plex TMT experiments, they were further
normalised using the Combat package after normalizing each batch using MP. Forty-five GP samples were shown on a 2D PCA plot to
visualise potential batch effects before (left panel) and after (right panel) the normalization using the Combat package. (C) CV of QC samples
and S/N ratio were calculated to evaluate data quality.

In the bootstrap ROC-based approach, the numbers
of differentially expressed proteins in PSP versus HC,
PSP versus PD, and PD versus HC were 463, 1,066,
and 55, respectively (Figure 4B; Tables S5–S7; and Data
S2). HMGA1, SQSTM1, EMILIN1, ICAM1, RSU1, LSM8,
RCOR3, ZC3H18, LSM4, and so on were among the most
upregulated proteins, and MT-CO1, ATAD1, GABRB2,
EPDR1, CMC2, COX5A, UQCR10, MRPL16, and so on
were among the most downregulated proteins in PSP
compared to HC. FERMT3, FCGR1A, SQSTM1, ICAM1,
STK4, S100A11, C1QB, MATN2, and so on were among the
most upregulated proteins, and ACSL6, CMC2, COX6B1,
AFG1L, CADPS, ADAM22, UQCRC1, MRPL12, LGI2, and
so onwere among themost downregulated proteins in PSP
compared to PD. ADSL, FLAD1, PSMB2, SESN1, SLC38A2,
NAAA, and so on were among the most upregulated pro-
teins, and DDC, TH, TPH2, PYCR3, WNK2, PLXNC1,
ZSCAN18, SLC6A3, RPS10, and so on were among the
most downregulated proteins in PD compared to HC
(Figure 3B).

When the differentially expressed proteins identified
from the SAM-based analysis were compared with those
identified with bootstrap ROC analysis, 225, 809, and 15
proteins overlapped in PSP versus HC, PSP versus PD,
and PD versus HC, respectively (Figure 3C). To minimise
the number of differentially expressed proteins selected by
type I error,we decided to use the differential proteins com-
mon to both of our analytic approaches for further pathway
analysis.

3.3 Gene set enrichment analysis

To uncover dysregulated signalling pathways in the GP
of PSP, gene set enrichment analysis was conducted
using the KEGG pathway database embedded in DAVID
bioinformatics resources (Data S3). When PSP was com-
pared to HC, the PD pathway was the most enriched
one, followed by oxidative phosphorylation, Alzheimer’s
disease, Huntington’s disease, and non-alcoholic fatty



JANG et al. 9 of 19

F IGURE 3 Volcano and bootstrap ROC plots of the GP proteins identified from PSP, PD, and HC. (A) The differences of GP protein
abundances from 15 PSP, 15 PD, and 15 HC were depicted on volcano plots. The curved lines are the boundaries for a q-value of 0.05. The
proteins with the q-value <0.05 are coloured in red. The proteins on the left and right sides of the q-value line are down- and upregulated
ones, respectively. (B) Bootstrap ROC analyses were conducted to estimate variations of resampling. To calculate q-values, bootstrap ROC
analyses after permutation of the comparison groups were conducted too. The differentially expressed proteins with q-values < 0.05 are
shown at the outside of the upper and lower horizontal lines. The proteins on the upper and lower side of the q-value line are upregulated and
downregulated in PSP compared to HC (left), in PSP compared to PD (middle), and in PD compared to HC (right), respectively. (C) The
differentially expressed proteins overlapping between the volcano plot and the bootstrap ROC analysis of each comparison group are shown
in the Venn diagrams.
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F IGURE 4 Parkinson’s disease pathway map identified by the gene set enrichment analysis. The Parkinson’s disease pathway map was
selected by gene set enrichment analysis with differentially expressed proteins in the comparison between (A) PSP and HC and between (B)
PSP and PD using the KEGG pathway database. The differentially expressed proteins identified in this study are coloured in magenta.

liver disease (NAFLD) pathways (Table 2). For the PD
pathway, 25 proteins were enriched, and strikingly, the
majority of the proteins enriched in the pathway were pro-
teins related to mitochondrial functions such as electron
transport (COX4I1, COX5A, COX6B1, COX7A2, CYCS, and
NDUFA4), NADH dehydrogenases (NDUFA9, NDUFB11,

NDUFB3, NDUFB4, NDUFB7, NDUFB8, NDUFC1,
NDUFS2, NDUFS5, NDUFS7, and NDUFS8), succinate
dehydrogenase (SDHC), ADP/ATP translocase (SLC25A4
and SLC25A5), and cytochrome b-c1 complex proteins
(UQCR10, UQCR11, UQCRB, UQCRH, and UQCRQ)
(Figure 4A). The majority of proteins enriched in the
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TABLE 2 Pathways enriched by gene set enriched pathways of differentially expressed proteins in PSP compared to HC. Differentially
expressed proteins selected by both volcano plot and bootstrap ROC analysis were used for this analysis

Term Count aPH % p Value
Parkinson’s disease 25 142 17.6 3.40E-18
Oxidative phosphorylation 24 133 18.0 1.10E-17
Alzheimer’s disease 25 168 14.9 1.90E-16
Huntington’s disease 26 192 13.5 3.90E-16
Non-alcoholic fatty liver disease (NAFLD) 23 151 15.2 2.80E-15
Ribosome 19 136 14.0 6.40E-12
Metabolic pathways 42 1219 3.4 2.80E-06
Cardiac muscle contraction 9 75 12.0 3.20E-05
Glutamatergic synapse 7 114 6.1 1.20E-02
Citrate cycle (TCA cycle) 4 30 13.3 1.30E-02

aPH, the total number of proteins in the pathway.

TABLE 3 Pathways enriched by gene set enriched pathways of differentially expressed proteins in PSP compared to PD. Differentially
expressed proteins selected by both volcano plot and bootstrap ROC analysis were used for this analysis

Term Count aPH % p Value
Parkinson’s disease 60 142 42.3 3.80E-38
Oxidative phosphorylation 55 133 41.4 2.70E-34
Alzheimer’s disease 58 168 34.5 3.10E-31
Huntington’s disease 59 192 30.7 1.00E-28
Non-alcoholic fatty liver disease (NAFLD) 49 151 32.5 6.30E-25
Cardiac muscle contraction 24 75 32.0 4.40E-12
Spliceosome 26 133 19.5 4.10E-08
Metabolic pathways 109 1219 8.9 5.00E-08
Pancreatic secretion 15 93 16.1 4.90E-04
Salivary secretion 13 86 15.1 2.40E-03

aPH, the total number of proteins in the pathway.

four other pathways were also related to mitochondrial
functions (Table S4). All of the mitochondria-related
proteins were downregulated in PSP compared to HC.
When PSP was compared to PD, the top five most

enriched pathways were the same as the ones enriched in
the comparison between PSP and HC, but the number of
enriched proteins in each pathway was more than doubled
(Table 3). For the PD pathway, 60 proteins were enriched
and the majority of the proteins were related to mito-
chondrial functions, as was observed in the comparison
between PSP and HC (Figure 4B). These mitochondrial
proteins included ATP synthase (ATP5F1, ATP5H, ATP5J,
and ATP5O) and acyl carrier protein (NDUFAB1) as
well as the ones already observed in the comparison
between PSP and HC, such as cytochrome c-related
proteins (COX4I1, COX5A, COX5B, COX6A1, COX6B1,
COX6C, COX7A2, COX7A2L, COX7C, CYC1, CYCS, and
NDUFA4), NADH dehydrogenases (NDUFA2, NDUFA3,
NDUFA4, NDUFA7, NDUFA9, NDUFA10, NDUFA12,
NDUFA13, NDUFAB1, NDUFB3, NDUFB4, NDUFB5,
NDUFB6, NDUFB7, NDUFB8, NDUFB9, NDUFB10,

NDUFB11, NDUFC1, NDUFC2, NDUFS1, NDUFS2,
NDUFS3, NDUFS5, NDUFS7, NDUFS8, NDUFV1, and
NDUFV3), succinate dehydrogenase (SDHA, SDHB,
and SDHC), ADP/ATP translocase (SLC25A4, SLC25A5,
and SLC25A6), and cytochrome b-c1 complex proteins
(UQCR11, UQCRB, UQCRC1, UQCRC2, UQCRFS1,
UQCRH, and UQCRQ). The majority of proteins enriched
in the four other pathways were also related to mitochon-
drial function, as observed in the comparison between
PSP and HC (Table S4). All of the mitochondria-related
proteins were downregulated in PSP compared to HC.
The gene set enrichment analysis results suggest that the
downregulation of mitochondrial proteins is potentially
linked to PSP pathogenesis.

3.4 Protein-protein interaction analysis

The gene set enrichment analysis showed that most of
the proteins enriched in the top five pathways were
related to mitochondrial function. We reasoned that the
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TABLE 4 Reactome analysis using the differentially expressed proteins in PSP compared to HC. Differentially expressed proteins
selected by both volcano plot and bootstrap ROC analysis were used for this analysis

Pathway Description
Count in
gene set

False
discovery
rate

HSA-5368287 Mitochondrial translation 39 of 94 4.26E-40
HSA-5419276 Mitochondrial translation termination 38 of 88 7.69E-40
HSA-5389840 Mitochondrial translation elongation 38 of 88 7.69E-40
HSA-5368286 Mitochondrial translation initiation 37 of 88 1.07E-38
HSA-1428517 The citric acid (TCA) cycle and respiratory electron

transport
38 of 173 5.93E-31

HSA-163200 Respiratory electron transport, ATP synthesis by
chemiosmotic coupling, and heat production by
uncoupling proteins

32 of 123 6.31E-28

HSA-611105 Respiratory electron transport 30 of 100 9.74E-28
HSA-72766 Translation 40 of 288 4.92E-26
HSA-6799198 Complex I biogenesis 16 of 55 2.12E-14
HSA-1268020 Mitochondrial protein import 15 of 64 2.45E-12

analysis of differential proteins using an orthogonal
approach would provide higher confidence in the rele-
vance of mitochondrial proteins in PSP. For this, we con-
ducted a PPI analysis of the differentially expressed pro-
teins in the comparison groups using STRINGPPI analysis.
We used ‘Experiment’ alone as an active interaction source
and a minimum required interaction score threshold of
0.9 (highest confidence). For the differentially expressed
proteins in the comparison between PSP and HC, the
STRING PPI analysis produced two highly connected clus-
ters and one moderately connected cluster (Figure 5A).
The most connected cluster was formed by mitochondrial
ribosomal proteins (MRPs). The second and third most
connected clusters were formed by the NADH dehydro-
genases and cytochrome b-c1 complex proteins. Reactome
analysis embedded in STRING PPI also showed that all of
the top four enriched pathways were related to mitochon-
drial translation (Table 4). For the differentially expressed
proteins in the comparison between PSP and PD, STRING
PPI analysis produced one highly connected and three
moderately connected clusters (Figure 5B). All connected
clusters were formed by proteins related to mitochondrial
function, such as NADH dehydrogenase, ATP synthase,
cytochrome b-c1 complex with cytochrome c oxidase, and
succinate dehydrogenase. Reactome analysis also showed
that all of the top three enriched pathways were related
to mitochondrial respiratory electron transport (Table 5).
The interactome analysis results also suggest that mito-
chondrial proteins represent the main component of the
differentially expressed proteins in PSP compared to HC
and PD.

3.5 Protein co-expression network
analysis

Both the gene set enrichment and the PPI analyses for the
differentially expressed proteins in the GP of PSP patients
suggested thatmainlymitochondrial proteinswere dysreg-
ulated. However, we still could not exclude the possibility
that variables other than PSP pathology could contribute
to the differential expression of mitochondrial proteins.
For this, we conducted WGCNA, in which proteins with
similar co-expression patterns are identified, generating
multiple modules that are composed of proteins with simi-
lar expression patterns. Subsequently, the correlations of
the modules with various traits of the samples such as
diagnosis, age, sex, and post-mortem delay (PMD) are esti-
mated (Table 1; Figure 6; and Figure S1). Since the PD,
mitochondrial translation, and ribosome pathways were
the ones most enriched in the gene set enrichment and
the PPI analyses, we investigated whether the modules
enriched with proteins belonging to these three pathways
were correlated with variables other than disease diagno-
sis. First, we selected modules that showed correlations
with the disease diagnosis trait and searched them for
the modules that have proteins enriched with the three
pathways among them.
When PSP and HC data were analysed using WGCNA,

the M5, M7, M8, and M15 modules showed positive
correlations with p values of <0.05, demonstrating that
the proteins in these clusters have a tendency to have
increased expression levels in PSP compared to HC. On
the other hand, the M9, M10, M11, and M12 modules
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F IGURE 5 STRING PPI analysis for network connectivity of the differentially expressed proteins in PSP compared to HC and in PSP
compared to PD. STRING PPI analyses were conducted to estimate the connectivity of the differentially expressed proteins (A) in PSP
compared to HC and (B) in PSP compared to PD. In the comparison between PSP and HC, the network contains 250 nodes with 980 edges.
Only experimental data was used for the active interaction source with 0.9 highest confidence threshold of a minimum required interaction
score (average node degree: 7.84, average local clustering coefficient: 0.482, and PPI enrichment p value < 1.0 ×10−16). In the comparison
between PSP and PD, the network contains 796 nodes with 503 edges. Only experimental data was used for the active interaction source with
0.9 highest confidence threshold of a minimum required interaction score (average node degree: 1.26, average local clustering coefficient: 0.14,
and PPI enrichment p value < 1.0 ×10−16). The red and yellow nodes denote Parkinson’s disease and mitochondria translation-related
proteins, respectively. The grey nodes do not belong to any enriched pathways.



14 of 19 JANG et al.

TABLE 5 Reactome analysis using the differentially expressed proteins in PSP compared to PD. Differentially expressed proteins selected
by both volcano plot and bootstrap ROC analysis were used for this analysis

Pathway Description
Count in
gene set

False
discovery
rate

HSA-163200 Respiratory electron transport, ATP synthesis by chemiosmotic
coupling, and heat production by uncoupling proteins

71 of 123 8.51E-47

HSA-1428517 The citric acid (TCA) cycle and respiratory electron transport 77 of 173 6.98E-45
HSA-611105 Respiratory electron transport 63 of 100 1.90E-43
HSA-1430728 Metabolism 196 of 2032 1.65E-26
HSA-6799198 Complex I biogenesis 35 of 55 8.37E-24
HSA-1268020 Mitochondrial protein import 30 of 64 1.90E-17
HSA-9609507 Protein localization 31 of 122 5.43E-12
HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 40 of 234 8.77E-11
HSA-72163 mRNA splicing - Major pathway 32 of 178 5.18E-09
HSA-72172 mRNA splicing 32 of 186 1.26E-08

showed negative correlations with p values of <0.05, indi-
cating that the proteins in these clusters have a tendency
to have decreased expression levels in PSP compared to
HC (Figure 6A). In the M12 module, the top five path-
ways selected by the gene set enrichment analysis were the
same as those observed for differential proteins between
PSP andHC,with the PD pathway being themost enriched
(Table S8; Table 2; and Data S4). In the M11 module, the
ribosome pathway was the most enriched (Table S7 and
Data S4). When PSP and PD data were analysed using
WGCNA, the M10 and M19 modules showed positive cor-
relations with p values of <0.05, demonstrating that the
proteins in these clusters have a tendency to have increased
expression levels in PSP compared to PD. On the other
hand, the M1, M2, M3, and M6 modules showed negative
correlations with p values of<0.05, indicating that the pro-
teins in these clusters have a tendency to have decreased
expression levels in PSP compared to PD (Figure 6B). In
the M6 module, the top five pathways selected by the gene
set enrichment analysis were the same as those observed
for differential proteins between PSP and PD, with the
PD pathway as the most enriched (Table S9; Table 3;
and Data S4).
Subsequently, we conducted the PPI analysis with pro-

teins in theM12 andM11modules generated byWGCNAof
PSP and HC and the M6 module generated by WGCNA of
PSP and PD. The M12 module from PSP and HC and the
M6 module from PSP and PD showed highly connected
clusters for mitochondrial respiratory electron transport
chain proteins such as NADH dehydrogenase, ATP syn-
thase, cytochrome c oxidase, cytochrome b-c1 complex,
and succinate dehydrogenase (Figures 7A,B), and they
were enriched in the PD pathway. The M11 module from
PSP and HC showed highly connected clusters for MRPs

and they were enriched in mitochondrial translation and
ribosome pathways (Figure 7C). These WGCNA results
showed that the M12 and M11 modules from PSP and HC
and the M6 module from PSP and PD were enriched for
mitochondria-related proteins. However, none of themod-
ules exhibited high correlations with variables other than
the diagnostic group. This suggests that the mitochondria-
related proteins in this study are highly linked to PSP
pathogenesis, although the causality of the mitochondria-
related proteins for PSP pathogenesis remains to be further
investigated.

3.6 Validation of differentially
expressed proteins in the mitochondrial
electron transport chain

Since the bioinformatic analysis of the proteomics data
acquired in this study revealed thatmitochondrial electron
transport chain proteins were key molecules differentially
regulated in the GP of the PSP, we conducted Western
blot experiments for the validation of proteins in the mito-
chondrial electron transport chain in the GP from an
independent cohort composed of 4 PSP, 4 PD, and 4 HC
individuals (Table S1). We selected five proteins (SDHC,
SLC25A5, NDUFB11, UQCRH, and NDUFA4) in the elec-
tron transport chain for the validation experiments, but
only three proteins (NDUFB11, UQCRH, and NDUFA4)
were detectable by Western blot. Only NDUFA4 showed
a decrease in PSP with statistical significance (Figure S2).
These results are likely due to sample preparation differ-
ences between proteomics and Western blot experiments.
Although quantifications by MS and Western blot did not
confirm all three proteins, it is well-known that mass
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F IGURE 6 WGCNA of GP proteome data to investigate the
module-trait relationships. The module-trait relationships of the GP
proteome data using WGCNA were presented in the form of
heatmaps. WGCNA was conducted with proteins identified from
(A) PSP and HC or (B) PSP and PD. Each module is composed of a
group of proteins with similar expression patterns. The relationships
between modules and traits were calculated by calculating Pearson
correlations between modules and traits. The correlation scores are
displayed on the top of each box. Red and green colours represent
positive and negative correlations, respectively. p Values for the
significance between modules and traits were calculated and
displayed on the bottom of each box in the parenthesis.

spectrometry-based quantification data often shows a poor
correlation with Western blot-based quantification.39,40

4 DISCUSSION

In this study, we conducted mass spectrometry-based pro-
teome analysis of human GP brain tissue samples from 15
PSP patients, 15 PD patients, and 15 HC individuals using
a TMT-based multiplexing method, in which we identi-
fied ∼10,000 proteins and ∼120,000 peptides. To our best
knowledge, this is the first in-depth proteome analysis of
the human GP region from PSP patients. In this study,
we used two different methods for the selection of dif-
ferentially expressed proteins. We identified 325, 934 and
18 differentially expressed proteins in the comparisons
between PSP and HC, between PSP and PD, and between
PD andHC, respectively, using SAM-based statistical anal-
ysis. On the other hand, we identified 463, 1,066, and
55 differentially expressed proteins in the comparisons
between PSP and HC, between PSP and PD, and between
PD and HC, respectively, by the bootstrap ROC-based sta-
tistical analysis. Although both analysis methods rendered
differentially expressed proteins with q-values < 0.05, the
number of overlapping proteins between the two analyti-
cal methods were ∼48%, ∼68%, and ∼25% for PSP versus
HC, PSP versus PD, and PD versus HC, respectively. The
proteins with low q-values were selected as differentially
expressed proteins by both methods, while proteins with
higher q-values were selected by only one method (Data
S3). These results suggest that the application of multiple
statistical analysis methods can increase the confidence of
selection for differentially expressed proteins.
In the gene set enrichment analysis, when PSP was

compared to HC and PD, almost all proteins in the
top five pathways were downregulated in PSP except for
five proteins (SLC6A3, TH, UBE2L6, MAPT, and SOD2).
Strikingly, most proteins enriched in the five pathways
were mitochondrial proteins, and all of the mitochon-
drial proteins were downregulated except for SOD2. The
upregulation of MAPT is expected since intracerebral
accumulation of MAPT is a well-known histopatho-
logic feature of PSP.41,42 SLC6A and TH, which were
upregulated in PSP only when it was compared to PD,
are proteins expressed in dopaminergic neurons.43,44 We
believe that these three proteins were identified from
the dopaminergic neuronal axons projecting from sub-
stantia nigra to GP. The PPI analysis also demonstrated
the clustering of mitochondrial proteins. When PSP was
compared to HC,mitochondrial respiratory electron trans-
port chain proteins and MRPs formed two main clusters.
When PSP was compared to PD, only mitochondrial res-
piratory electron transport chain proteins formed the
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F IGURE 7 STRING PPI analysis for network connectivity of the modules fromWGCNA enriched with Parkinson’s disease,
mitochondria translation, and ribosome pathways. STRING PPI analysis with the proteins in (A) the M12 module generated by WGCNA of
PSP and HC, (B) the M6 module generated by WGCNA of PSP and PD, and (C) the M11 module generated by WGCNA of PSP and HC. In the
M12 module from PSP and HC, the network contains 422 nodes with 501 edges. Only experimental data was used for the active interaction
source with 0.9 highest confidence threshold of a minimum required interaction score (average node degree: 2.37, average local clustering
coefficient: 0.193, and PPI enrichment p value <1.0 ×10−16). In the M6 module from PSP and PD, the network contains 997 nodes with 702
edges. Only experimental data was used for the active interaction source with 0.9 highest confidence threshold of a minimum required
interaction score (average node degree: 1.41, average local clustering coefficient: 0.203, and PPI enrichment p value <1.0 ×10−16). In the M11
module from PSP and HC, the network contains 187 nodes with 542 edges. Only experimental data was used for the active interaction source
with 0.9 highest confidence threshold of a minimum required interaction score (average node degree: 5.8, average local clustering coefficient:
0.219, and PPI enrichment p value <1.0 ×10−16). The red, yellow, and magenta nodes denote Parkinson’s disease, mitochondria translation,
and ribosome pathways, respectively. The grey nodes do not belong to any enriched pathways.
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main cluster. Although the pathogenesis of PSP remains
unclear, one of the known causes of parkinsonian dis-
orders is neuronal cell death induced by inhibition
of complex I in the mitochondrial respiratory electron
chain.45–48 We found many differentially expressed mito-
chondrial proteins included in complex I, such as NADH
dehydrogenases (NDUFA4, NDUFA9, NDUFAF5, NDU-
FAF7,NDUFB11,NDUFB3,NDUFB4,NDUFB7,NDUFB8,
NDUFC1, NDUFS2, NDUFS5, NDUFS7, NDUFS8, and so
on) in this study. More strikingly, all the differentially
expressedNADHdehydrogenase proteins were downregu-
lated in PSP compared to both HC and PD. These proteins
were included in all the top five pathways selected by
the gene set enrichment analysis and formed the clus-
ters in the PPI analysis. Othermitochondrial proteins such
as complex II (succinate dehydrogenase), III (cytochrome
b-c1 complex), IV (cytochrome c oxidase), and V (ATP
synthase) in the mitochondrial respiratory electron chain
were also included in the differentially expressed pro-
teins in the two comparisons between PSP versus HC
and PD. When PSP was compared to HC, complex II, III,
and IV proteins were enriched in all the top five path-
ways selected by the gene set enrichment analysis and
complex III formed clusters by PPI analysis. When PSP
was compared to PD, all of complex II, III, IV, and V
were enriched in all of the top five pathways selected by
the gene set enrichment analysis, and all of them also
formed clusters in PPI analysis. Strikingly, all mitochon-
drial proteins related to complex I, II, III, IV, and V were
downregulated in PSP compared to both HC and PD. This
suggests that the mitochondrial dysfunction induced by
the dysregulated mitochondrial respiratory electron trans-
port chain complex could be a key component of the PSP
pathogenesis accompanying MAPT aggregation. These
results are in accordance with the previous reports that
mitochondrial dysfunction is part of the etiopathogenesis
of PSP.49
To analyse 45 samples, we conducted five batches of

TMT experiments with the QC and the MP samples in
each batch. Although the five batches of 11-plex TMT-
based datawere normalised by theMP samples, an obvious
batch effect was observed, and further normalisation by
the ComBat package removed it. This result suggests that
simple normalisation by a common reference sample is
often not enough to remove the batch effects when multi-
ple batches of TMT experiments are conducted. Although
we report that mitochondrial respiratory electron trans-
port chain complex proteins were dysregulated in GP from
PSP patients in this study, this outcome was derived from
a mixture of multiple different cell types in GP. During
the pathogenic process of neurodegenerative diseases, glial
crosstalk is critical in the loss of cellular homeostasis and
each cell type would show different responses to the inter-

and intra-cellular environment changes.50–52 Therefore,
we need to deconvolute the proteome changes through
cell-type-specific proteome analysis to understand the
changes occurring in each cell type during the pathogenic
process.
To the best of our knowledge, this is the first study focus-

ing on proteomic analysis of GP from PSP patients. Our
discovery of the link between dysregulated mitochondrial
respiratory electron transport chain complex proteins and
PSP provides a foundation for further investigation of PSP
pathogenesis.
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