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Key Clinical Message

Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow

appeared during acyclovir therapy. The secondary and recurrent whitlow iso-

lates were acyclovir-resistant and temperature-sensitive in contrast to a genital

isolate. We identified the ribonucleotide reductase mutation responsible for

temperature-sensitivity by deep-sequencing analysis.
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Introduction

A genital herpetic lesion progressed in size despite a 13-week

course of oral acyclovir, and a herpetic whitlow appeared on

the patient’s right thumb. The whitlow recurred 6 months

later without recurrence of the genital lesion. We obtained

isolates from the genital and secondary and recurrent whit-

low lesions. The isolate from the genital lesion was acyclovir

sensitive but not temperature-sensitive (ts), whereas the iso-

lates from the secondary and recurrent whitlow were acyclo-

vir resistant/ts. As a marker of acyclovir resistance/

thymidine kinase (TK) deficiency, the secondary and recur-

rent whitlow isolates had a frameshift mutation, c.819delG

(p.Pro274 fs), of the TK gene [1]. However, we could not

identify the mutation causing the temperature-sensitivity of

whitlow isolates. This is a follow-up study on the character-

ization of isolated viruses with temperature-sensitivity.

Ts mutants of herpes simplex virus (HSV) have been

generated or found in the laboratory and reported to have

a mutation in UL36 of HSV-1 [2], ICP4 of HSV-1 [3–8],
UL15 of HSV-1 [9], HSV-1 protease of HSV-1 [10], UL9

of HSV-1 [11], UL28 of HSV-1 [12], gB of HSV-1 [3,

13], ribonucleotide reductase (RR) large subunit of HSV-

1 [14, 15] and HSV-2 [15] and small subunit of HSV-1

[14, 16], UL11 of HSV-1 [17], Vmw65 of HSV-1 [18],

ICP27 of HSV-1 [19], ICP8 of HSV-1 [6], DNA polymer-

ase [6], and virion-associated host shutoff protein [20].

Thus, ts mutants have been analyzed to understand their

gene functions, but all mutants examined were laboratory

strains, making it difficult to predict the location of the

mutated gene among various genes responsible for tem-

perature-sensitivity of clinical isolates in the large HSV

genome. However, deep sequencing revealed a frameshift

mutation in the UL13 kinase in a strain F isolate [21].
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We applied the deep-sequencing strategy to identify the

mutation responsible for the temperature-sensitivity of

the clinical HSV-2 isolates.

In this study two clinical isolates from the whitlow

had two phenotypic mutations, ACV resistance and

temperature-sensitivity, compared with the parent wild-

type isolate in these three closely related strains. This was

a good test of the feasibility of deep sequencing to iden-

tify two mutations in the large HSV genome. We success-

fully identified the substitution mutation, c.566C>T
(p.Ala189Val), in UL40 of the small subunit of RR in

addition to TK by comparative deep sequencing of these

three isolates using Illumina high-throughput sequencing,

followed by confirmation by sequencing using the ABI

capillary sequencer. This is the first identification of the

TK and RR mutations in acyclovir-resistant and tempera-

ture-sensitive isolates from the whitlow of a patient by

deep sequencing.

Clinical History

The clinical history and virus isolation (Fig. 1) have been

reported previously [1]. Briefly, a 40-year-old man with

acute myelogenous leukemia received induction therapy

in November 1998, resulting in complete remission. He

had a relapse in the bone marrow in December 1999, and

a peripheral blood stem cell transplant from a matched

related donor was performed in April 2000. A genital

ulcer appeared 1 year later, and he developed both a geni-

tal ulcer and herpetic whitlow on his right thumb in

October 2002; in June 2003, the whitlow recurred. HSV

strains were isolated from swabs of the genital lesion and

secondary whitlow in October 2002 and the recurrent

whitlow in June 2003.

Examination

Swabs of the three clinical specimens were suspended sep-

arately in 1 ml of phosphate-buffered saline, and 0.2 mL

was inoculated into Vero cell cultures in 25 cm2 plastic

flasks; the remaining suspensions were frozen at �85°C.
To characterize the virus populations of the genital and

secondary whitlow lesions, an aliquot of 0.7 mL from the

rest of the inoculation suspension was infected into Vero

cell cultures at the adjusted density of several plaques per

60 mm Petri dish from the initial isolation condition,

and the dishes were overlaid with 0.8% nutrient methyl-

cellulose. All plaques were isolated independently as virus

clones for analysis of susceptibility to ACV, temperature-

sensitivity, and sequence analysis.

The temperature-sensitivity of the viruses was deter-

mined by culturing infected Vero cells with 100 plaque

forming units (PFU)/0.2 mL of isolates; after 1 h incuba-

tion at room temperature for virus adsorption, the cells

Chemotherapy

Figure 1. Clinical course of treatment of the genital herpes and secondary and recurrent herpetic whitlows. Viruses were isolated from both the

genital lesion and secondary whitlow in October 2002 and from the recurrent whitlow in June 2003. The clinical course and virus isolation have

been reported previously [1] and isolated viruses were characterized for temperature-sensitivity and the whole genome sequence in this study.

AML: acute myelogenous leukemia, BM: bone marrow, Allo PBSCT: allogenic peripheral blood stem cell transplant, ATRA: all-trans retinoic acid,

mPSL: methylprednisolone sodium succinate, PSL: prednisolone acetate, CyA: cyclosporine, FK506: tacrolimus hydrate, ACV: acyclovir, VCV:

valacyclovir hydrochloride.

462 ª 2015 The Authors. Clinical Case Reports published by John Wiley & Sons Ltd.

Deep-sequencing analysis of UL40-mutated ts HSV isolates T. Daikoku et al.



were overlaid with prewarmed 0.8% nutrient methylcellu-

lose medium in 60 mm Petri dishes at 33°C, 37°C, and
39°C in water-jacket CO2 incubators. The number of pla-

ques formed at each temperature was counted to deter-

mine the temperature-sensitivity [1].

Nucleocapsid DNA was isolated as previously described

[1,22,23]. Briefly, infected cells were lysed with 20 mM

Tris-HCl (pH 8.0) containing 0.5% Triton X-100 and

10 mmol/L EDTA, and the lysate was centrifuged twice at

1500 g for 15 min. The supernatants were centrifuged at

100,000 g for 1 h at 4°C, and viral DNA was purified

from the resultant pellets [1].

Library preparation was performed using a genomic

DNA sample preparation (Illumina, San Diego, CA), and

DNA clusters were generated on a slide using the cluster

generation kit (v.2) on an Illumina cluster station (Illu-

mina) according to the manufacturer’s instructions. All

sequencing runs were performed with the GA II using the

Illumina sequencing kit (v.3). Fluorescent images were

analyzed with the Illumina base-calling pipeline v.1.3.2 to

obtain FASTQ-formatted sequence data of 81-mer paired-

end short reads. The short reads obtained were subjected

to read-mapping using bwa-sw mapping script against the

HSV-2 reference genome sequence (NC_001798). To

characterize notable genetic alterations for temperature

dependency of HSV2, the read-mapping was visualized

and confirmed by Genome Jack viewer software (MSSbio,

Japan).

Comparative analysis of the deep sequencing of the

three strains was used to identify the mutation in the

whitlow isolates. The sequences of RL2, UL6, UL16,

UL22, UL23 (TK), intergenic region of UL24-25, inter-

genic region of UL26-UL27, UL36, intergenic region of

RL1-RS1, UL40 (RR), and US5 of the three isolates as

candidates for the mutated genes were determined

directly from the purified HSV genome according to

the manufacturer’s procedures (ABI Prism 3130 DNA

sequencer) and compared [1]. The amplified fragments

of RL2, UL6, UL16, UL22, UL23 (TK), intergenic

region of UL24-25, intergenic region of UL26-UL27,

UL36, intergenic region of RL1-RS1, UL40 (RR), and

US5 by PCR were sequenced by using the ABI Prism

3130 DNA sequencer according to the manufacture’s

procedures. The determined HSV-2 UL40 sequence was

compared with the HSV-2 HG52 strain and the nucleo-

tide differences of the isolate common to the both were

identified as the significant nucleotide changes. PCR

cyclic sequencing was carried out with the purified

DNA material in a reaction mixture containing the

chosen primer and the Dye Terminator Cycle Sequenc-

ing mixture (ABI). The PCR cyclic-sequencing program

consisted of 25 cycles of 30 seconds at 96°C, 15 sec-

onds at 50°C, and 4 min at 60°C. The sequencing reac-

tion was carried out in both the sense and antisense

directions for confirmation. After cyclic sequencing, the

products were precipitated with ethanol, dissolved in

HiDi formamide, and then denatured. The sequencing

was carried out on the ABI Prism 3130 DNA sequen-

cer. Heterogeneities of the sequences in the strain were

examined by 32 clones derived from each strain to

confirm the presence of heterogeneity and mutation in

each strain.

The nucleotide sequences determined in this study have

been deposited in the GenBank/DDBJ/EMBL database.

The accession numbers of the TK and RR genes from the

genital lesion, secondary whitlow (whitlow 1), and recur-

rent whitlow (whitlow 2) are AB178228, AB178229, and

AB178230 [1] for the TK gene and AB860125, AB860126,

and AB860127 for the RR gene.

The temperature-sensitivity was expressed as means �
standard deviations of five independent experiments. The

comparisons among groups were done with 2-way facto-

rial analysis of variance with Bonferroni/Dunn post hoc

tests. The differences were considered significant at

P < 0.05 levels.

As illustrated in Figure 1, genital lesions appeared fre-

quently, and a whitlow appeared on the patient’s right

thumb during ACV treatment. Two isolates were obtained

simultaneously from the genital ulcer and whitlow during

ACV treatment and one from the recurrent whitlow

6 months later.

The genital isolate was ACV sensitive, and both whit-

low isolates were TK deficient/ACV resistant [1]. Because

the temperature of the thumb is 33/34°C or lower

[24,25], the whitlow isolates were examined for the tem-

perature-adapted nature of plaque formation at 33°C and

39°C. Two whitlow isolates were similarly and signifi-
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Figure 2. Comparison of temperature-sensitivity of genital and two

whitlow isolates. Temperature-sensitivity of three isolates and an

unrelated clinical isolate of the HSV-2 strain was assessed by the ratio

of plaque formation at 39°C and 33°C in Vero cells; the columns and

error bars of the HSV strains indicate the mean � SD (%) of five

independent experiments [1,40]. **P < 0.01 by two-way factorial

analysis of variance with Bonferroni/Dunn post hoc tests.
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cantly more ts than the genital isolate and wild-type

HSV-2 strain, indicating that the whitlow isolates grew

better at 33°C than at 39°C by adapting the thumb tem-

perature (Fig. 2).

Deep sequencing revealed a single remarkable nonsyn-

onymous mutation on UL40 throughout the whole gen-

ome sequence of HSV-2 between the genital and two

whitlow isolates (Fig. 3). Although heterogeneity of nucle-

otides have been observed in RL2, UL6, UL16, UL22,

UL23, intergenic region of UL24-25, intergenic region of

UL26-UL27, UL36, intergenic region of RL1-RS1, and

US5 sequence, no notable nucleotide variation has been

identified except UL40.

The genital and two whitlow isolates were subjected to

the Illumina sequencing and there were polymorphism

including substitutions and deletions in UL6, UL16, UL22,

UL23, and UL40 of the whitlow isolates. Thirty-two clones

of secondary whitlow isolates were used to examine the

heterogeneity in the sequences of UL6, UL16, and UL22

detected in the deep sequencing using the ABI Prism 3130

DNA sequencer, Heterogeneity in the sequences of UL6,

UL16, UL22, and UL36 was common as sequence varia-

tions in the three strains; mixtures of A and C at the

1795th nucleotide of UL6 from genital and whitlow iso-

lates, T and G at the 213th nucleotide of UL16, and G and

C at the 62nd nucleotide of UL22 from whitlow isolates.

Thus the sequence of UL6, UL16, and UL22 were identical

to the genital isolate but the all clones from the whitlow

isolates had the deletion, c.819delG (p.Pro274 fs), in the

TK gene (UL23) and the substitution, c.566C>T
(p.Ala189Val), in the small subunit of the RR gene

(UL40). Thus, we confirmed the mutation of the whitlow

isolates by mutation screening by the sequence by the Illi-

mina and followed by sequence of their clones by the ABI

Prism 3130 DNA sequencer. The heterogeneity of the

sequences observed in the deep sequencing was not con-

firmed and no heterogeneity was found in the indicated

nucleotides by the sequencing of clones, indicating a mis-

reading by the machine or an error of analysis software. It

was not clear whether this problem was generated by the

analysis software or reading analysis of the machine.

Genomic sequencing revealed mutations in UL23 and

UL40 in secondary and recurrent whitlow isolates com-

pared with a genital isolate. The mutation in UL23 was

the same mutation of the TK gene previously reported

[1]. Sequencing of UL40 confirmed the substitution

mutation c.566C >T (p.Ala189Val) in the small subunit

of RR.

Figure 3. Detection of nonsynonymous mutation in UL40 gene of HSV-2 strains of genital and whitlow 1 and 2 isolates relative to

HSV2-consensus genome sequence. Read depth at the 91,194 nt position was evaluated with a threshold of Phred score ≥15.
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Discussion

Both the genital lesion and secondary whitlow continued

for 3 months without cure by ACV. This ACV-resistant

HSV became latent in the innervating sensory ganglia,

and the whitlow alone recurred as a whitlow 6 months

later without recurrence in the genital region. ACV resis-

tance was due to the frameshift mutation, c.819delG

(p.Pro274 fs), of the TK gene as identified in our previ-

ous study [1].

Although the TK-deficient/ts isolates of the whitlows did

not exhibit cutaneous pathogenicity in a mouse midflank,

in contrast to the genital isolate, the TK-deficient/ts isolates

of the whitlows, as well as the genital isolates, replicated

similarly and caused cutaneous lesions in the ear pinna

skin, which has a lower temperature, indicating the preser-

vation of pathogenicity of whitlow isolates at a lower

temperature [1]. The difference in the level of temperature-

sensitivity between genital and whitlow isolates was similar

to that between wild HSV-1 and 2 [26–30] (Fig. 2) but the
difference between genital and whitlow isolates caused that

in the skin pathogenicity. The difference in temperature-

sensitivity was found to be due to mutation in the RR gene

but the enzyme activity of RR was failed by the difficulty in

separating rCDP and dCDP. This indicated that the tem-

perature-sensitivity was not the suitable surrogate marker

in vitro for representing the pathogenicity in vivo caused

by the mutation in the RR gene. However, the difference in

the temperature-sensitivity was a clue to identify the muta-

tion in the gene by the literatures reporting the relationship

among temperature-sensitivity, the RR mutation, and

attenuation of pathogenicity.

The relationship between the temperature-sensitivity

and the differential pathogenicity of genital and whitlow

isolates were characterized in this study using deep-

sequencing analysis of the isolates. The adaptability of

HSV to the local temperature by mutation of the RR gene

may be an important element of pathogenicity in causing

the herpetic whitlows. This deep-sequencing analysis suc-

cessfully identified mutations in the TK and RR genes as

mutation markers for TK deficiency and temperature-sen-

sitivity, respectively.

RR catalyzes the reduction in nucleoside diphosphates

to deoxynucleoside diphosphates and is essential for de

novo synthesis of deoxyribonucleotides required for DNA

replication and repair. The RR holoenzymes are com-

posed of two subunits called RR1 and RR2. Both RR1

(a2) and RR2 (b2) are homodimers. HSV RR is the com-

plex between the large (RR1) and small (RR2) subunits

for enzyme function [14,31–33]. Mutation in the RR1 or

RR2 subunit is responsible for temperature-sensitivity

[14–16,32,34,35]. A mutation at 189 of the RR2 subunit

locates between the Fe1 ligand and the Fe1 pocket of

RR2, and this mutation might render the complex unsta-

ble at high temperature, resulting in possible loss of the

RR function.

Mutations in the TK gene are principally found in long

homopolymer runs of guanosines or cytosines [22,36–39],
and the mutations found in the whitlow isolates were

located in a run of four cytosines in the TK gene and in

the six consecutive G and C sequences in the small sub-

unit of the RR gene, which suggested that the mutations

in the TK and RR genes might be related to acyclovir

treatment.

Two clinical isolates in addition to the parent wild-type

isolate had two phenotypic mutations, ACV resistance

and temperature-sensitivity, in the three closely related

strains, and this was an excellent opportunity to identify

two mutations by comparing the nucleotide sequences of

the three strains. In order to investigate the populations

of virus variation in the clinical samples and determine

the genetic mutations associated with phenotype, it

should be direct deep-sequencing analysis from clinical

specimens by the next-generation sequencing. This study

successfully identified the two mutations in the clinical

HSV isolates by their deep sequencing and demonstrated

that the next-generation sequencing technology is a pow-

erful tool to identify mutation in clinical isolates of HSV.
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