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Impact of a tropical forest 
blowdown on aboveground carbon 
balance
K. C. Cushman1,2,7*, John T. Burley1,2, Benedikt Imbach3, Sassan S. Saatchi4, Carlos E. Silva5, 
Orlando Vargas6, Carlo Zgraggen3 & James R. Kellner1,2

Field measurements demonstrate a carbon sink in the Amazon and Congo basins, but the cause of 
this sink is uncertain. One possibility is that forest landscapes are experiencing transient recovery 
from previous disturbance. Attributing the carbon sink to transient recovery or other processes is 
challenging because we do not understand the sensitivity of conventional remote sensing methods 
to changes in aboveground carbon density (ACD) caused by disturbance events. Here we use ultra-
high-density drone lidar to quantify the impact of a blowdown disturbance on ACD in a lowland rain 
forest in Costa Rica. We show that the blowdown decreased ACD by at least 17.6%, increased the 
number of canopy gaps, and altered the gap size-frequency distribution. Analyses of a canopy-height 
transition matrix indicate departure from steady-state conditions. This event will initiate a transient 
sink requiring an estimated 24–49 years to recover pre-disturbance ACD. Our results suggest that 
blowdowns of this magnitude and extent can remain undetected by conventional satellite optical 
imagery but are likely to alter ACD decades after they occur.

Long-term field measurements show that tropical forests in South America and Africa have accumulated carbon 
in recent decades, acting as a carbon sink that appears to be saturating in the Amazon and Congo basins1–4. Accu-
mulation of aboveground carbon in forests is predicted in response to rising atmospheric CO2

5,6. An alternative, 
but not mutually exclusive, explanation is that the intact-forest sink is associated with recovery from previous 
disturbance, including both anthropogenic and natural disturbances7,8. Here we characterize aboveground carbon 
dynamics following a blowdown event—one type of natural disturbance relevant for many Neotropical areas9.

The area impacted by natural forest disturbance is power-law distributed10–12—most events are small, but rare 
episodic disturbance events influence up to thousands of square kilometers. Recovery times associated with these 
episodic events could be substantial but the importance of forest recovery from natural disturbance for overall 
carbon dynamics is contested7,13–16. One cause of uncertainty is the challenge of measuring the carbon conse-
quences of events that are difficult or impossible to predict. Small, frequent disturbances are well-characterized 
by forest plots, but sparse plot networks are unlikely to observe episodic events. Alternately, the largest episodic 
disturbances can be detected using optical satellite data. A single squall-line storm in the Amazon can affect 
thousands of km2, killing hundreds of thousands of trees through convective downdrafts called blowdowns17,18. 
There is a particular lack of information for episodic disturbances of intermediate severity—creating forest gaps 
that are larger than those typically observed in the field (< 0.1 ha) but smaller than those studied using historical 
satellite data that are coarse in temporal and spatial resolution (> 30 ha)14. How long forests remain in a state of 
recovery following these events, and how well these events are currently characterized by remote sensing studies, 
remains poorly understood.

Here we take advantage of a large, infrequent disturbance in the Atlantic lowlands of Costa Rica to document 
aboveground carbon losses, canopy structural changes, and estimated recovery time. On May 19, 2018, a storm 
delivered 38 mm of rain in a 30-min period at La Selva Biological Station19. This blowdown event caused large-
scale disturbance in forest structure, creating > 600 new gaps along trails alone, according to local field surveys 
(Supplementary Fig. 1)19. We collected ultra-high-density drone lidar data after the disturbance to quantify 
canopy structure and aboveground carbon density (ACD) over 103.5 ha of forest (33 ha in old-growth forest; 
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70.5 ha in secondary forest 31–66 years old in 2019; Fig. 1; Supplementary Fig. 2). By comparing these measure-
ments to previously collected airborne lidar and inventory plot data, we identified multiple lines of evidence 
that indicate the disturbance was unprecedented in the previous 20 years of annual field measurements20. These 
measurements are used to address three main questions: 1) what is the impact of the blowdown disturbance 
on ACD and forest structure? 2) what is the estimated recovery time of the forest to its pre-disturbance ACD? 
3) to what extent can similar events be detected by conventional remote sensing observations for large scale 
monitoring applications?

Results and discussion
Impact of disturbance on ACD and forest structure.  We found that this blowdown disturbance caused 
substantial losses to ACD and changes to forest structure. The blowdown decreased mean ACD by 17.6% in 
comparison to pre-blowdown conditions, and average ACD loss was similar for old-growth (18.3%) and second-
ary forest areas (17.2%) in our study area (Supplementary Table 1). Carbon losses were heterogeneous through-
out the forested landscape—some locations decreased in ACD by up to 63.1% while locations that were not 
impacted by the blowdown increased by up to 19.8% (Supplementary Fig. 1). We explored two potential causes 
of this spatial heterogeneity. First, we found no evidence that ACD loss was greater along trails (Supplementary 
Fig. 3), which is inconsistent with expectations that tree damage and mortality are greatest along forest edges21. 
This discrepancy is possible because local trails are likely not wide enough to increase wind exposure. Second, 
we found a weak correlation between ACD prior to the blowdown and ACD loss (Supplementary Fig. 4), which 
is consistent with previous research that found larger trees are more susceptible to damage in blowdowns22.

The blowdown also significantly increased the size and frequency of canopy gaps, more than doubling the 
total forested area in gaps extending to ≤ 8 m height (Fig. 2a). The proportional increase in gap area was greater 
in secondary forests (arithmetic mean 82% increase) than in old-growth forest (mean 74% increase). The canopy 
gap size-frequency distribution was well described by a power-law probability distribution both before and after 
the blowdown, where most canopy gaps were small in size (Supplementary Fig. 5). The power-law scaling expo-
nent ( � ) of the gap size-frequency distribution was consistently smaller after the blowdown for all gap height 
thresholds between 2 and 20 m, indicating an increased relative prevalence of larger gaps after the blowdown 
event. However, the decrease in � was only significantly different for mid-canopy gaps extending to between 4 
and 12 m height (Fig. 2b). Surprisingly, the size-frequency distribution of classically defined canopy gaps ≤ 2 m 
in height did not change significantly in response to the blowdown event23. Although classically defined gaps 
are useful because they can be easily quantified in ground surveys, our findings underscore the importance 
of high-resolution three-dimensional information to characterize the impacts of disturbance events in forest 
canopies (Fig. 1). Gap size-frequency results were qualitatively similar when old-growth and secondary forests 
were analyzed separately (Supplementary Fig. 6).

Previous analyses demonstrated that canopy height and ACD changes in the old-growth forest landscape 
were consistent with steady state expectations24,25. We projected the equilibrium canopy height distribution 
using observed canopy height changes before and after the blowdown. The projected equilibrium is the expected 
distribution of canopy height if the canopy height transition probability matrix associated with the blowdown 
event persists indefinitely. By comparing the projected equilibrium distribution to the observed distribution 
prior to the blowdown event, we can test the hypothesis that the distribution of canopy height change associated 
with the blowdown event is a departure from steady-state conditions previously reported. Our projection of the 

Figure 1.   A tropical forest blowdown observed using high-resolution remote sensing. Images are from 
structure from motion photogrammetry (a) and lidar (b, c). Colors in (a) are surface elevation; brightness 
is scaled by RGB intensity. Inset shown in (a) is the area in (b) and (c). Colors in (b) and (c) are canopy 
height from airborne lidar in 2009 (b) and drone lidar in 2019 (c). Large height changes are apparent due to a 
blowdown event.
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equilibrium distribution of canopy height in response to the blowdown event was markedly different from the 
observed canopy height distribution and previous steady-state expectations (Fig. 3). The mean of the projected 
equilibrium canopy height was 15.9 m (95% confidence interval 15.7–16.1 m), substantially lower than the 
pre-blowdown mean height of 22.2 m (Supplementary Table 1), and lower than the steady-state canopy height 
of 19.6 m reported previously24. Projected equilibrium heights were qualitatively similar when old-growth and 
secondary forests in our study area were analyzed separately (Supplementary Fig. 7).

Our interpretation assumes that changes in the distribution of canopy height and ACD between 2009 and 
2019 were driven by the 2018 blowdown event. Interval length can bias estimates of carbon stock change26. Here 
we likely underestimate ACD losses and structural changes attributable to the blowdown for two reasons. First, 
we expect that the landscape accumulated aboveground carbon between 2009 and the 2018 blowdown event. We 
expect this is true because our study area contains secondary forests, and because field measurements indicate 
that old-growth forests in this area steadily increased in ACD between 1997 and 201720. We are also likely to 
underestimate ACD losses from the blowdown because post-blowdown lidar data were collected a year after the 
disturbance, and initial recovery can be rapid11,21,27. Consequently, we consider our conclusion regarding carbon 
loss and increased gap area to be conservative.
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Figure 2.   Total gap area (a) and the gap size-frequency distribution scaling exponent, � , (b) before and after the 
tropical forest moderate blowdown. Gap statistics were calculated using maximum height thresholds from 2 to 
20 m in height in 2 m intervals. Gap area (a) is shown as a percentage of the total 103.5 ha study area. Error bars 
(b) denote the 95% Bayesian credible intervals for �.
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Figure 3.   Distributions of canopy height (lines) before and after a moderate blowdown in the Atlantic lowlands 
of Costa Rica. The shaded region is the posterior of the projected distribution of canopy height based on the 
dominant right-hand eigenvector of a height transition matrix; the range of values at each height is the 95% 
Bayesian credible interval for the projected distribution.
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Estimated duration of ACD recovery following disturbance.  We used existing information about 
forest dynamics at this site to quantify the duration of the carbon sink (from forest regrowth) expected from this 
blowdown disturbance. We estimated recovery time by combining data from long-term field measurements at 
this site describing two processes: transient, rapid recovery following localized carbon losses (treefalls, Supple-
mentary Fig. 8) and the long-term growth rate of ACD20,28. We estimate that carbon losses associated with this 
event will require 24–35 years to recover pre-disturbance mean ACD. Field measurements indicate an absolute 
increase in ACD of 0.7 Mg C ha−1 yr−1 between 2009 and 2016. Applying this increase to our estimate of pre-
blowdown ACD increases the magnitude of carbon loss to 24% and increases the estimated recovery time to 
38–49 years. Notably, these timeframes are longer than most field records of carbon accumulation in tropical 
forests. Two recent summaries of carbon balance in Amazonian and African tropical forests reported a mean 
monitoring period of 11–12 years1,2.

Our projected ACD recovery times assume that old-growth and secondary forests will regrow at the same 
rate. Previous studies of secondary forests in this landscape found that ACD is similar in old-growth forests and 
secondary forests older than 21 years, with rapid ACD recovery likely facilitated by the relatively fertile soils and 
proximity to intact forest29,30. Tree species richness and composition also stabilized within this time29,31. Our study 
area included only secondary forests older than 21 years at the beginning of our study (Supplementary Fig. 2); 
secondary forest ACD was within 93% of old-growth forest ACD at the beginning of our study (Supplementary 
Table 1). It is possible that secondary forest recovery rates will be slightly faster due to remaining compositional 
differences, such as lower liana abundance32.

Potential for detection with conventional remote sensing methods.  Although this disturbance 
reduced ACD by at least 17.6%, the blowdown was considerably smaller in size than larger reported blowdowns 
in the Amazon—the largest gaps we report are ~ 1 ha in size (Supplementary Fig. 5) while other studies report 
single gaps over 10 times as large17. We asked whether conventional optical satellite methods used to character-
ize larger blowdowns are also useful for detecting more moderate blowdowns. To determine whether the event 
was detectible using conventional optical satellite data, we identified cloud-free Landsat observations before and 
after the blowdown and computed the change in non-photosynthetic vegetation (ΔNPV) in each pixel. ΔNPV 
is used to detect blowdowns because tree mortality increases the fraction of woody vegetation exposed to the 
sensor9,11,21,22. As expected, ΔNPV values were significantly positive—i.e. the fraction of NPV increased after the 
blowdown (t = 16.2, DF = 206, P < 0.001). However, the mean and maximum ΔNPV in our data (0.02 and 0.09, 
respectively) were smaller than ΔNPV values reported in other studies—in fact, these values are approximately 
one order of magnitude smaller than those reported for large blowdowns9, and the mean value is within the 
95% confidence interval for no mortality in one previous study21. Further, although we observed a statistically 
significant relationship between ΔNPV and ACD loss, the explanatory power of this relationship was very low 
(r2 = 0.03) (Supplementary Fig. 9). We attribute the difficulty of detecting this blowdown using Landsat to a com-
bination of factors. Relatively low temporal frequency associated with high cloud cover resulted in cloud-free 
observations 6 and 7 months before and after the blowdown event, respectively. Tropical forests regrow quickly 
after blowdown events—even severe blowdowns are not detectable after < 2 years11.

Prospective importance for tropical forest ACD dynamics.  Results from this study are consistent 
with the idea that increasing ACD in tropical forest plots could, in part, reflect recovery from natural distur-
bance events that predate the onset of forest monitoring and remain cryptic to historical satellite records. This 
explanation does not preclude other potential causes of increasing ACD, such as carbon fertilization from rising 
atmospheric CO2 and widespread prior anthropogenic disturbance. The magnitude of ACD loss and estimated 
ACD recovery reported here are specific to this event and not directly generalizable to other areas because blow-
down intensity and recovery from disturbance are both highly variable. Instead, this case study is valuable for 
highlighting that moderate episodic events can cause ACD losses of at least 17.6% while remaining undetectable 
using conventional measurement methods.

We anticipate that advances in satellite remote sensing—like Planet’s constellation of cube satellites and 
NASA’s Global Ecosystems Dynamics Investigation (GEDI) spaceborne lidar—will provide new opportuni-
ties to thoroughly characterize how other moderate blowdowns contribute to carbon cycling in global tropical 
forests33–35. For instance, mortality from the blowdown described here was clearly apparent in high-resolution 
(3 m) Planet data collected 8 days before and seven days after the blowdown event (Supplementary Fig. 1). The 
methodological framework presented here, in which a targeted airborne remote sensing campaign produced 
detailed measurements of ACD loss and structural changes, will be valuable for developing and benchmarking 
spaceborne measurements. Airborne lidar are increasingly available—such as > 100,000 ha of available tropical 
forest lidar data from the Sustainable Landscapes Brazil Project36,37, including multi-temporal lidar for some 
areas38—and will provide essential baseline data for future efforts. Our results suggest that incorporating wide-
spread high-resolution monitoring of forest disturbance could increase the estimated aboveground carbon loss 
attributed to infrequent disturbance events in comparison to previous analyses limited to field records or his-
torical satellite data15.

Methods
Study site.  This study was conducted at La Selva Biological Station, located in the lowland Atlantic forest 
of Costa Rica (10°26′ N, 83°59′ W). The mean annual temperature is 26 °C; mean annual precipitation is 4 m 
and all months have mean precipitation > 100 mm39. La Selva has undulating topography, with elevation vary-
ing between 10 and 140 m above sea level. La Selva Biological Station includes multiple land uses; our analysis 
includes 103.5 hectares of forest, comprising 33.0 ha of old-growth forest and 70.5 ha of forests with past human 
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disturbance (secondary forests, abandoned agroforestry, abandoned plantation, selectively-logged forests); here, 
we refer to all areas with past human disturbance as “secondary forests”. This study area does not include the full 
extent of old-growth or secondary forests at La Selva—we focused our drone data collection on this area because 
it contained the most severe apparent disturbance from the blowdown. Forests with past human disturbance 
have been naturally regenerating for a range of time (since 1955–1988); we excluded secondary forests with 
regeneration starting after 1988.

Lidar data.  We use two airborne lidar datasets to quantify dynamics in canopy structure and ACD. Data 
were collected in 2009 and 2019 (Supplementary Table 2). Data from 2009 were collected by a fixed-wing air-
craft over the entire reserve; data from 2019 were collected using the Brown Platform for Autonomous Remote 
Sensing40. We focused on an area 1.4 km2 in size that includes the region of most severe damage from the blow-
down (Supplementary Fig. 1). Both lidar sensors were discrete-return systems. To minimize variation in lidar 
height estimates from variable laser beam divergence and detector characteristics, we only used data from first 
returns for all analyses. For the 2019 drone-based lidar with higher native point density and a wider scan angle 
range40, we limited our analysis to lidar returns with scan angle ± 15 degrees and randomly subsampled data to 
a homogenous resolution of 10 pts m−2. Previous research demonstrates that lidar data collected above densities 
of 1 pts m−2 have similar predictive power for determining many forest properties (including tree height, tree 
density, and basal area)41; both lidar datasets in this study are above this density threshold. All lidar data were 
projected using EPSG 32,616.

For all lidar data, we calculated height above ground using a digital terrain model (DTM) created from lidar 
data collected in 2006 and validated using 4184 independent measurements within the old-growth forest (inter-
cept =  − 0.406, slope = 0.999, r2 = 0.994, RMSE = 1.85 m; Supplementary Table 2)42. We verified that the horizontal 
geolocation accuracy with < 1 m between lidar datasets by comparing lidar returns from building roofs present 
in all datasets; we also used data from roof lines to adjust for a 0.7 m positive bias in the 2009 measurements 
relative to the 2019 lidar measurements (Supplementary Table 2).

AGBD and ACD.  We estimated aboveground biomass density (AGBD) for each lidar dataset using a model 
parameterized with 18 0.5  ha field plots established for the CARBONO project, in which plots were placed 
using a random stratified sampling design to characterize edaphic variation within La Selva43. All trees, lianas, 
and palms with diameter ≥ 10 cm at 1.3 m height are measured annually in CARBONO plots; field data from 
2009 were used to parametrize the lidar-derived AGBD model. For each field plot, aboveground biomass was 
estimated for each stem using an allometric model including a regional diameter-height relationship and wood 
density44. We used wood density values at the most specific level possible (species, genus, family, or site-level 
mean). AGBD estimates do not include non-woody plant material, herbaceous plants, hemi-epiphytes, epi-
phytes, or woody stems smaller than 10 cm diameter. Omitted pools likely comprise < 15% of total AGBD45—the 
proportion of omitted pools may be larger for secondary forests, but we do not expect this to be an important 
source of bias because our study area includes only older secondary forests. Data and detailed methods for plot 
measurements are publicly available28.

We used a model relating top-of-canopy height (TCH) to AGBD using a power relationship:

where a and b are parameters fit using non-linear maximum likelihood analysis46. Maximum likelihood analy-
sis was performed using the quasi-Newton method in the ‘stats4’ package in R (version 4.0.3), and assuming 
normally distributed residuals47. TCH was calculated by first computing the mean height of first lidar returns in 
every pixel of a 5 m × 5 m grid, and then computing the mean height of all pixels that fell within the boundaries 
of a single plot. This model explained 74% of variation in AGBD among field plots, with 9.2% RMSE (Supple-
mentary Fig. 10). We assume that the relationship between TCH and AGBD was the same before and after the 
blowdown event. The distributions of model residuals showed no heteroscedasticity (Supplementary Fig. 10). 
Previous research indicates that a single relationship fits old-growth and secondary forests at La Selva48. To 
convert AGBD predictions into ACD, we multiplied AGBD by 0.47.49.

We applied this model to the 2009 and 2019 lidar datasets, using a 0.5 ha raster resolution corresponding to 
the field plot size. We used a Monte Carlo method, sampling 1000 times from the observed parameter values 
describing residual variation in the TCH to AGBD model, to quantify uncertainty (95% confidence intervals) 
in estimates of ACD and ACD change.

Gap size‑frequency distribution.  We quantified the canopy gap size-frequency distribution for each 
lidar dataset by creating a canopy height model (CHM) with 1.25 m pixels10. To ensure that every pixel had a 
height value (in the occasional case where a pixel had no lidar returns), we created the canopy height model by 
using a Delaunay triangulation of first returns, gridded to 1.25 m resolution50. We defined gaps according to 
Brokaw’s classic definition: any contiguous area ≤ 2 m in height23, and we also repeated the analysis for a range 
of height thresholds up to 20 m height (in 2 m increments). We included diagonal pixels in our calculation of 
contiguous area.

We characterized the gap size-frequency distribution using the Zeta distribution, which is a discrete prob-
ability distribution, defined for integers k ≥ 1, giving the probability that a gap contains k pixels:

(1)AGBD = aTCHb

(2)f (k) =
k−�

ζ (�)
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where ζ (�) is the Riemann zeta function. The parameter � is a power-law exponent describing the size-
frequency distribution of gaps—small values of � indicate increased frequency of large gaps. Previous research 
indicates that the power-law Zeta distribution is appropriate for comparing gap sizes in tropical forests with 
diverse disturbance regimes10.

We estimated � using the Metropolis–Hastings algorithm within a Markov chain Monte Carlo (MCMC) 
procedure. Our analysis produces a Bayesian estimate of � . We used an uninformative prior (uniform distribu-
tion between 1.01 and 5); this conservative potential range for � was chosen based on results from Kellner and 
Asner (2009). We used a random normal proposal density, with a mean equal to the previous iteration of � and 
standard deviation equal to 0.1; proposals of � < 1 were replaced with a new random proposal. We used a chain 
of length 100,000, discarded the first 5000 observations the burn-in period, and thinned the chain by using every 
25th value. We used the remaining 3800 values to determine the posterior median and 95% Bayesian credible 
intervals for the power-law exponent, � . Results from our entire study area (old-growth and secondary forests 
combined) are reported in the main text; we also repeated this analysis for old-growth and secondary forest areas 
separately (Supplementary Fig. 6).

Canopy height change.  We quantified the distribution of canopy height change between 2009 and 2019 
using the 5 m resolution CHM, where canopy height was estimated using the mean height of all first lidar returns 
in a pixel; at this resolution, there were no pixels with no lidar returns. A forest in steady-state is expected to 
have mean canopy height change of approximately zero. A forest recovering from past disturbance is expected to 
have a mean canopy height change greater than zero, and a forest that experiences large disturbance during the 
interval between measurements is expected to have a mean canopy height change less than zero24. We calculated 
the distribution of canopy height change between 2009 and 2019 by subtracting the initial height of a pixel from 
the final height of a pixel (Supplementary Fig. 11).

The steady-state canopy height distribution of a forest is the expected distribution of canopy height if observed 
transition probabilities do not change. To calculate the projected steady-state canopy height distributions for 
each time interval, we created a canopy height transition matrix, A , with 54 rows and 54 columns. Each row and 
column of A corresponds to a single 1-m height class, and the maximum value (54 m) was selected from the 
maximum height of any pixel. An entry from row i and column j in A , aij, represents the number of pixels that 
were in height class j at the beginning of the time interval and in height class i at the end of the time interval. The 
projected steady-state height distribution is then obtained using an eigenvector decomposition:

where x is the right-hand eigenvector, and � is the eigenvalue (not to be confused with the power-law exponent 
used to characterize the gap size frequency distribution). Here, x gives the distribution of canopy heights for 
which applying the canopy height transition matrix results in no overall change in the distribution of heights. 
We used a Bayesian procedure to quantify uncertainty in our projections of steady-state canopy heights. Specifi-
cally, we assume that height transition probabilities (i.e. the columns of A ) follow a multinomial distribution. The 
multinomial distribution has a conjugate prior distribution, the Dirichlet distribution, from which the posterior 
distribution can be solved numerically51. We assumed an uninformative Dirichlet prior, which is equivalent to 
assuming that height transitions are uniformly distributed across prospective height classes. We sampled from 
the posterior distribution of each height class 10,000 times to determine the 95% Bayesian credible intervals of 
the projected steady-state canopy height distribution. Results from our entire study area (old-growth and second-
ary forests combined) are reported in the main text; we also repeated this analysis for old-growth and secondary 
forest areas separately (Supplementary Fig. 7).

Blowdown detection from Landsat imagery.   To assess whether this blowdown event could be detected 
using Landsat imagery, we compared Landsat 8 images before and after the blowdown event. We manually chose 
Landsat images that were closest in time to the event without cloud cover over our area of interest. These images 
came from November 10, 2017 (190 days before the blowdown) and December 31, 2018 (226 days after the 
blowdown). We used the Landsat 8 Surface Reflectance Tier 1 data product, which is atmospherically corrected 
using United States Geological Survey Land Surface Reflectance Code. We then performed a Spectral Mixture 
Analysis (SMA) with endmembers for photosynthetic vegetation, non-photosynthetic vegetation (NPV), and 
shade; previous studies have shown that the change in proportion of NPV per pixel correlates with blowdown 
mortality and tree damage9,17,21,22. Because no pure pixels of NPV were apparent in our image, we used the tropi-
cal forest Landsat endmembers published by Schwartz et al. (2017). SMA was performed using ENVI’s linear 
spectral unmixing tool, using the constraint that endmembers must sum to one52. We compared the change in 
NPV to the change in ACD across our study landscape (Supplementary Fig. 9).

Estimated recovery time from disturbance.  We estimated recovery time required for the landscape to 
recover to its pre-blowdown ACD using the CARBONO project plot data43. Tropical forest AGBD recovery fol-
lowing disturbance is highly variable and depends on multiple factors including the severity of disturbance, cli-
mate, and soils53,54. Any approach to estimate recovery time will be highly uncertain due to unknowable factors 
such as future disturbance and climate, so we used two approaches that are likely to over- and under-estimate 
recovery time to approximate the range of likely recovery times.

First, we estimated recovery time using the long-term annual ACD gain in old-growth forests at our study 
site from 1997 to 2016. This long-term gain was previously reported in20 using the allometry of55. Here we report 
the long-term annual gain of 0.49 Mg C ha−1 yr−1 using the allometry of44. Because our analysis indicates a mean 
ACD loss of 17.4 Mg C ha−1 (Supplementary Table 1), the long-term ACD trend predicts 35 years to recover from 

(3)Ax = �x
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the blowdown. We expect that this overestimates recovery time because ACD gain directly after the disturbance 
event should be greater than the long-term average.

Second, we estimate recovery time by incorporating fast initial ACD gain following large treefalls. We cal-
culated the average ACD gain following the four observations in the CARBONO record where the annual ACD 
loss was > 11.5 Mg C ha−1. For 5 years following these disturbance events, annual ACD gain was larger in mag-
nitude than the long-term trend (Supplementary Fig. 8). We estimated recovery time assuming these elevated 
post-disturbance recovery rates for the first 5 years, and then assuming the long-term gain for subsequent years, 
resulting in a predicted recovery time of 24 years. We expect that this underestimates recovery time because not 
all parts of the landscape experienced large decreases in ACD, but this method assumes that the entire landscape 
will have elevated ACD gain following the disturbance.

Finally, we repeated both approaches above, additionally estimating a higher value for pre-blowdown ACD 
in 2018 because plot based observations at La Selva indicate that ACD increased between 2009 and 201620. We 
calculated that the average annual ACD gain between 2009 and 2016 was 0.74 Mg C ha−1 yr−1. To estimate ACD in 
2018 immediately prior to the blowdown, we added this average rate to our 2009 ACD estimates for the period of 
2009–2018. We subsequently re-estimated recovery time to the higher 2018 ACD estimate, resulting in recovery 
time between 38 and 48 years using the second and first approaches above, respectively.

Data availability
Canopy height data and code underlying this analysis are available at https://​github.​com/​kccus​hman/​LaSel​vaBlo​
wdown; the repository contents at the time of submission are also permanently archived through the Brown 
University Dataverse (hosted by the Harvard Dataverse) at https://​doi.​org/​10.​7910/​DVN/​VHW3XR.
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