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COVID-19 (SARS COV2 n-corona virus) is the newfangled virus of the coronavirus family. COVID-19 can cause
serious illness with symptoms of fever, cold, cough, and respiratory blockage. COVID-19 is a contagious virus,
which originated in Wuhan, China. After one month, WHO declared it as a Pandemic due to its rapid spreading.
Presently, Indonesia is also facing a hard time controlling the spread. Hence, it is essential to understand the
spread rate in Indonesia and to analyze the strategies to minimize the virus spread. The proposed study can be
used to assess variations in virus spread both nationally, and sub-nationally. This allows public health officials
and policy-makers to track the progress of the outbreak in near real-time using an epidemiologically valid

1. Introduction to Covid-19

Recently, the big question globally revolved around is to find ways
to slow down the epidemic using various methods. However, there are
plenty of additional factors influencing the pandemic spread rate. All
the countries and their population are solely dependent on insights
from various studies or trials to recommend possible strategies and to
gauge the efficacy of the implemented policies (Ivanov, 2020; Remuzzi
& Remuzzi, 2020). The deadly COVID-19 virus has infected over 140
million people and over 3 million confirmed deaths all over the world.
The current COVID-19 epidemic has shown a non-linear and intricate
type of behavior (Koolhof et al., 2020). Furthermore, the epidemic has
dissimilarities with other recent epidemics to find out precise outcomes.
Besides, several well-known and unidentified features are visible in
the dispersed population across different geographical regions (Dar-
wish et al., 2020; Rypdal & Sugihara, 2019). Thus, typical pandemic
mathematical analysis encounters another type of issue in showing
accurate results. To overcome the current pandemic difficulties, various
mathematical models were developed based on assumptions (Dallas
et al.,, 2019; De Groot & Ogris, 2019; Kelly et al., 2019; Koike &
Morimoto, 2018; Scarpino & Petri, 2019; Zhan et al., 2019).

In the past few months, most of the countries in the world, and the
Indonesian government have repetitively referred to R, of COVID-19,
to bring back the new normal stage and to resume economic activity.
Most of the countries including Indonesia are trying to lower R, below
1. Let us see what is R, and how it reflects Indonesia’s present health
catastrophe?

1.1. What is R,?

R, indicates the virus main facsimile number, where Ry indicates
R, at a given moment in time. Ry and Ry determine by what factor
infection is likely to spread. R is the estimated number of additional
cases of infection, which in return will spread the infection. R, can vary
from place to place. For example, the typical R, for COVID-19 cases in
Indonesia is 1.4. It means that, for every 1000 people with COVID-19,
1400 people will be infected. The newly infected population of 1400
would start spreading to an additional 1960 people and this infectious
spread continues. Following a similar manner in about ten cycles, the
infection could spread to over 60 thousand people.

It means that when R goes beyond 1, the virus spreads exponen-
tially, but if R, is less than 1, the epidemic will drastically fall due to
less spread across the neighboring population. As per the WHO survey
in Hubei, China, it announced that R, is the most important factor to
analyze the spread rate.

1.2. How it is calculated and what affects it?

There are a few factors that influence the estimation of Ry and Ry.
As per WHO, the COVID-19 virus is contagious due to droplets and it
may remain in the air or on surfaces for about 2 to 3 days. Although ma-
nipulating the process of spread is complicated, the only way infectious
time could be reduced is by identifying and isolating virus-affected

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

* Corresponding author.

E-mail addresses: sankarprasad.est@gmail.com (S. Sreeramula), denyrah@hotmail.com (D. Rahardjo).

https://doi.org/10.1016/j.mlwa.2021.100136

Received 8 October 2020; Received in revised form 9 August 2021; Accepted 9 August 2021

Available online 20 August 2021

2666-8270/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://doi.org/10.1016/j.mlwa.2021.100136
http://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2021.100136&domain=pdf
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:sankarprasad.est@gmail.com
mailto:denyrah@hotmail.com
https://doi.org/10.1016/j.mlwa.2021.100136
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Sreeramula and D. Rahardjo

persons. Social isolation methods could drastically minimize the spread
rate.

It is also necessary to understand Indonesian geographical and
population diversity to calculate Ry. The only way to lower the spread
rate is through external policy interventions. Ry of 1.1 may suddenly
increase due to the lifting of restrictions. So, it is necessary to estimate
Ry to see the consistency of the daily rate to an outbreak of COVID-19
cases accurately for relaxing social restrictions.

This proposed paper describes the rate of spreading across Indonesia
and the impact of the virus over time 7. The remaining sections of
the paper are structured as follows. Section 2 discusses the literature
review. Section 3 describes the proposed research work and its math-
ematical model. Section 4 provides the experimental results. Section 5
presents the discussion and concluding remarks.

2. Literature review

The current COVID-19 dynamic spread rate has caused challenges
to predict accurately using machine learning models. Over the time
this has become even more challenging (Agarwal et al., 2018; Burke
et al.,, 2019; Carlson et al., 2018; Kleiven et al., 2018). Even though
machine learning models were used in past epidemics, there are still
plenty differences with the current pandemic (Chenar & Deng, 2018;
Igbal & Islam, 2019; Liang et al., 2020; Maciel et al., 2019; Raja et al.,
2019; Tapak et al., 2019). Machine learning has predicted precisely
for ecological catastrophes, which could be considered as the basis for
the current outbreaks. The COVID-19 prompted a different form of a
self-imposed slump compared to the past ones (Sucahya, 2020).

2.1. Predicting the end of Coronavirus disease

The COVID-19 pandemic has turned into a global emergency and
has now affected many lives in the past few months. The proposed
research work is an attempt to show with data, how similar and
different the spread of the pandemic is in different countries. Also, to
understand how the pandemic is growing and to see how the disease
is spreading across the world since 22" January 2020. Proposed paper
focuses on three data sources, which are Confirmed, Recovered, and
Death cases.

2.2. Confirmed cases

Initially, the country with more confirmed cases was China, later
the USA and other countries with a substantially smaller population
have now passed that number in a very short time after the outbreak.
According to break down trends by continents, it is noticed that Asia is
essentially reaching the flat curve, while Europe and the America’s are
still rapidly increasing in their numbers. Very few cases are reported in
Oceania (expected due to the relatively low population size).

The numbers in Asia are overwhelmingly dominated by India, after
very rigid containment measures, which appear to be close to the top
slot in the spreading of the disease. On the other hand, the numbers in
the Americas are dominated by the USA that is where the outbreak is
particularly intense now.

3. Proposed methodology

Default machine learning models to forecast the contagious virus
over time t could be more difficult. So, it is necessary to customize the
mathematical model to consider various factors.

Machine Learning with Applications 6 (2021) 100136
3.1. Customized mathematical model to estimate Indonesia R;

For example, imagine that the observed value of k = 20 new cases
and likely change is shown in Fig. 2.

In most pandemics, R, indicates the virus spread rate. This means,
over time t how many people get infected. Mathematically, R, is equal
to Ry when t = 0. But R, alone may not throw light on actions and
limitations. While the epidemic grows, the limitations may change R;.
So, it is very important to know the present value of R;. If R; > 1,
the epidemic would infect more people. If R; <1, the epidemic would
be slow in its spread. With smaller R,, it would be easy to handle the
spread. Generally, if R; <1 indicates that it is well under control.

Hence, R, provides a couple of benefits. First, it allows to determine
the beginning of the epidemic and when it turned into a pandemic.
Second, it provides very important information on which actions and
limitations to be addressed. Even top doctors and scientists claim
that R; alone could guide us in controlling the pandemic. Today, we
are not using R, in this way. Essentially, it is limited to understand R,
at a national level. Instead, to manage this crisis effectively, we need
a local (state, county, and/or city) granularity of R;. In the proposed
model, a new process model is introduced, a Gaussian noise to find
time variable R;. The Gaussian process makes the model much more
responsive.

In the current period, every day, we learn how many more people
have been infected by COVID-19. The new case count provides the
present condition of R;. It is also noticed that, R, today is connected to
R,_, (previous day). Hence, all the past COVID-19, contributes to R;_,.
After observing few insights, Bayes’ rule is used to update the views of
the actual value of R;. It also provides information on daily additional
infected cases.

The Bayes’ Theorem used in the proposed model is as follows:

P(k|R,).P(R,)

P(R,|k) = @
! P(k)
In Eq. (1), k is the new cases, the distribution of R, is equal to:
« The likelihood of k as an additional number with R; times
» The prior views of P(R,) exclusive of the given numbers
Poisson Distribution of Cases
Plk|A)
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Fig. 1. Poisson Distribution.
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Fig. 2. Likelihood function with K = 20.
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Fig. 3. Estimation of the basic reproductive number (RO), derived by integrating uncertainties in parameter values, during the coronavirus disease outbreak in Indonesia. (A)
Changes in R, based on different growth rates and serial intervals. Each dot represents a calculation with mean latent period (range 2.2-6 days) and mean infectious periods
(range 5-14 days). Only those estimates falling within the range of serial intervals of interests were plotted. (B) Histogram summarizing the estimated R, of all dots in panel A

(i.e., serial interval ranges of 6-9 days). The median R, is 5.7 (95% CI 3.8-8.9).

« Divided by the probability of several cases

To make it iterative: each day that passes, it uses the past day prior
P(R,_,) to finding the present day’s past P(R,). It is assumed that an
uncorrelated Gaussian method.

P(RIR_) =N (R_,,0) 2

where, ¢ is a hyperparameter.
So, on first day:

P(R,|kK)aP(Ry).P(k|R,) 3
On second day:
P(R,|k)aP(Ry).P(ky|Ry).P(k;|R) (C)]

Selecting a Probability Function P(k,|R,)
The probability function tells how likely to get k new cases using R,.

At any time, if it is required to model arrivals over some time period,
statisticians like to use Poisson Distribution. It is assumed that typical
new cases on each day at a rate A then, the probability of k new cases
is distributed according to Poisson distribution:

2kt
k!

In this, a brief-expression is created to make k as a column. By
giving it a column for k and a row for lambda will evaluate the pmf over
both and produce an array that has k rows and lambda columns. This is
an efficient way of producing many distributions all at once. In Fig. 1,
the Poisson distribution shows various 4 cases per day, it will probably
get that many, plus or minus some variation based on chance. But in
the real case, there have been k cases and need to know what value
of 4 is most likely. To do this, k is fixed in place while varying A. This
is called the likelihood function.

Fig. 2 shows that if there are 20 cases, the most likely value of 1 is
(not surprisingly) 20. But could be possible that lambda is 21 or 17 and
noticed 20 new cases by chance alone. It also says that it is unlikely that
4 could be 40 and noticed as 20. However, P (1,|K,) is parameterized
by 4 but looking for P (k,|R,), which is parameterized by R,. So, it is
necessary to know the relationship between 4 and R,

Pkl = )

3.2. Connecting 4 and R,

The key insight to making this work is to realize that there is a
connection between R, and A.

A=k, jerReD) (6)

where y is the reciprocal of the successive interval (about 7 days for
COVID19). The recent Covid-19 analysis shows that the exponential
growth rate of the outbreak used to be double in 7 days. Since every
new case count on the previous day is used to reformulate the likeli-
hood function as a Poisson parameterized by fixing k and varying R;,
is shown in Eq. (7).
k,—1

P(kIR) = £2° %)
Gamma value 7 is assumed for COVID19 based on following analysis:

To obtain accurate values of R, we used earlier assessments of
serial intervals for COVID-19. The serial interval is estimated to be ~7—
8 days based on data collected. More recent data collected in some
Provinces in Indonesia, suggests that the serial interval is dependent
on the time to hospital isolation. When infected persons are isolated
after 5 days of symptoms (initially where the public was not aware of
the virus and few interventions were implemented), the serial interval
is estimated to be 8 days. Thus, these results suggest a serial interval of
7-8 days. With this serial interval, we sampled latent and infectious
periods within wide biologically plausible ranges and estimated the
median R, to be 5.8 (95% CI 4.4-7.7) shown in Fig. 3. To include a
wider range of serial interval (i.e., 6-9 days), given the uncertainties
in these estimations, we estimated that the median of estimated R, is
5.7 (95% CI of 3.8-8.9) (Fig. 3B). The estimated R, can be lower if the
serial interval is shorter. However, recent studies reported that persons
can be infectious for a long period, such as 1-3 weeks after symptom
onset. Thus, we believe that a mean serial interval shorter than 6 days is
unlikely during the early outbreak in Indonesia, where infected persons
were not rapidly hospitalized.

3.2.1. Evaluating the likelihood function

To continue our example, let us imagine a sample of new case
count k. What is the likelihood of different values of R; on each of those
days is shown in Fig. 4.

It is noticed that each day we have an independent guess for R,. The
goal is to combine the information we have about previous days with
the current day. To do this, Bayes’ theorem is used.

3.2.2. Performing the Bayesian update

To perform the Bayesian update, we need to multiply the likelihood
by the prior (which is just the previous day’s likelihood without our
Gaussian process) to get the posteriors. Let us do that using the cu-
mulative product of each successive day and the results are shown in
Fig. 5.
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Fig. 4. Likelihood of R, with various K values.

Fig. 5. Cumulative product of each successive day with R,.

It is noticed from Fig. 5 that, how on Day 1, posterior matches
Day 1’s likelihood because it had no information other than that day.
However, when we update the prior using Day 2 information, the
curve has moved left, but not nearly as left as the likelihood for
Day 2. This is because Bayesian updating uses information from both
days and effectively averages the two. Since Day 3 likelihood is in
between the other two, there can seen a small shift to the right, but
more significantly a narrower distribution. This shows more confident
in our believes of the true value of R;. From these posteriors, it is
easy to answer important questions such as “What is the most likely
value of R; each day” and also to obtain the highest density intervals
(HDI) for R;. Based on this analysis both the most likely values of
COVID-19 and the HDI over time are calculated and shown in Fig. 6.

It is noticed from Fig. 6 that, the most likely value of R; changes
with time and the highest-density interval narrows as we become sure
of the true value of R; over-time.

4. Results

Looking at the present situation, it is necessary to start the analysis
when there are authenticated several cases each day. Find the last zero
new case day and start analyzing on the day after that. Also, daily
reported cases are erratic based on testing backlogs, etc. In the proposed
methodology, a Gaussian filter is applied to get the best view of the
‘true’ data of time series. This is an arbitrary choice, but the real-world
process is not nearly as stochastic as the actual reporting.

4.1. COVID-19 global spread trends

Table 1 shows continent-wise detailed COVID-19 confirmed cases,
deaths, recovered, active cases, incident, and mortality rates.

Fig. 7 shows the COVID-19 spread across the globe from china and
shows how fast it has spread from China to other parts of the world.
Fig. 8 shows the global prediction of new confirmed cases.

It is noticed in Fig. 8 that new confirmed cases are increasing
exponentially, it does not show the flatten or downtrends. Fig. 9 shows
the future prediction of the death cases. Fig. 10 shows the highly
affected country USA’s prediction. Fig. 11 shows the new cases per day
in Indonesia.
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4.2. Choosing o for the Gaussian process

Choosing the right value of ¢ for the Gaussian process is essential
to predict the future trend. The general approach is simply selecting
yesterday’s posterior as today’s past. While intuitive, doing so does not
allow for the general hypothesis that the value of R, would probably
change from yesterday. To consider the change of R;, Gaussian noise is
applied to the prior distribution with some standard deviation ¢. The
higher ¢ the more noise and the more R, value would be expected drift
to each day. Fascinatingly, applying noise on noise iteratively means
that there would be a natural decay of distant posteriors. This approach
has the same effect of windowing, but it is more robust and does not
arbitrarily forget posteriors after a certain time like general approaches.

However, there is still an arbitrary choice of ¢ value to use in the
process of maximum likelihood. To maximize the likelihood of the data,
it is important to choose the right value of ¢. In general, ¢ is a fixed
value, but in the proposed method to maximize P (k) for all the values
of o. Since, P (k) = P (ko,kisk;) = P (ko) P (k) P (k;), P (k)
is defined. Hence, it turns out as the denominator of the Bayes rule is
shown in Eq. (8).

P (R|k;) P (R,)

PRIk = =

(8)
In Eq. (8), it is noticed that the numerator is just the joint distribution
of k and R.

P (R, k) =P (k/(R;) P (R,) 9
Eq. (8), can marginalize the distribution over R, to get P (k,)

P (k) = ZP(ktht)P(Rt) (10)

So, the distribution of all the numerator values of R, is summed
up to get P (k;) and posterior is calculated. In the proposed method,
the optimum value of cis chosen to maximize the P (k) and also to
maximize the value of Eq. (10).

T (k) av
1,i

where, ¢ indicates the time information and i indicates each state
information of Indonesia.

Since, multiplying lots of tiny probabilities together, it can be easier
(and less error-prone) to take the log of the values and add them
together.

logab = loga + logb (12)

Maximizing the sum of the log of the probabilities is same as maxi-
mizing the product of the non-logarithmic probabilities for any choice
of o.

4.3. Function for calculating the posteriors

To calculate the posteriors, the following steps are used

1. Calculate 4 - the expected arrival rate for every day’s Poisson
process

2. Calculate each day’s likelihood distribution of all possible val-
ues of R,

3. Calculate the Gaussian process matrix based on the value of ¢

4. Calculate initial past because the first day does not have a
previous day to take from the posterior

* Based on the information from the CDC described
(Sanche et al., 2020) Gamma value is chosen with a mean
of 4.

5. Loop from day 1 to the end, by doing the following:
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Fig. 6. Most likely values of R, and the HDI.

Table 1
Continent wise recent COVID-19 cases details.

Confirmed Deaths Recovered Active Incident_Rate Mortality Rate (per 100)

continent
Africa 702832 14960 367691 320181 3914.43 213
Asia 884358 15731.43 236
Australia 13397 144 9806 3447 8164 1.07
Europe 198981 15426.75

(RN OS] 4370045 193038 473324 |

Others 15274 21 5700 9356 1965.28

South America 3215434 pato Lyl 918232 5649.76

COVID-19: Progression of spread

Last_Update=07/18/2020

Fig. 7. Global COVID-19 Spread.
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Fig. 8. COVID-19 Global confirmed cases prediction.
+ Calculate the prior by applying the Gaussian to yester- Fig. 12 shows every day (row) of the posterior distribution plotted
simultaneously.
day’s prior. . . ) .
- Apply Bayes’ rule by multiplying this prior and the like- The posteriors start without much confidence(wide) and become
progressively more confident(narrower) about the true value of R,.
lihood we calculated in step 2. Since the analyzed results include uncertainty, so better to view the

+ Divide by the probability of the data (also Bayes’ rule) most likely value of R, along with its highest-density interval is shown
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Fig. 9. COVID-19 Global death cases prediction.
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Fig. 11. Indonesia new confirmed cases trend.
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Fig. 12. Time Domain with Credible Intervals.
4.4. Choosing the optimal value of ¢
in Fig. 13. Hence, the proposed algorithm produces the most likely To choose an optimal o, each state is evaluated with various sigma
value for R, overtime for each locale. values. The optimum value of ¢ maximizes the likelihood of the
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Fig. 15. Most recent R, in Indonesia.

data P (k). Sigma value should be carefully chosen to avoid the overfit
and that maximizes P (k) of each state. To do this, all the log likelihoods
are added up as per state for each value of sigma, and choose the
maximum. After selecting the optimal o, the precalculated posterior
values are collected corresponding to that value of ¢ for each state.
Also calculated the 90% and 50% highest-density intervals and the
most likely value. In the proposed algorithm, the last seven days are
considered instead of the previous days data to produce each state’s R,
accurately. Fig. 14 shows the Indonesia’s state-wise for R, and plotted
them along with the highest density interval (HDI) bands. Fig. 15 shows
the Indonesia’s most recent values of R,.

In Fig. 15, the states should be aware that their high R, values may
create an exponential increase in the number of cases. Fig. 15 clearly
shows that without social restrictions, cases may grow significantly.
Now, let us look at which Indonesian states are almost certainly below
threshold 1.0 is shown in Fig. 16a and the epidemic uncontrol is shown
in Fig. 16b.

State-wise Indonesia real-time R,.

LikelyﬁUnder Control

Restriction Status
I None M Large-Scale Social Restriction
M Partial Large-Scale Social Restriction ¥ Partial Territorial Quarantine

Territorial Quarantine

F=4
[}
o
g
3
©
2
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Fig. 16a. Likely under control states of Indonesia.

Likely ot UnNnder Control

0O H N UWDMWO

Joa Timur
Riay

Fig. 16b. Not under control states of Indonesia.

Fig. 16a clearly shows that there is only one state called Jawa
Tengah in Indonesia doing well at present. Also, Fig. 16a shows that
state Jawa Tengah has a high end of its HDI is less than 1. This means
that even in the worst-case scenario the state likely has an epidemic
under control. It is clearly showed in Fig. 16b, Jawa Timur and Riau
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states are not under control. This might be due to earliest high rate
of infection, but seeing larger states above 1.0 is worrying, especially
because none of these states have hit the headlines as being trouble
spots.

5. Conclusion

Various likelihoods and posteriors are computed and analyzed to
predict the real-time Covid spread rate and its impact. The analysis
shows that if new cases continue to decrease for more than 14 days
at minimum, then it is assumed that the epidemic is under control.
However, the analysis also proved that more testing is needed, so
that the daily recorded cases could better reflect the real-world trans-
mission rate. The analysis clearly shows that the people with certain
pre-measures could minimize drastically COVID-19 spread. So, it is
necessary to follow certain precautions until it becomes normal. Hence,
social distancing and mass gathering should be avoided to control the
spread rate.

6. Discussion

The Indonesian government is facing a hard time minimizing the
COVID-19 spread rate, at first, it wanted to be careful in controlling
the movements of the population. Over time and as cases increased,
the only way spread rate can be minimized by increasing the number
of Covid-19 isolation centers. This may reflect some challenges from
different factors: (1) readiness and capacity between isolation facilities;
(2) availability of monitoring officers; (3) transportation facilities.

Recommendations

There are several suggestions based on this study, namely: First,
ensuring that the reference isolation centers designated are under
standards both in terms of human resources, availability of necessary
facilities, and reagents so that when appointed by the government
they can immediately operate. Second, close the international borders
and closely monitor inter-state borders where the positive cases more.
Third, Indonesia’s geographical location is very broad, and the position
of the reference may not be all easily accessible to certain regions. For
this reason, some special procedures need to be considered. Fourth, en-
courage and strengthen the ability of existing resources in the country
to be able to produce logistics needs and the needs of medical facilities
independently. Lastly, to speed up the vaccination and immunization
programs.
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