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Abstract: In spite of the noninferiority of transcatheter aortic valve replacement (TAVR) in high- and
intermediate-risk patients, there are still obstacles that need to be overcome before the procedure is
further expanded and clinically integrated. The lack of evidence on the long-term durability of the
bioprostheses used for TAVR remains of particular concern. In addition, surgery may be preferred
over TAVR in patients with bicuspid aortic valve (BAV) or with concomitant pathologies such as
other valve diseases (mitral regurgitation/tricuspid regurgitation), aortopathy, and coronary artery
disease. In this review, we discuss and summarize relevant data from clinical trials, current trends,
and remaining obstacles, and provide our perspective on the indications for the expansion of TAVR.

Keywords: aortic valve stenosis; transcatheter aortic valve replacement (TAVR); transcatheter aortic
valve implantation (TAVI); surgical aortic valve replacement (SAVR); low risk; intermediate risk;
high risk

1. Introduction

As a result of a degenerative process, aortic valve stenosis (AS) is among the most
common valvular diseases in developed countries [1,2], with an increasing incidence with
increasing age, approximately 2.0% for those 65 years of age and 4.0% for those 85 years of
age [3]. In patients over the age of 75, the incidence of persistent perioperative complications
and mortality after surgical aortic valve replacement (SAVR) may be high, and other factors,
such as significant comorbidities, female sex, frailty, New York Heart Association (NYHA)
classification, or left ventricular dysfunction, may exacerbate the condition and significantly
increase mortality [4,5].
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More than one-third of AS patients are considered to be high-risk and are, therefore,
deemed to be not eligible for SAVR. Due to this, transcatheter aortic valve replacement
(TAVR) was initially developed as a procedure for inoperable patients. Since the first
TAVR in 2002, these procedures have grown and exceeded the number of SAVR procedures
performed in Germany [6–8]. TAVR has been shown to be noninferior to SAVR in a number
of prospective randomized trials [9,10]. Figure 1 shows the currently available CE-marked
transcatheter heart valves (THV).
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Figure 1. (A–C) The SAPIEN XT, SAPIEN 3 and SAPIEN 3 Ultra. Image courtesy of Edwards
Lifesciences; (D,E) the Evolut R and Evolut R pro. Image courtesy of Medtronic; (F,G) the ACURATE
neo and ACURATE neo2. Image courtesy of Boston Scientific; (H) the ALLEGRA. Image courtesy of
NEW VALVE TECHNOLOGY; (I) the Hydra. Image courtesy of SMT; (J) the Navitor device, Image
courtesy of Abbott; (K) the Jena valve, Image courtesy of JenaValve Technology.

Additionally, it has been demonstrated that TAVR is noninferior in intermediate-risk
patients [11–13]. Research is currently being conducted to determine whether TAVR can
be extended to patients with low risk and younger ages (Figure 2). In this review, we
summarize and discuss essential data from clinical trials, current trends, and remaining
challenges, as well as discuss our perspectives on the expansion of TAVR.
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Figure 2. Studies on TAVR versus SAVR in patients at different surgical risks and of similar age.
The progressive decrease in age and STS scores of patients implanted with TAVI.STS: Society of
Thoracic Surgeons.

2. TAVR for High- and Intermediate-Risk Patients

The indications for TAVR have evolved in recent years following the publication of
results from multicenter randomized controlled trials.

The prognosis of conservative treatment in patients with inoperable aortic stenosis is
inferior. Observational studies in these patients confirmed the safety and effectiveness of
TAVR. Researchers concluded from the randomized controlled Placement of Transcatheter
Aortic Valves (PARTNER) Trial 1B completed in 2010 that, compared with the conservative
treatment group, TAVR with the balloon-expandable Edwards SAPIEN valve significantly
reduced the 1-year mortality of inoperable AS patients (30.7% vs. 50.7%, HR = 0.55, 95% CI:
0.40–0.74, p < 0.001), and effectively improved cardiac function [14]; the five-year follow-up
results showed that all-cause and cardiovascular mortality in the TAVR treatment group
significantly decreased [15]. Similarly, the 2014 Core Valve Extreme Risk Pivotal trial demon-
strated good efficacy and safety of TAVR in the treatment of extreme-risk patients [16]
and extended findings of self-expanding valves for TAVR in high-risk patients. Based on
these randomized controlled studies and large samples of observational studies [17,18], the
American College of Cardiology/American Heart Association (ACC/AHA) guidelines for
the management of valvular disease (2014) recommend TAVR for patients with severe AS
who are inoperable and expect to live for more than 12 months (I/B) [19].

In the 2011 randomized controlled trial PARTNER 1A, the efficacy and safety of
TAVR and SAVR were compared in patients with high-risk severe AS treated with the
Edwards balloon-expandable SAPIEN valve. The study reported that, on average, the
1-year mortality rate of the two groups was not significantly different (24.2% vs. 26.8%,
p = 0.44); the 5-year follow-up results indicated that, on average, the long-term effects
of TAVR and valve durability were not inferior to SAVR [9,20]. Further, a study of the
self-expanding CoreValve for patients with increased risk reported that the 1-year all-cause
death rate in the TAVR group was significantly lower than that in the SAVR group (14.2%
vs. 19.1%, p = 0.04) [10], and the 2-year all-cause death rate was also significantly lower
than that in the SAVR group (22.2% vs. 28.6%, p = 0.04) [21].

Thus, the 2020 ACC/AHA valvular disease management guidelines recommended
TAVR as the preferred treatment for high-risk and severe AS patients (>65 years) (I/A) and
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established a cardiovascular disease diagnosis and treatment team to assess a patient’s
comorbidities and anatomical characteristics [1]. The 2020 European Society Of Cardiology
(ESC) guidelines are slightly more restrictive: TAVR is recommended in older patients
(≥75 years) or in those who are at high risk (STS-PROM/EuroSCORE II > 8%) or unsuitable
for surgery (I/A) [22]. Notably, however, some research teams have presented conflicting
study results. Armoiry et al. [23] used real-world evidence to compare 5-year clinical
outcomes and direct costs between TAVR and SAVR. The results showed a higher risk
of death at 1 year with TAVR than that with SAVR (16.8% vs. 12.8%, HR = 1.33; 95% CI:
1.02–1.72) and for up to 5 years (52.4% vs. 37.2%, HR = 1.56; 95% CI: 1.33–1.84). At 5 years,
the risk of stroke, myocardial infarction, and pacemaker implantation were also increased
after TAVR. Furthermore, the cost of hospitalization is also higher than that of SAVR (EUR
69,083 vs. EUR 55,687).

Despite some ongoing debate, TAVR has shown noninferior efficacy and safety com-
pared with SAVR in severe AS patients at high and extreme risks, and as such, its use in
severe AS patients at intermediate risk has received attention and prompted increasing clin-
ical integration and evolution of trials; in the PARTNER 2A study, a randomized controlled
trial presented in 2016, 2032 surgical intermediate-risk patients (STS score of 5.8%) were ran-
domized to TAVR using the Edwards SAPIEN XT or SAVR. The 2-year follow-up showed
no statistically significant difference between the two groups in the primary composite
endpoint (all-cause death or disabling stroke) (19.3% vs. 21.1%, HR = 0.89, 95% CI: 0.73–1.09,
p = 0.25), and in the subgroup analysis. TAVR via the femoral artery approach was found
to be more effective than SAVR in reducing the incidence of the above endpoint events
(HR = 0.79, 95% CI: 0.62–1.00, p = 0.05) [13]. SURTAVI trial (2017) evaluated the use of the
CoreValve and Evolut R self-expanding valves in intermediate-risk patients and found that
(1) the 2-year primary composite endpoint (all-cause death or disabling stroke) in the TAVR
group was not higher than that in the SAVR group (12.6% vs. 14.0%, 95% CI: −5.2–2.3%;
the posterior probability of noninferiority, >0.999), the transvalvular gradient (TG) in the
TAVR group was lower than that in the SAVR group at 2 years, and the effective orifice
area (EOA) was greater; (2) TAVR-group patients had a higher incidence of paravalvular
leakage (PVL) and permanent pacemaker implantation (PPI) than SAVR-group patients,
whereas SAVR-group patients had a higher incidence of postoperative acute kidney injury
and new-onset or exacerbated atrial fibrillation (AF) [11].

With reference to the above evidence, the 2021 ESC guidelines recommended that
TAVR may be the preferred option for patients with severe AS at intermediate surgical risk,
when the transfemoral approach is feasible (I/B) [22]. TAVR may also be recommended as a
treatment option for patients with severe AS at intermediate surgical risk by the guidelines
(IIa/B-R) [24]. There is, however, an emphasis on the importance of determining the most
appropriate treatment modality based on an individual risk assessment of the patient.

3. TAVI Transition to Low-Risk Patients

The most common complications of TAVR, including PVL, PPI, patient prosthetic
mismatch, and valve durability, are arguably the most significant difficulties to address with
this technology when considering its application to low-risk and young patients. According
to current guidelines, SAVR remains the preferred treatment for symptomatic, low-risk
severe AS [24,25]. In recent years, with improvements in TAVR surgical instruments,
the optimization of procedures and procedural planning, as well as the reduction in
complication rates, TAVR has become a research topic of increasing importance in the
treatment of low-risk AS patients.

The NOTION study, completed in 2015, compared the effectiveness and safety of
TAVR and SAVR in patients at lower risk (STS risk score of 3%, with 81.8% of patients
having an STS risk score < 4%). A total of 280 patients were enrolled in the study, and
the results of the 1-year follow-up indicated the following: (1) There were no statistically
significant differences between the TAVR and SAVR groups in terms of the composite
endpoint (all-cause death, stroke, and myocardial infarction, 13.1% vs. 16.1%, p = 0.43), and
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the incidence of all-cause death (4.9% vs. 7.5%, p = 0.38) and stroke (2.9% vs. 4.6%, p = 0.44)
were not statistically significant. (2) The incidences of PPI (38.0% vs. 2.4%, p < 0.001)
and aortic regurgitation (AR) (15.7% vs. 0.9%, p < 0.001) were significantly higher in the
TAVR group than those in the SAVR group, whereas the incidences of postoperative major
bleeding, acute kidney injury, and new onset of AF were significantly higher in the SAVR
group, but major vascular complications did not differ between the two groups [12].

The NOTION study published 5-year follow-up results in 2019 and reported that the
difference in the composite endpoint events between the TAVR and SAVR groups at 5 years
remained statistically insignificant (38.0% vs. 36.3%, p = 0.86); it also noted that the rates of
all-cause death (27.6% vs. 28.9%, p = 0.75), stroke (9.0% vs. 7.4%, p = 0.65), and myocardial
infarction (7.7% vs. 7.4%, p = 0.96) were also not statistically significant between the two
groups. Ultrasonography demonstrated lower TG in the TAVR group, compared with the
SAVR group (8.2 mmHg vs. 13.7 mmHg, p < 0.001) and greater EOA (1.7 cm2 vs. 1.2 cm2,
p < 0.001). However, the incidences of PPI (43.7% vs. 8.7%, p < 0.001) and AR (7.1% vs. 0%,
p < 0.001) were higher in the TAVR group than those in the SAVR group [26].

In PARTNER 3, 1000 low-risk patients with severe AS (STS risk score of 1.9%) were
randomly allocated to receive TAVR (using SAPIEN 3 THV with transfemoral access) or
SAVR, respectively. The results of the 1-year follow-up showed the following: (1) The
incidence of the composite endpoint event (all-cause death, stroke, or rehospitalization)
was lower in the TAVR group than that in the SAVR group (8.5% vs. 15.1%, HR = 0.54, 95%
CI: 0.37–0.79), with all-cause death rates of 1.0% and 2.5% (HR = 0.41, 95% CI: 0.14–1.17),
stroke rates of 1.2% and 3.2% (HR = 0.38, 95% CI: 0.15–1.00), and rehospitalization rates
of 7.3% and 11.0% (HR = 0.65, 95% CI: 0.42–1.00), respectively. (2) In terms of vascular
complications, PPI, and moderate-to-severe PVL, the difference between TAVR and SAVR
was not statistically significant [27]. The 2-year follow-up results of the concurrently
published Medtronic Low-Risk TAVI trial showed that the incidence of the composite
endpoint event (death or disabling stroke) was not statistically significant in the TAVR
group, compared with that in the SAVR group (5.3% vs. 6.7%, posterior probability of
noninferiority, >0.999), and the incidence of 30-day stroke, bleeding, acute kidney injury,
and new-onset AF were lower in the TAVR group than those in the SAVR group. However,
the incidence of moderate-to-severe PVL and PPI was higher in the TAVR group. At 1-year
follow-up, echocardiography showed that patients in the TAVR group had lower TG than
those in the SAVR group [28].

In the Evolut Low-Risk trial, 1403 patients underwent TAVR or surgical procedure
(725 in the TAVR group and 678 in the surgery group). The patients’ mean age was 74 years.
At 30 days, the TAVR group performed a lower incidence of disabling stroke (0.5% vs.
1.7%), bleeding complications (2.4% vs. 7.5%), acute kidney injury (0.9% vs. 2.8%), and
AF (7.7% vs. 35.4%) with a higher incidence of moderate or severe AR (3.5% vs. 0.5%)
and pacemaker implantations (17.4% vs. 6.1%), compared with the surgery group. At 12
months, patients in the TAVR group had lower aortic-valve gradients than those in the
surgery group (8.6 mm Hg vs. 11.2 mm Hg) and larger EOA (2.3 cm2 vs. 2.0 cm2). The
results of the 24-month follow-up showed that the primary endpoint (composite of death
or disabling stroke) was 5.3% in the TAVR group and 6.7% in the surgery group (difference,
−1.4 percentage points; 95% Bayesian credible interval for difference, −4.9 to 2.1; posterior
probability of noninferiority > 0.999).

Although the above clinical trials demonstrate the efficacy and safety of TAVR in low-
risk patients with AS, long-term follow-up data are still lacking. In addition, it is important
to evaluate the risk of surgical death objectively. In fact, all widely used stratification tools
have significant limitations in predicting surgical mortality [29,30]. These risk models
did not include certain factors, such as a porcelain aorta, malignancy, and neurological
impairment. Notably, the average age of patients from these low-risk trials was over
70 years. There are still unanswered questions when considering TAVR in younger patients
(<70 years), especially since the sequence of multiple procedures over the patients’ lifetime
is still unknown.
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Schaefer et al. [31] used a real-world low-risk patient cohort to determine the different
outcomes between SAVR and TAVR. The results indicated that the 3- and 5-year follow-ups
showed increased mortality in the matched TAVR cohort, compared with the SAVR cohort
(5-year survival 9.99% vs. 32.96%, p = 0.013).

Thus, for low-risk patients, especially those in younger age groups, with a need for
optimal long-term results, the role of TAVR still requires careful individualized evaluation
and shared decision making with patients, including uncertainty about long-term outcomes,
as well as the potential for redo-TAVR.

4. TAVR for All?—Current Challenges: Bicuspid Aortic Valve

Bicuspid aortic valves (BAVs) are among the most common congenital malformations,
affecting approximately 2% of the population [32]. They have a distinct anatomical struc-
ture: The shape of the valve leaflets is asymmetric, and the sinus opening is elliptical in
shape. Thus, blood flow at the valve opening is blocked, flow velocity increases, and a vor-
tex develops, resulting in thickening and asymmetric calcification of the valve. At the same
time, due to its genetic mechanism and abnormalities, blood flow impinges on the aortic
wall, making it more vulnerable to aortic wall lesions, such as ascending aorta dilatation
and aneurysms. BAVs are prone to accelerate aortic valve calcification and require invasive
treatment at a younger age than the tricuspid aortic valve (TAV) [33,34]. However, BAV
patients have a long life expectancy and, therefore, will require longer durability of their
valve replacement compared with typical AS patients with TAV. Thus, life-long planning
for the valve replacement needs to be considered, and TAVR should only be performed
on them if there is a high rate of device success, a low rate of reoperation, and long-term
prosthesis durability. Figure 3 demonstrates the Sievers classification of BAV.
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TAVR has become increasingly popular among patients with intermediate- and high-
risk severe AS in recent years. Nevertheless, all major clinical trials have excluded patients
with BAV.

Current guidelines list it as a relative contraindication based on the following factors:
(1) annular shape—the oval annulus may affect the position of the implanted valve and the
sealing beneath the implant; (2) calcification—asymmetric and severe leaflet calcification
may affect valve expansion and postimplantation hemodynamics (e.g., higher transvalvular
pressure gradient and PVL); (3) aortic structure—concomitant aortic disease increases the
risk of aortic dissection and rupture during balloon dilation; (4) long-term prognosis—
inadequate expansion and elliptical shape of the valve leaflets may affect the durability of
the implanted valve.

Studies have reported the safety and efficacy of TAVR in patients with BAV. In 2017,
SANNINO et al. [36] retrospectively analyzed the safety and efficacy of TAVR in 77 patients
with BAV and 735 patients with TAV. The results indicated that there was no statistically
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significant difference in the success rates of valve implantation between BAV and TAV
patients (98.7% vs. 99.1%, p = 0.556), as well as no differences in mortality, PPI, and
moderate-to-severe PVL incidences at 30 days and 1 year after the procedure. During
postoperative ultrasound evaluation, there was no difference in TG and peak flow velocity
between the two groups. However, EOA was slightly larger in the BAV group than that in
the TAV group (2.15 cm2 vs. 1.90 cm2, p = 0.007). In a matching analysis of 28 BAV patients
and 84 TAV patients, KOCHMAN et al. [37] demonstrated that both groups of patients
had similar rates of valve implantation success, aortic annulus rupture, and intraoperative
conversion to SAVR. There was no statistically significant difference in 30-day and 1-year
mortality or in TG, EOA, and rates of PVL. YOON et al. [38] compared the efficacy of
TAVI in 546 BAV and 546 TAV patients through propensity score matching, and the results
showed that the proportion of intraoperative conversion to SAVR in the BAV group was
higher than that in the TAV group (2.0% vs. 0.2%, p = 0.006). The incidences of aortic root
injury and moderate-to-severe PVL was higher than those of the TAV group.

However, in the subgroup analysis, it was found that the above differences between
BAV patients implanted with new-generation valves (SAPIEN 3 and Lotus) were not
statistically significant, compared with the TAV group. The follow-up results showed that
there was no significant difference in the incidence of all-cause death and stroke between
the two groups at 30 days and 2 years (17.2% vs. 19.1%, p = 0.28).

Two recent studies, LRT Bicuspid [39] and Evolut Low-Risk Bicuspid [40], both demon-
strated excellent results at 30 days. One patient in the LRT Bicuspid study had moderate
PVL at 30 days, and no deaths or disabling strokes were reported. In the Evolut Low-
Risk Bicuspid study, the all-cause mortality rate and disabling stroke rate at 30 days were
both 0.7%, and no patients had moderate or severe PVL. Several studies (BIVOLUT-X
registry [41]: 5.3%; LRT Bicuspid study: 1.6%; and Evolut Low-Risk Bicuspid study: 4%)
showed a higher rate of stroke than low-risk trials in patients with TAV (LRT: 0%; Evolut
Low Risk: 3.4%). In a postmarket analysis from the STS/ACC TVT Registry, TAVR with
balloon-expanded THV for the bicuspid valve was associated with an increased risk of
stroke, compared with TAVR for the tricuspid valve (TAVR for bicuspid 2.5% vs. TAVR for
tricuspid 1.6%; p = 0.02) [42]. These studies all suggest that the increased risk of stroke in
patients with BAV is a problem that cannot be ignored.

The study by Majmundar et al. [43] suggested that, compared with SAVR, TAVR was
associated with a lower in-hospital mortality (0.7% vs. 1.8%, OR: 0.35, 95% CI: 0.13–0.93;
p = 0.035) and a similar rate of major adverse cardiovascular events at 30 days (1% vs. 1.5%,
OR: 0.65, 95% CI: 0.27–1.58; p = 0.343) and at 6 months (4.2% vs. 4.9%, HR: 0.86, 95% CI:
0.44–1.69; p = 0.674) in the postmarket cohort. However, a long follow-up is still needed to
compare the superiority and inferiority of TAVI and SAVR for BAV patients.

Recently, Yoon et al. [44] performed a computed tomography (CT) analysis of 1034
TAV patients and found that excessive leaflet calcification and moderate raphe calcification
were significant predictors of all-cause death, PVL, and aortic root injury. In patients
with both calcified raphe and excessive leaflet calcification, the incidence of aortic root
injury was up to 4.5%, and the incidence of toxic-to-severe PVL was up to 6.5%, with
All-cause mortality of 25.7%. In contrast, patients without the highest-risk phenotype
showed excellent procedural outcomes. However, BAVs, particularly Sievers type 0 valves,
were uncommon in this study. According to Husso et al. [45], BAVs of type 1 N-L and type
2 L-R/R-N morphologies have significantly higher incidences of mild-to-severe PVL (37.5%
and 100%, respectively) than other types of BAVs.

Surgical outcomes are generally unaffected by aortic valve structure, and therefore,
surgery should be preferred for patients with the highest-risk phenotype. Moreover,
CT evaluation for BAV morphology may help identify high-risk and suitable patients.
Therefore, further investigations into the BAV morphology in TAVI patients are necessary
since the current findings suggest that these subtypes may be contraindicated for TAVR.

However, Patients with BAV often have associated thoracic aortic pathologies such
as aortic root/ascending aortic dilatation and aneurysms. In patients with a BAV with
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indications for surgery and a diameter of aortic sinuses or ascending aorta ≥45 mm, the
aortic sinuses and/or ascending aorta replacement is reasonable [1]. Current TAVR devices
do not address the concomitant aortic pathology, and therefore, TAVR is limited to patients
with isolated aortic disease.

5. Durability of Transcatheter Heart Valves (THVs)

Bioprosthetic valve dysfunction may result from structural or nonstructural causes.
Structural valve degeneration (SVD) is characterized by fibrous calcification remodeling
of the leaflets leading to tearing and rupture [46–48]. Nonstructural valve degeneration
includes valve thrombosis, endocarditis, and PVL [49]. The mechanisms of SVD involve
patient, prosthetic, and procedure factors (Figure 4).

A consensus paper published in 2017 provided the first standardized definition of
SVD [49], which was divided into morphologic dysfunction (based on imaging findings
of frame and leaflet function, integrity, and structure) and hemodynamic dysfunction
(based on echocardiographic findings). The valve academic research consortium’s three
criteria subdivide SVD into three stages—stage 1: morphological valve deterioration, stage
2: moderate hemodynamic valve deterioration, and stage 3: severe hemodynamic valve
deterioration [50]. Moderate-to-severe hemodynamic SVD is defined as mean gradient
>20 mmHg and/or mean gradient increase > 10 mmHg from three months postprocedure
and/or new onset of more than mild aortic valve regurgitation or worsening from three
months postprocedure.
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Figure 4. Patient-, prosthesis- and procedure-related factors involved in degeneration of bioprosthetic
valves in stents.

The results of the first low-risk trial, the NOTION trial [51], showed better hemody-
namic parameters with wider EOA (1.53 cm2 vs. 1.16 cm2, p = 0.002) and lower mean aortic
gradient (9.9 mmHg vs. 14.7 mmHg, p = 0.001) in TAVR, compared with SAVR after 6 years
of follow-up. The incidence of SVD was significantly lower in TAVR than in SAVR (4.8%



J. Cardiovasc. Dev. Dis. 2022, 9, 223 10 of 18

vs. 24%, p < 0.001). However, the incidence of moderate-to-severe PVL was significantly
higher in TAVR prosthesis than in SAVR (20.9% vs. 1.5%, p = 0.001). This may be due to the
absence of an outer sealing skirt in first-generation devices and the fact that CT scans were
not involved at that time to determine aortic annulus size.

To date, some data on the long-term durability of surgical bioprostheses are avail-
able. Thus, in one report, actuarial survival rates including early death were 78% ± 2%,
55% ± 2%, and 16% ± 2% at 5, 10, and 20 years of follow-up, respectively. The freedom
rate from reoperation for prosthesis valve dysfunction in patients younger than 60 years
averaged 98% ± 1%, 90% ± 3%, 60% ± 6%, and 30% ± 8% at 5, 10, 15, and 20 years
follow-up, compared with 99% ± 0.3, 95% ± 1%, and 90% ± 3% at 5, 10, and 15 years
follow-up in patients who between 60 and 70 years old, and 100% and 99% ± 0.5% at 5 and
10 years follow-up in patients older than 70 years [52]. On the other hand, for THVs, long-
term data are only available for patients at high surgical risk [15,53] and those receiving
first-generation devices [26], limiting the applicability of those findings to lower risk and
younger patients.

Indeed, for low-risk patients with long life expectancy, the durability of THV is a
critical issue. Additional long-term durability data are still needed to further define the
role of TAVR in this population. Further, we must seek to understand the underlying
mechanical and cellular mechanisms that drive bioprosthetic valve degeneration. Bench
studies on valve durability and damage associated with procedural techniques and studies
on biological causes of degeneration suggest a complex interplay between device host-
response, mechanics and tissue durability, flow dynamics, and cellular mechanism of
valve leaflet degradation and restriction. These biological mechanisms are supported by
clinical imaging studies of the feature of TAVR degeneration [54–59]. Despite more than
a decade of development, there is still no ideal prosthetic valve. Studies from the bench
and the clinic will continue to inform the evolution of procedures and the development of
new valve designs. However, physicians need to be careful when selecting new devices
because some devices may not yet have the expected longevity. With the development
of transcatheter technology, more attention now needs to be paid to the data related to
the durability of bioprosthetic valves. Tissue engineering heart valve (TEHV) aims to
create a valve graft with self-repair and remodeling capacity that may provide life-long
durability. THEV may be a solution for next-generation TAVR devices to overcome the
existing problems and maintain the advantages of the minimally invasive procedure.
Helder et al. [60] compared cryopreserved decellularized aortic valve homograft with
cryopreserved homograft and showed that freedom from reoperation after 10 years is
higher for cryopreserved homograft than for cryopreserved decellularized aortic valve
homograft (80% vs. 51%). Ureidopyrimidone-based tissue-engineered TAVR has been
tested in acute sheep model and demonstrated good acute valve performance without
regurgitation (n = 12) or with trace (n = 6) or mild (n = 2) regurgitation [61]. Although
several challenges remain to be addressed, TEHV still has excellent potential in the future.

6. Risk of Valve-in-Valve TAVR and TAVR-in-SAVR Procedure

Current countermeasures for THV failure are mainly transcatheter valve-in-valve (ViV-
TAVR) and SAVR. However, there is little evidence available from such studies. PARTNER
trial showed that significant PVL was seen in 2.5% of patients who received ViV-TAVR, and
the procedure demonstrated a high risk of morbidity and mortality [62]. Compared with
redo SAVR, ViV-TAVR appears to have better short-term outcomes, even when performed
in patients at increased surgical risk, and it is associated with less dialysis and PPI [63].
However, concerns about long-term outcomes, especially rehospitalization, persist [64].

The first report from the Redo-TAVR registry demonstrated that residual AR appeared
to be more common, while residual valve gradient appeared to be more favorable than
those observed in TAVR-in-SAVR [65–68]. Landes et al. [69] reported that the incidence
of high residual gradients was 14.6% after ViV-TAVR and 21.5% after TAVR-in-SAVR
(p = 0.095). The other report demonstrated that the rate of high residual gradients after
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TAVR-in-SAVR was 28% [70]. The larger internal diameter, the lack of sewing rings, and
the greater expansiveness of the THV may account for these results. A bioprosthetic valve
fractures procedure may ameliorate this situation in TAVR-in-SAVR patients. However,
there are no available data on valve fractures. Overexpanded THV may reduce the residual
gradient after TAVR [71].

One of the most serious complications of ViV-TAVR is acute coronary artery obstruc-
tion, and the incidence of acute coronary artery obstruction during and after ViV-TAVR is
up to 2–3 fold higher than that after the first TAVR procedure [72]. Once it occurs, patients
have a mortality rate of up to 40% within 30 days after the procedure [73]. In the case of
redo-TAVR, the failed THV may form a “tube graft” in which the index THV leaflet will be
jailed between two THV frames, forming a new skirt of tissue that flows from the failed
THV to the top of the jailed leaflet [74], which may limit subsequent coronary access and
flow. The entire leaflet of index THV may not be fully entrapped between the two THVs
depending on the frame height and position of the second THV. The resulting neo-skirt
height and degree of lobular overhang may affect THV performance, durability, and ability
to access the coronary arteries [74]. In the case of the Evolut THV (Medtronic), redo TAVR
with a shorter valve frame may have important technical implications for the neo-skirt
height and leaflet overhang of the index Evolut THV. Access to the coronary artery through
the Evolut THV frame may be more successful if the neo-skirt height is shorter, and the
degree of leaflet overhang is greater. Conversely, expanding of index frame with an expand-
able balloon frame may result in greater expansion of the failed index Evolut THV, thereby
limiting the space of the Valsalva sinus and increasing the risk of sinus sequestration and
coronary artery obstruction. Akodad et al. [75] reported that placing SAPIEN 3 valve at
a lower implant position in an index Evolut R valve reduced the height of the neo-skirt
and had no significant compromise on the function of the SAPIEN 3 valve despite a higher
degree of leaflet overhang. Integrating the patients’ anatomy on the basis of CT evaluation
will assist in the preprocedural evaluation and procedure planning [76].

In the face of this complication, prophylactic stenting in potentially affected coronary
arteries is a treatment option, but this technique has a higher rate of stent compression
and thrombosis [77,78]. The BASILICA trial [79,80] proposed to lacerate the bioprosthetic
or native aortic scallop immediately prior to placement of the prosthesis. Although this
trial obtained 100% freedom from coronary obstruction, evidence is still needed via a
prospective trial.

To date, there are no long-term studies available to assess the durability of such inter-
ventions. However, bench studies can provide guidance on these new procedures including
assessment of different valve combinations and complication mitigation strategies [81–83].
With the expansion of the indication for TAVR in younger patients at low surgical risk,
the number of TAVR is rapidly increasing, which will increase the number of ViV-TAVR
procedures in the coming years. In this context, it is crucial to evaluate the prognosis of
ViV-TAVR carefully and to compare ViV-TAVR with TAVR-in-SAVR. Additionally, and
more importantly, determining the optimal sequence of interventions for patients is critical,
especially for younger patients (<65 years) who may need to undergo multiple aortic valve
interventions. TAVI first, followed by surgery with explant of the TAVI and implantation
of the surgical aortic valve (SAV), followed by TAVI in SAV later on might be an option.
However, surgery to explant THV shows higher risks and requires a surgeon with extensive
experience. The “TAVR only” strategy seems to be less appropriate for younger patients
because this approach carries a risk of explanting numerous calcified cusps and stent struts,
which can pose high risks and challenges for surgeons performing SAVR later on. In addi-
tion, if the second THV degenerates prematurely, the patient may face very few options for
a new THV [84]. Moreover, young patients often reject mechanical valves due to the need
for anticoagulation. In the literature, there are some cases without anticoagulation for over
30 years without significant embolic events [85]. Mechanical valves without anticoagulation
may become available in the future, which may revolutionize the treatment strategy for
young patients.
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7. Concomitant Cardiac Pathology

According to current guidelines [19,24,25], SAVR remains the treatment strategy of
choice for patients with BAV with aortopathy >4.5 cm, patients with a multivessel disease
with high Synergy of Percutaneous Coronary Intervention and Cardiac Surgery (SYNTAX)
scores or left main coronary artery or patients with severe mitral valve disease and infected
endocarditis requiring surgical removal of infected tissue.

8. Isolated Severe Aortic Valve Regurgitation

Conservative treatment of symptomatic severe AR is ineffective. SAVR remains the
standard treatment for these patients. However, like severe AS, some patients have high
surgical risks and high postoperative mortality, resulting in many patients losing the chance
of surgery. Can such patients benefit from the TAVR procedure? Patients with isolated AR
have less leaflet calcification and are often associated with dilation of the ascending aorta
and aortic annulus. These factors may lead to difficult TAVR valve anchoring, inaccurate
positioning and release, and a high incidence of moderate-to-severe PVL after surgery.
Studies have shown that these patients have a higher incidence of moderate-to-severe PVL
during TAVR procedures requiring two-valve implantation (valve-in-valve) [86].

SAWAYA et al. [87] reported the therapeutic effect of TAVR in the treatment of Isolated
severe AR. The results showed that the device implantation success rate, early survival
rate, and clinical effectiveness were 72%, 66%, and 61%, respectively. The success rate
of device implantation (85% vs. 54%, p < 0.05) and clinical efficiency (75% vs. 46%,
p < 0.05) were higher than those of the first-generation device, especially the incidence
of moderate/severe PVL was significantly decreased (3% vs. 27%, p = 0.012). The safety
and efficacy of the JenaValve Trilogy for the treatment of aortic regurgitation was recently
published at EuroPCR 2022. All patients (45) achieved technical success, with no conversion
to open surgery, no life-threatening bleeding, one patient with major vascular complications
(2.2%), and nine patients required pacemakers (23%). At discharge, the patients’ mean
aortic valve gradient was 4.04 ± 1.64 mmHg (9.85 ± 7.81 mmHg at baseline), and the mean
aortic valve area was 2.62 ± 0.64 cm2 (2.07 ± 0.79 cm2 at baseline). Overall, 91% of patients
were discharged with no or trace paravalvular regurgitation, and none had more than
moderate regurgitation. It is believed that with the continuous accumulation of experience
and the continuous improvement of the valve, the effect of TAVR in the treatment of such
patients is expected to be further improved.

9. Mild PVL, Heart Block

Surgery can reduce the incidence of PVL by directly removing the severe calcifi-
cation around the annulus. Although the overall incidence of PVL after TAVR has de-
creased with the use of newer generation devices, the incidence of mild PVL is consistently
higher than that of SAVR. Mild PVL is associated with increased mortality in high-risk
patients [17,88,89]. Despite the continuous improvement of implanted valve materials and
design and operating techniques, conduction block is still one of the main complications
after TAVR. The most common ones are left bundle branch block (LBBB) and complete
atrioventricular block (AVB), with incidence rates ranging from 4% to 65% and 2% to 51%,
respectively [90,91].

The mechanical compression of the atrioventricular node and conduction bundle by
the implanted valve is an important reason for the occurrence of conduction block. Some
patients can recover from conduction blocks after the procedure, and some patients need
to implant a permanent pacemaker (PPM). The presence of preoperative right bundle
branch block (RBBB), prolonged PR interval, deep valve entry into the left ventricular
outflow tract, and large valve size are the main risk factors for postoperative implantation
of a PPM in patients [92]. For patients with new-onset LBBB after TAVR that lasted for
more than 48 h, AUFFRET et al. [91] suggested that the patients be divided into three
types according to the QRS width and whether they were combined with first-degree AVB:
(1) QRS < 160 ms, without first-degree AVB; (2) 130 ms < QRS < 160 ms, with first-degree
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AVB; (3) QRS ≥ 160 ms; it is also recommended that type 1 does not require implantation
of a pacemaker, and types 2 and 3 should undergo electrophysiological examination or
directly implant a PPM. Whether implanting a PPM affects patient outcomes requires more
long-term follow-up studies to confirm.

10. Conclusions

TAVR is indeed a boon for those patients who cannot undergo surgery and those
who are at intermediate to high risk. However, TAVR still comes with some unresolved
issues, such as PVL, PPI, and the durability of THV is still not fully supported by long-term
studies. TAVR may also not always be appropriate for some special populations, such as
patients with BAV and patients with isolated severe aortic valve regurgitation.

Moreover, in younger patients, the use of mechanical valves may still be a better option,
and care must be taken not to over-expand the indications for TAVR and generalize results
in populations where its use has not been formally studied. Without caution, patients may
reject open-heart surgery based on practical issues, such as faster recovery and less pain,
but the heart team should be responsible for educating patients when their perceptions
of open-heart surgery are inaccurate. The fact that open-heart surgery and extracorporeal
circulation are safe should be used as a benchmark for judging evolving interventions. In
the era of TAVR, each program should conduct regular internal reviews of surgical and
transcatheter outcomes, the goal should be the lowest cumulative mortality, and as more
data become available, the cardiac team should make reasonable decisions based on a
thorough evaluation of the patient and the most recent data.
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Atrial fibrillation AF
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Bicuspid aortic valve BAV
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Computed tomography CT
Effective orifice area EOA
European Society of Cardiology ESC
Hazard ratio HR
Left bundle branch block LBBB
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Permanent pacemaker PPM
Permanent pacemaker implantation PPI
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Right bundle branch block RBBB
Surgical aortic valve replacement SAVR
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Structural valve degeneration SVD
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Tricuspid aortic valve TAV
Transcatheter aortic valve implantation TAVI
Transcatheter aortic valve replacement TAVR
Transcatheter heart valve THV
Transvalvular gradient TG
Transcatheter valve-in-valve ViV-TAVR
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