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Gene expression profiling together with unsupervised analysis methods, typically clustering methods,
has been used extensively in cancer research to unravel, e.g., new molecular subtypes that hold promise
of disease refinement that may ultimately benefit patients. However, many of the commonly used meth-
ods require a prespecified number of clusters to extract and frequently require some type of feature pre-
selection, e.g. variance filtering. This introduces subjectivity to the process of cluster discovery and the
definition of putative novel tumor subtypes. Here, we introduce SRIQ, a novel unsupervised clustering
method that could circumvent some of the issues in commonly used unsupervised analysis methods.
SRIQ incorporates concepts from random forest machine learning as well as quality threshold- and k-
nearest neighbor clustering. It is implemented as a Java and Python pipeline including data pre-
processing, differential expression analysis, and pathway analysis. Using 434 lung adenocarcinomas pro-
filed by RNA sequencing, we demonstrate the technical reproducibility of SRIQ and benchmark its perfor-
mance compared to the commonly used consensus clustering method. Based on differential gene
expression analysis and auxiliary molecular data we show that SRIQ can define new tumor subsets that
appear biologically relevant and consistent compared and that these new subgroups seem to refine exist-
ing transcriptional subtypes that were defined using consensus clustering. Together, this provides sup-
port that SRIQ may be a useful new tool for unsupervised analysis of gene expression data from
human malignancies.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is the second leading cause of death globally and esti-
mated to account for 9.6 million deaths in 2018 [1]. A hallmark
of cancer is the vast heterogeneity of the disease, between different
anatomical sites, between different patients, and within individual
tumors. Cancer outcome is gradually improving through better
diagnostics, clinical management, and novel therapeutics. To fur-
ther refine patient prognostication and treatment prediction new
tools/methods are needed beyond existing clinical markers, which
to a large extent are still based on morphological or single marker
analyses of tumor tissue. One molecular method that has shown
promise in, e.g., breast cancer is gene expression profiling, where
some of the first reported gene signatures now exist as commercial
products with approval for use in the clinical setting. In cancer
research in general, gene expression profiling has been used exten-
sively to unravel new molecular subtypes as well as to define prog-
nostic and/or treatment predictive gene signatures. Commonly,
different unsupervised analysis methods for clustering samples
have often been used for subtype discovery, ranging from the sim-
plest form of hierarchical clustering (e.g., defining the original
breast cancer subtypes [2]) to more refined methods including
e.g. bootstrapping [3]. One of the most commonly used approaches
represent variations of consensus/bootstrap clustering in which
cluster solutions are arrived at after a large number of repeated
clustering loops that reduce the impact of outliers thereby yielding
more robust results. A limitation of consensus/bootstrap clustering
is the requirement of a predefined parameter, K, for the number of
clusters to be defined. Even though there are means to gauge the
optimal K [4,5], there is no absolute way of knowing the true num-
ber of biological entities and evaluation of clustering results there-
fore requires in-depth knowledge of the cohort and tumor type in
question. In contrast, density based clustering algorithms, e.g.,
Quality Threshold (QT) clustering [6] and DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [7] find clusters
without a prior K value, but are limited in the case of high
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dimensional data [8]. Moreover, clustering methods for gene
expression data may often restrict the number of input features
(genes) for different reasons, which may constrain or make the
results dependent on the selected feature set. It is also customary
to use all available cases (tumors) for clustering. Even though
including a large number of cases increases the clustering effi-
ciency and allows for the discovery of less common tumor pheno-
types, it frequently also introduces ‘‘fuzzy” borders between the
major subgroups as all samples are given equal weighting in the
clustering. Traditional clustering methods also do not provide a
means of defining core/prototypical cases and due to the issues
discussed above, are sensitive to the relative sample composition
of the analyzed tumor cohort.

It is well known that distance values of high dimensional data
become meaningless because every observation in a dataset is
equidistant from all the others, which is famously called the curse
of dimensionality [9]. As a result, the clustering process may lead
to overfitting and result in unstable clusters. Furthermore, for a
high dimensional dataset, the single squared distance matrix val-
ues may be highly influenced by the outlier features [10–12]. To
reduce the bias resulting from outliers one can use the Jackknife
method which calculates the distance value, e.g., a correlation coef-
ficient value (r) between two samples by leaving one feature out at
a time for which the maximum of r values is then taken as a final
distance value [13]. This procedure is often computationally and
memory intensive for large datasets. To overcome the computa-
tional issue, the number of features may be reduced by using dif-
ferent filtering methods, e.g. a variance filter, but this may lead
to reduced information content. In the present investigation we
aimed to develop, benchmark, and evaluate a novel clustering
approach termed systematic random forest integration to quality
threshold (QT) clustering, SRIQ, which could circumvent some of
the issues in unsupervised clustering analysis of tumor gene
expression data (Fig. 1). SRIQ incorporates concepts from Random
Forest machine learning (bagging and aggregation) [14] to avoid
the restriction on the number of input features, as this concept is
known for handling large datasets efficiently [14–16] and can
reduce the feature dimensionality in a meaningful way. This con-
cept produces squared distance matrices from randomly extracted
features subsets and aggregating the results produces robust esti-
mates of distance values, which are not highly affected by the out-
lier features [15,16]. In addition to this, bagging can also reduce the
high variance caused due to missing values in the high dimensional
data. Next, QT clustering is used to form ‘‘core clusters” (Fig. 1A)
while avoiding the requirement for a prespecified number of clus-
ters (K) to be discovered, and finally k-nearest neighbor (KNN) is
used to expand core clusters in order to assign subgroup calls to
lower confidence or more heterogenous samples (Fig. 1B).

This fusion of concepts makes it possible to select the number of
tumor classes based on stability and cluster tightness, and the
approach identifies ‘‘core clusters” composed of typical samples
which are representative of the major biological entities while
being less influenced by the entirety of statistical signals present
in the data set. For samples falling outside core cluster entities,
KNN is used to assign class labels to the remaining samples/cases
using core cluster centroids. KNN-expanded core clusters are
referred to as ‘‘spiral clusters” and provide a means to assign clus-
ter identities to the all cohort samples (Fig. 1A). To assess cluster
quality and stability the entire clustering process is iterated, and
a pairwise sample co-occurrence matrix is used to evaluate the sta-
bility of core and spiral clusters.

To provide a context for evaluating the usefulness of SRIQ in
unsupervised analysis of high-dimensional tumor data (whole
transcriptome RNA sequencing data) we chose lung adenocarci-
noma (LUAD) as a model. LUAD is the most frequent histological
type of non-small cell lung cancer (NSCLC) [17], and a highly lethal
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disease mainly due to late diagnosis. While treatment options for
advanced stage LUAD have greatly improved during the last dec-
ades, treatments are still often palliative due to nearly inevitable
treatment resistance over time. For surgically treated patients,
i.e., patients with lower stage tumors treated with a curative
intent, there is still a high-risk of metastatic relapse even for
tumors of the lowest stage [18]. Consequently, additional prognos-
tic and predictive tools are needed to improve patient outcome.
Surgically resected LUAD have been intensively studied using dif-
ferent high-throughput molecular profiling techniques, including
gene expression analysis. The latter technique has been used
extensively to derive, e.g., prognostic gene signatures as well as
transcriptional LUAD subtypes [19–25]. Concerning the latter,
three transcriptional subtypes termed the terminal respiratory unit
(TRU), the proximal-inflammatory (PI), and the proximal-
proliferative (PP) subtypes have been proposed in LUAD based on
consensus cluster analysis by The Cancer Genome Atlas (TCGA)
consortium [19,22,26]. While these three transcriptional subtypes
have been associated with different clinicopathological and molec-
ular features as well as patient outcome, there is still significant
heterogeneity within the subtypes and recent studies have pro-
posed other subtyping schemes that intersect the TRU/PI/PP classi-
fication [27]. The lack of transcriptional subtype consensus in
LUAD indicates that current subtypes may need to be refined
through, e.g., analyses of larger more representative cohorts, and/
or new analysis methods. As such, LUAD represents a suitable con-
text for assessing how a novel unsupervised analysis method like
SRIQ performs in relation to preexisting molecular classifications
(TRU/PI/PP) and existing methods (e.g., consensus clustering),
and whether it can extract novel biology not currently captured
in the existing subtyping schemes.

Based on a well characterized cohort of 434 surgically resected
lung adenocarcinoma specimens from the TCGA consortium pro-
filed by RNA sequencing we demonstrate the technical repro-
ducibility of SRIQ and its performance compared to consensus
clustering. More interestingly, based on differential gene expres-
sion analysis and additional molecular data we demonstrate that
SRIQ can define new tumor subsets that appear biologically rele-
vant and consistent in relation to consensus clustering, and that
these new subgroups also refine existing transcriptional subtype
classifications. Together, this provides support that SRIQ may be
a useful new tool for unsupervised analysis of gene expression data
from human malignancies.
2. Materials & methods

2.1. SRIQ

The principle of the SRIQ framework is illustrated in Fig. 1B. In
brief, we repeatedly (default, t = 10000 number of times) randomly
select a given number of genes, termed bag size (default, BagSize =
ffiffiffi

n
p

, n = total genes), from a gene expression matrix and produce
between-sample distance matrices (Euclidean or Pearson dis-
tance). Next, the average of all random distance matrices is calcu-
lated. The QT clustering method [6] is applied on the aggregate
matrix using a sliding window of cluster diameter (d), i.e., cluster
tightness, ranging from 0 to 1 with an increment interval of 0.01
and a minimum size of the cluster (default, cs=

ffiffiffi

s
p

, s = total sam-
ples). At each d cut-off, a distinct number of core cluster solutions
are produced without a requirement of a specified K. Subsequently,
the KNN method is used to identify nearest neighbors to these core
clusters from the remaining samples in the cohort using the core
cluster centroids (K = 1 as default). As a result, each core cluster
is expanded into what we term a ‘‘spiral cluster” (Fig. 1A). To deter-
mine the quality and stability of a cluster solution the above pro-



Fig. 1. SRIQ framework and study outline. (A) Concept of core and spiral clusters. A blue dot represents a sample, red circles define different core clusters of samples and
green circles define different spiral clusters. (B) SRIQ framework. (C) Study outline. LUAD: lung adenocarcinoma. DGE: differential gene expression analysis. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cedure is repeated (default, r = 10). For each run and diameter, a
co-occurrence matrix for each cluster solution (Kx) is generated.
Next, the average of the co-occurrence matrix (S) is calculated
and converted to a distance matrix (1-S). This final distance matrix
for each diameter is subjected to the QT clustering process for a
series of quality or stability diameter (QSD), ranging from 0 to 1
with an increment interval of 0.05. This process is stopped at a
diameter where it identifies cluster solution (Kx). The resulting
clusters are considered final. Subsequently, to calculate quality or
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stability score (QSS) for cluster solution (Kx) the following formu-
lae is used.

QSS ¼ r� 1� QSDð Þ ð1Þ
The QSS represents the stability/consensus score of sample pair-

wise cooccurrence among the r repetitive clustering analyses. In
this process, some samples may be excluded from being assigned
to a cluster, based on alternating cluster associations (instability).
We recommend selecting a cluster solution (Kx) with a low cluster
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diameter, a high (re-)occurrence across repetitions, and a high QSS.
In short, the SRIQ framework includes eight steps as outlined in
Fig. 1B: 1) Retrieval of random subsets of the expression matrix
using the defined or default BagSize parameter value, 2) calcula-
tion of distance matrices for each random subset, 3) calculation
of the average across all distance matrices, 4) using step 3 results
as the input to the QT clustering method to form core clusters with
defined or default parameter values, 5) application of KNN to the
core clusters to form spiral clusters, 6) repeating steps 1–5, where
for each repetition a co-occurrence matrix is generated for each
QSD, 7) calculation of the average co-occurrence matrices from
all step 4 (core clusters) results or step 5 (spiral clusters) results
for a specific density d, and 8) and applying QT clustering to step
7 results to obtain the final stable core and spiral clusters. SRIQ
steps 6–8 are further graphically visualized in the Supplementary
Methods File.

The step-by-step pseudocode for SRIQ is provided in the Sup-
plementary Methods File. The SRIQ framework is implemented
using the JAVA programming language and utilizes parallel pro-
cessing wherever repeated calculations are performed during the
clustering process. A complete analysis pipeline, including data
preprocessing, SRIQ, clustering validation (Silhouette) scores, dif-
ferential gene expression analysis, and gene ontology (GO) enrich-
ment analysis, written in Jupyter notebook is available at https://
github.com/StaafLab/SRIQ. In addition to QSS validity/quality
scores, the SRIQ pipeline also outputs Silhouette scores that can
be used to decide on cluster solutions.
2.2. Patient cohorts

LUAD gene expression data (n = 60438 transcripts) for 434 cases
used in this study was generated through RNA sequencing (RNA-
seq) by the TCGA consortium. Expression data was obtained from
the GDC portal (https://portal.gdc.cancer.gov/) in FPKM format.
Additional clinicopathological data, molecular data, and molecular
classifications were obtained from https://gdc.cancer.gov/about-
data/publications/panimmune [28], including immune-related
classifications from Cibersort [29]. Clinicopathological characteris-
tics of the 434-patient cohort is detailed in Supplementary Table 1.
2.3. Gene expression data preprocessing

Two gene expression datasets were generated from the original
RNA-seq data: i) a FPKM expression matrix, from which the med-
ian, variance, and log fold change were calculated, and ii) a median
centered log2 transformed FPKM (all values below 1 set to 1)
matrix, of the top 25,785 most varying transcripts (obtained by
removing all transcripts consisting solely of 00s and then removing
65% least varying genes across all samples), used for SRIQ cluster-
ing, differential gene expression analysis, and biological metagene
analysis. The removal of low varying genes was performed to
reduce the sparsity of the gene expression matrix.
2.4. Consensus clustering

As consensus clustering is frequently used to derive molecular
subtypes, including LUAD, it was chosen as a benchmark method
for SRIQ. Consensus clustering was performed using hierarchical
clustering with Pearson correlation as distance metric and ward.
D linkage. Number of repetitions were set to 2000 and a resam-
pling schedule of 0.7 was used for both genes and samples. Cluster
solutions between 3 and 7 were collected.
1570
2.5. Clustering comparison metrics

We created a metric called Pair Similarity score (PS, not part of
SRIQ) to compare similarity and diversity between the SRIQ and
consensus clustering solutions. This was done by first creating a
binary pairwise similarity matrix and then applying the Jaccard
index method to it.

2.6. Lung adenocarcinoma TCGA molecular subtype classification

Classification of the LUAD data according to the proposed gene
expression subtypes by TCGA [22]: terminal respiratory unit (TRU),
proximal inflammatory (PI), and proximal proliferative (PP) was
performed using centroid classification as originally outlined by
Wilkerson et al. [19] for the subtypes, using the Wilkerson et al.
reported centroid genes matching the TCGA RNA-seq gene set.
For each sample the Pearson correlation to each centroid (subtype)
was calculated. The subtype with the highest Pearson correlation
was assigned to the sample.

2.7. Differentially expressed genes, biological metagenes, and GO
enrichment analysis

Differentially expressed genes between SRIQ clusters (one vs
rest approach) were obtained by implementation of Significance
Analysis of Microarray (SAM) [30] yielding up- and down-
regulated genes. For the framework analysis we used SAM to
obtain differentially expressed genes with significance parameters,
FDR q-value<=5 and a fold change fc>=2. Metagene scores for six
metagenes proposed to represent biological processes in lung can-
cer based on gene network analysis [31] were calculated from
expression data for each sample. The metagene score of each sam-
ple was calculated as the mean expression of all genes associated
with a specific metagene. GO enrichment analysis of differentially
expressed genes was performed using the enrichR API endpoint
[32–34].

2.8. SRIQ computation time

Computation times for SRIQ in datasets of different sizes and
technological platforms (n = 434–3520), including TCGA-LUAD,
are provided in Supplementary Table 2.

3. Results

The outline of the study is shown in Fig. 1C incorporating two
main branches of analyses: i) technical reproducibility and bench-
marking, and ii) assessment of molecular features of derived SRIQ
clusters.

3.1. Technical reproducibility and benchmarking of SRIQ

3.1.1. SRIQ clustering of 434 LUAD cases
Application of SRIQ to 434 LUAD cases with expression data for

25,785 transcripts resulted in multiple potential clustering solu-
tions using a BagSize parameter value of 1200 and 10,000 permu-
tations (Fig. 2A, Supplementary Table 1). Of the 434 samples, 382
were classified as core or spiral samples and 52 samples were con-
sidered unstable, i.e., alternating between clusters during repeti-
tions. Of the observed cluster solutions, three were of particular
interest based on recurrence of cluster solution, occurrence across
different diameter solutions, and stability throughout the itera-
tions: i) a three cluster (K3), ii) a five cluster (K5) and iii) a six clus-
ter solution (K6) at cluster diameter cut off ranges of 0.58, 0.60, and
0.63, respectively. Notably, the K6 solution occurred for several
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Fig. 2. SRIQ analyses of 434 TCGA LUAD cases and stability analyses. (A) SRIQ summary plot using 10,000 permutations and a bag size parameter value of 1200. The height of
the bar indicates the % of times the cluster solution has been detected across 10 iterations. The fraction of coloring in the upper bar chart represents the stability score (QSS) of
the respective cluster solution as described in the Material and Methods section. The fraction of coloring in the lower bar chart represents the percentage of samples included
for corresponding cluster solution above. Only solutions found >2 times (20%) are shown in the panels. (B) Pair similarity when varying bag size using the 1200 bag size run as
comparison for different K solutions using all samples. (C) Sample overlap between SRIQ runs when removing random samples from the original cohort, using 100% of the
tumors and a bag size of 1200 as reference solution. E.g., in the panel, 90% corresponds to SRIQ analysis using 90% of all LUAD samples. Samples are ordered according to the
100% solution and colored according to the cluster number set by the 100% solution (irrespective of core/spiral assignment). SRIQ cluster identifiers (colors) can change
between runs, thus samples in a 100% cluster may have different cluster assignments in a lower fraction analysis. (D) Sample agreement across clusters for the different
fraction sizes in C versus the 100% cohort cluster solution as reference, irrespective of core/spiral assignment. Black line corresponds to the agreement (%) from a sample
confusion matrix of all six SRIQ clusters between the 100% cohort versus each tested fraction size. To calculate an agreement, we selected for each 100% cluster the
corresponding largest cluster in the lower size cohort to be representative. The agreement was then calculated by dividing the number of samples in agreement with the total
number of cases from the confusion matrix. Red line corresponds to the same calculation as for the black line, however omitting samples from the smallest SRIQ cluster 100%
solution, cluster 6, entirely from all calculations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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diameter cut offs (0.60–0.64) compared to the K3 (0.58) and K5
(0.6, 0.61) solutions (Fig. 2A). At diameter cut-off 0.63, the K6 solu-
tion had 100% recurrence across all 10 iterations with a stability
score (QSS) of 60% (QSS represents the percentage of seeing
sample-sample pairs in the same cluster when repeating the entire
clustering analysis). Core cluster samples for this solution were
also clearly separated from each other based on UMAP analysis
(Fig. 3A) and spiral clusters also showed high recurrence and sta-
bility across iterations (Supplementary Fig. 1A).

As seen in Fig. 2A, SRIQ may generate different cluster solutions
(e.g., K2, K3, etc.) at the same diameter cut-off, but also similar
solutions (e.g. K6) at different diameter cut-offs. For the former,
different cluster solutions at the same diameter cut-off often differ
by one cluster (e.g. K2 and K3) (Fig. 2A). The reason for this is that
one cluster from a lower solution may be divided into two new
clusters that do not need to consist of all of the samples of the orig-
inal cluster, although they usually display some similarity as
exemplified in Supplementary Fig. 1B. Furthermore, the number
of samples in clusters, as well as number of clusters, typically
increases with increased diameter cut-off (Fig. 2A). When both
cut-off diameter and the number of samples increases, but K
remains the same, three scenarios could happen: i) the existing
clusters are expanded upon, ii) one cluster might be split into
two new valid clusters and another cluster omitted, and iii) a clus-
ter may be omitted in support of another cluster (Supplementary
Fig. 1C). For the purpose of technical reproducibility analysis and
algorithm benchmarking we chose to focus onwards on the K6
cluster solution with a cut-off of 0.63, as it showed high stability
in both core and spiral cluster solutions (Fig. 2A and Supplemen-
tary Fig. 1A), meanwhile appearing at a larger span of cut off diam-
eters than, e.g., a K5 solution. Full data for the selected K6 solution
is provided in Supplementary Table 1. Silhouette analysis per-
formed revealed that the selected K6 solution median silhouette
score was 0.15, with only a few samples being confounded in other
cluster centers (Supplementary Fig. 1D).
3.1.2. Assessment of SRIQ stability for key parameters
Key parameter alterations in clustering algorithms, as well as

modifications in cohort composition, can infer dramatic differences
in cluster number and composition [35]. To assess the impact of
such alterations for SRIQ we focused on cluster alterations inferred
by modifications to the BagSize parameter (a key SRIQ parameter
representing the number of randomly samples features, i.e., genes,
used in each permutation), and modifications inferred by changes
in sample numbers (i.e., cohort size/composition).

For the BagSize parameter evaluation we used the results from
Fig. 2A as reference (BagSize = 1200) and then performed new runs
in which the BagSize value was stepwise reduced from 1100 down
to 300 (Fig. 2B). Focusing on three different cluster solutions (K3,
K5, and K6) we observed that all solutions showed >80% pairwise
similarity to the original run, with the K3 solution showing nearly
100% similarity for each run. Both K5 and K6 showed around 10%
lower pairwise similarity, with the K6 solution being more stable
than the K5 solution. Furthermore, for the K5 solution the pairwise
similarity started to drop at a BagSize of 500 (Fig. 2B).

Next, we changed the sample size for SRIQ by randomly remov-
ing an increasing fraction of the original samples, while keeping
other parameters intact. As shown in Fig. 2C, apparent overlap
between cluster assignments are seen for several clusters even
when removing a substantial portion of the total sample number.
This is further illustrated in Fig. 2D by calculation of classification
agreement. As seen in Fig. 2C-D, small clusters (e.g. SRIQ cluster 6)
have a more rapid deterioration in cluster overlaps with a negative
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effect on overall agreement (Fig. 2D) in smaller cohorts of ran-
domly selected cases compared to the original solution.

3.1.3. Core and spiral cluster samples show similar transcriptional
characteristics

A feature of SRIQ is the calling of core and spiral samples, form-
ing core and spiral clusters, respectively (Fig. 1A). Conceptually, it
would be expected that spiral samples associated with a specific
cluster should have similar, albeit necessarily not as distinct, char-
acteristics as the core samples defining the base cluster. To test this
hypothesis, we split each cluster from the K6 solution with cut-off
0.63 (shown in Fig. 2A) into core samples and spiral samples and
compared these groups with respect to TCGA LUAD gene expres-
sion subtype (TRU/PI/PP), actual TCGA subtype centroid correlation
values, as well as expression of six different metagenes represent-
ing biological processes previously reported in lung cancer [31].

As shown in Fig. 3B and C, analysis of subtype classification both
with respect to discrete subtype status (TRU/PI/PP) and actual sub-
type Pearson centroid correlation values showed that spiral sam-
ples have similar patterns as the core cluster samples. Notably,
with the exception of clusters 1 and 2 in the K6 solution, both core
and spiral samples within specific clusters are predominantly com-
prised of a single molecular subtype. Cluster 1 in the K6 solution
comprises a mix of TRU and PI cases, whereas cluster 2 comprises
a mix of TRU and PP cases. The resemblance of spiral samples with
respective core samples within a cluster was further supported
when analyzing expression of the six biological metagenes
(Fig. 3D). Kruskal-Wallis test revealed that all of the six metagene
profiles were statistically significant for core cluster samples
(p < 0.001) with each cluster showing a distinct metagene expres-
sion difference across the six genes. Adding spiral observations still
maintains significant expression profiles (p < 0.05), however they
become less distinct.

3.1.4. Comparison of SRIQ to consensus clustering
To benchmark SRIQ versus another unsupervised algorithm

used to derive gene expression subtypes we compared SRIQ clus-
tering to consensus clustering of the same data, focusing on two
stable SRIQ solutions, K3 and K6 shown originally in Fig. 2A. A gen-
eral difference between SRIQ and consensus clustering is that SRIQ
can use potentially all expression data (through bagging), whereas
prefiltering, e.g. based on expression variance, is commonly used in
consensus clustering to reduce the influence of for example non-
informative genes and lower the computational requirements. In
the SRIQ analysis for this study we did remove non-expressed tran-
scripts across samples, as well as a set of transcripts with very low
variation. Still, >25000 transcripts were retained and used for the
SRIQ analysis.

In a first comparison we noted that the lower number of genes
used for consensus clustering, the more dissimilar the cluster
results were to SRIQ. The K3 solutions appear relative similar
between the two methods when choosing a feature set > 6000
genes for consensus clustering (see, e.g., Fig. 4A and Supplemen-
tary Fig. 2A). For the K6 cluster solution, the two methods differed
from each other irrespective of the number of features used in con-
sensus clustering, with <60% similarity for any cluster (Supplemen-
tary Fig. 2B and Fig. 4B). As exemplified in Fig. 4B, cluster 1 in the
K6 consensus cluster analysis was differentiated by SRIQ into clus-
ter 1 and 3 mainly, whereas consensus cluster 6 was not matching
any SRIQ cluster specifically. In summary, as expected the two
methods show agreement, but also differences for larger K solu-
tions. To evaluate the biological relevance of the respective solu-
tions more in depth, we proceeded to examine the
transcriptional and molecular properties of the solutions.



Fig. 3. Characterization of SRIQ K6 solution with respect to TCGA gene expression subtypes and expression of biological metagenes. (A) UMAP expression analysis of SRIQ K6
core samples using a bag size of 1200 and a cluster diameter of 0.63 as cut-off in SRIQ for cluster definition. Only the two first UMAP components are shown. (B) TCGA gene
expression subtype (TRU/PI/PP) distribution in SRIQ K6 core cluster samples (top panel) and spiral samples (lower panel). (C) TCGA gene expression subtype (TRU:left,
PI:center, PP:right) Pearson centroid correlation values for SRIQ K6 core cluster samples (blue) and spiral samples (orange). (D) Expression scores of six biological metagenes
versus SRIQ K6 core (blue) and spiral samples (orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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3.2. Molecular investigation of SRIQ K6 cluster solution

3.2.1. Characterization of SRIQ K6 solution versus molecular subtypes
and biological metagenes

To analyze the biological relevance of SRIQ results we focused
on LUAD cases classified as core samples by the K6 solution with
a cut-off of 0.63, originally shown in Fig. 2A and further explored
in Fig. 3A-D.

Briefly, for the SRIQ K6 solution, cluster 1 was defined by TRU
and PI classes, high immune response expression, medium number
of TP53 mutations and >80% females. Cluster 2 was characterized
by PP and TRU, high expression of the Napsin A surfactant meta-
gene, low expression of the proliferation, immune response, and
stroma/ECM metagenes, and a high frequency of KRAS and STK11
mutations (52% and 55%, respectively). Characteristics of cluster
3 core samples were high expression of the stroma/ECM, basal/
squamous, and immune response metagenes, 90% PI classified
samples, and a high number of TP53 mutations (64%). Cluster 4
consisted of 96% PP samples with high expression of the prolifera-
tion metagene, low expression of the Napsin A/surfactant meta-
gene, and a high TP53 mutation rate (85%). Cluster 5 consisted
solely of TRU classified samples with high expression of the Napsin
A/surfactant metagene, low expression of the proliferation meta-
gene, and a proportionally high fraction of all EGFR mutated cases
(41% of all EGFR mutations in core samples). Cluster 6 consisted
mainly of PP classified samples with high mutational burden of
KRAS and STK11 (59% and 45%, respectively) and mixed expression
of several of the biological metagenes.
3.3. SRIQ clustering refines the TRU molecular phenotype

As shown in Fig. 3B, SRIQ differentiates the TCGA molecular
subtypes into different clusters. E.g., SRIQ cluster 5 was primarily
composed of TRU classified cases, irrespective of whether core
(100% TRU, representing 34% of all core samples classified as
TRU) or spiral samples were considered (89% TRU). In addition to
cluster 5, SRIQ cluster 1 also harbored a high proportion of TRU
cases (79% of core samples representing 46% of all core samples
classified as TRU and 49% of spiral samples). To investigate the rel-
evance of this stratification by SRIQ, we compared different molec-
ular variables for SRIQ cluster 5 TRU core cases versus cluster 1
TRU core cases. Based on proposed biological metagenes, capturing
broad transcriptional tumor intrinsic and microenvironment pat-
terns, significant differences in expression involved both likely
tumor related features like expression of Napsin A/surfactant
(higher in cluster 5 vs cluster 1) and proliferation (lower in cluster
5 vs cluster 1), but also microenvironment features like immune
response and stroma/ECM (lower in cluster 5 vs cluster 1)
(Fig. 4C). Substantiating a difference in tumor microenvironment,
cluster 5 TRU cases had significantly higher tumor purity on aver-
age than cluster 1 TRU cases (Wilcoxon’s test p = 0.01). Other inter-
esting features showing trend-like differences, albeit non-
significant, was a trend of higher tumor ploidy in cluster 5 cases
vs cluster 1 (Wilcoxon’s test p = 0.09), while a lower exposure of
the mutational signature related to smoking (signature 4 [36])
Fig. 4. Comparison of SRIQ to consensus clustering, and refinement of TCGA LUAD molecu
and consensus cluster 3 group solutions. First number in each tile is the percentage of co
clusters. Consensus clustering was performed using hierarchical clustering, ward’s linkag
and features (genes) as key parameters, whereas SRIQ was run as described in Fig. 2A. (B
cluster 6 group solutions. Consensus clustering was performed as above, whereas SRIQ a
significantly different between core TRU-classified samples stratified by SRIQ cluster 1
difference between core TRU-classified samples stratified by SRIQ cluster 1 (C1) and 5 (C5
of 22 Cibersort cell types in total).
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was observed in cluster 5 (median exposure = 26%) compared to
cluster 1 (median exposure = 32%) cases (Wilcoxon’s test
p = 0.35). Together, this suggests possible refinement of the TRU
phenotype based on both tumor intrinsic and tumor microenviron-
ment features.
3.3.1. SRIQ differentiates immune type infiltration within the TRU
molecular subtype

The importance of the host immune response to malignant
growth has become increasingly important in LUAD based on the
clinical introduction of immune checkpoint inhibitors. While the
original TCGA molecular subtypes have been proposed to align to
some extent with differences in immune response, illustrated by
the renaming of the original squamoid subtype [19] to proximal
inflammatory (PI) [22], large within subtype heterogeneity still
exists. As illustrated in Fig. 4C, SRIQ clustering separates TRU clas-
sified core cases into one cluster (cluster 1) with high expression of
immune response associated genes and one with lower expression
(cluster 5). To explore whether the difference in immune response
could be due to different infiltrating immune cell types, we com-
pared 22 different immune cell type fractions obtained by Cibser-
sort analysis of RNA-seq data (obtained from [28]) between the
core sample groups. As shown in Fig. 4D, statistical differences,
after multiple testing adjustment, between the groups were
observed for several cell types, including plasma cells, CD8 T-
cells, M1 macrophages (borderline non-significant), M2 macro-
phages, activated dendritic cells, and resting mast cells, further
supporting the SRIQ stratification of TRU classified cases.
3.3.2. Differential gene expression and GO enrichment between
clusters

To more in detail identify transcriptional programs characteriz-
ing the SRIQ clusters we performed differential gene expression of
the core clusters through a ‘‘one versus rest” approach using SAM
analysis. Differentially expressed genes are illustrated in Fig. 5A,
listed in Supplementary Table 3, and enriched GO terms based on
gene ontology analysis are listed in Supplementary Table 4 and
illustrated in Fig. 5B-C for up- and down-regulated genes, respec-
tively. Briefly, similar to the biological metagene expression pat-
terns these results illustrate the presence of biological processes
likely related to both tumor intrinsic factors and differences in
the composition of the tumor microenvironment captured by SRIQ.
For instance, in the high proliferative core cluster 4 enriched GO
terms for up-regulated genes included DNA replication, mitotic
spindle and cell cycle terms likely associated with higher intrinsic
tumor proliferation, while immune response associated GO terms
were enriched in down-regulated genes for this cluster, consistent
with the immune cold phenotype suggested by the immune
response metagene expression (likely representative of a low lym-
phocyte infiltrative tumor microenvironment). In opposite, in the
immune response high cluster 1 immune response associated GO
terms were enriched among up-regulated genes while DNA repli-
cation and spindle associated GO terms were enriched in down-
regulated genes.
lar subtypes. (A) Comparison of the SRIQ K3 (irrespective of core/spiral assignment)
mmon samples and the number within brackets the sum of samples present in both
e, Pearson correlation, 2000 iterations and 70% resampling for both items (samples)
) Comparison of the SRIQ K6 (irrespective of core/spiral assignment) and consensus
nalysis was performed as described in Fig. 2A. (C) Biological metagene expression is
(C1) and 5 (C5). (D) Immune cell types from Cibersort analysis showing statistical
). P-values calculated using Wilcoxon’s test with Bonferroni adjustment (for testing



Fig. 5. Differential gene expression patterns and functional analysis for SRIQ K6 core samples. (A) Gene expression heatmap of the significantly expressed genes (n = 2417)
based on SAM analysis with q-value <= 5 and a fold-change >= 2 for 162 core samples in total for each SRIQ cluster in a one versus rest approach. Annotation bars present
biological metagene expression patterns, selected clinical information, and mutations (all variant types) for KRAS, EGFR, TP53, and STK11. SRIQ cluster solution was based on
bag size 1200 and diameter cut-off 0.63 as shown in Fig. 2A. (B) Heatmap of up-regulated GO-terms for significant genes ordered by cluster, with the color representing
statistical significance (�log(p)). Only a subset of GO-terms is listed in text, full details are shown in the corresponding Supplementary Table. (C) Heatmap of down-regulated
GO-terms for significant genes ordered by cluster with the color representing statistical significance (�log(p)). Only a subset of GO-terms is listed in text, full details are
shown in the corresponding Supplementary Table.
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3.3.3. SRIQ refinement of the proximal-proliferative (PP) TCGA subtype
As seen in the heatmap in Fig. 5A, SRIQ clustering besides strat-

ification of the TRU TCGA subtype also separates the PP TCGA sub-
type into three main nearly equally large subsets (core clusters 2, 4,
and 6). Similar to the TRU case, this division appears associated
with both tumor intrinsic properties and tumor microenvironment
features likely representing readouts of the former (Supplementary
Fig. 3). Briefly, PP cases in cluster 2 appear low proliferative but
Napsin A/surfactant positive, driven by often concomitant KRAS
and STK11 alterations (e.g. 70% of KRAS mutated cases also had
STK11 mutations) but not TP53 mutations. In contrast, PP cases in
cluster 4 appear as the opposite to cluster 2, with infrequent KRAS
and STK11 alterations, 84% TP53 alterations, very low Napsin A/sur-
factant expression, high tumor proliferation, and an immune cold
phenotype. Finally, cluster 6 PP cases appear as the intermediate
group between cluster 2 and 4, with frequent KRAS and STK11
alterations, intermediate TP53 mutations, and a more heteroge-
neous expression of the biological metagenes.
3.3.4. Transcriptional features of clusters different between SRIQ and
consensus clustering

To deepen our comparison between SRIQ and consensus clus-
tering we analyzed the observed differences from Fig. 4B regarding
the division of consensus cluster 1 samples into SRIQ cluster 1 and
3. Firstly, when considering the global gene expression pattern
UMAP analysis clearly demonstrated the general separation of
SRIQ cluster 1 and 3 core samples (Fig. 3A, irrespective of consen-
sus cluster status). Moreover, concerning expression of the biolog-
ical metagenes, SRIQ cluster 1 and 3 samples (core and spiral) have
clearly different patterns for several biological metagenes, includ-
ing Napsin A/surfactant, immune response, stroma/ECM and prolif-
eration, as well as clearly differentially expressed genes and
different proportions of TRU/PP/PI gene expression subtypes as
previously shown in Fig. 3B-D and 5. Finally, unsupervised hierar-
chical clustering of consensus cluster 1 samples specifically
showed the heterogeneity of this cluster (Supplementary Fig. 4A),
further illustrated by UMAP analysis of the same samples (Supple-
mentary Fig. 4B). Together, these results substantiate that SRIQ in
this case appears to stratify samples more appropriately from a
molecular standpoint.
4. Discussion

In the current study we report an algorithm, SRIQ, that is a
fusion of concepts frommachine learning methods (Random Forest
and QT- as well as KNN clustering) for unsupervised analysis of
gene expression data. Based on technical reproducibility and
benchmark analyses combined with deeper molecular correlations
of derived clusters in bulk LUAD RNA-seq data, we demonstrate
how the method can be applied and show that SRIQ-clustering cap-
tures biologically coherent variability in previously reported tran-
scriptional phenotypes.

The reproducibility analyses presented in Fig. 2 demonstrate
the importance of selecting a high enough bag size value for SRIQ
(Fig. 2B). This is not surprising considering that using smaller fea-
ture sets (bag sizes) cause cluster instability in clustering methods
due to selection bias, an issue not limited to SRIQ. Moreover, we
show that SRIQ cluster identification, up to a point, is robust to
reduced dataset sizes (Fig. 2C-D). As a rule in cluster analyses smal-
ler subgroups, can only be detected by a method if their ‘‘core sam-
ples” are present in sufficient numbers. This represents a universal
issue and is therefore not a specific limitation of SRIQ. Importantly,
the analyses of SRIQ cluster stability and the benchmarking versus
1577
consensus clustering presented in Figs. 2 and 4 may serve as useful
examples of how SRIQ users can explore their own data to assure
optimal/robust results.

In contrast to conventional clustering algorithms, SRIQ users
have an option to investigate both tight clusters, ‘‘core clusters”,
which may be the core subtype representatives of the cohort,
and the expanded, ‘‘spiral clusters”, which constitute samples that
are neighbors to core clusters or samples representing admixtures
of different cell types or subgroups. Reassuringly, we show that
core and spiral cluster samples in the TCGA LUAD dataset had sim-
ilar broad transcriptional profiles representing mixtures of larger
transcriptional programs related to both tumor intrinsic properties
(e.g., expression of Napsin A/surfactant genes associated with cer-
tain subtypes of LUAD as well as proliferation-related genes) and
tumor microenvironment features such as the level of immune
and stromal cell infiltration (e.g. expression of immune response
and stroma/ECM metagenes) (Fig. 3C-D). What we believe is a sec-
ond important feature of SRIQ is the possibility of producing clus-
ter solutions at different diameter values in one run, where each
solution is analyzed also for performance, accuracy and stability.
Thus, a user can in a more straightforward way decide which clus-
ter solution is appropriate to go ahead with in downstream analy-
ses and provide a clear motivation for this choice. Finally, an
important conclusion from both the technical benchmarking and
the expanded molecular investigation of SRIQ results versus the
established consensus clustering algorithm is that while both
methods define common patient subsets, SRIQ clustering appears
capable of capturing additional variability, allowing for more bio-
logically refined clustering.

An important aim of this study was to go beyond technical val-
idation and algorithmic benchmarking by analyzing derived cluster
solutions for biological relevance and comparison with reported
gene expression phenotypes in order to provide support for the
usefulness of SRIQ as a method. Here, we believe the presented
SRIQ results strongly support that further refinement of proposed
TCGA subtypes in LUAD is feasible. Importantly, current LUAD sub-
types are based on unsupervised analysis (using consensus cluster-
ing in the original study [19]) of bulk tumor gene expression data
[19,22]. This implies that subtypes reflect tumor specific transcrip-
tional patterns as well as the composition of the non-malignant
microenvironment. In this context, SRIQ was able to delineate both
the TRU and PP TCGA subtypes into subgroups reflecting different
tumor microenvironments, as evidenced by, e.g., expression pat-
terns of the biological metagenes used in this study (Figs. 3–5).
With the introduction of immune checkpoint inhibitors in lung
cancer the role of the microenvironment and immune response is
now acknowledged as an important factor to consider for both
treatment prediction and prognostication [37]. Thus, further
refinement of LUAD gene expression subtypes may help in deter-
mining their future clinical significance/usefulness with respect
to current therapy options and patient outcome.

Similar to all algorithms in the field, certain limitations of SRIQ
are apparent. Here, we believe the presented SRIQ reproducibility
analyses may serve as an example for independent users on how
to approach the matter in their own data. Cluster solutions primar-
ily depend on two hyperparameters: i) the minimum number of
samples in clusters, and ii) the cluster diameter. As discussed
above, SRIQ cannot circumvent the general problem of smaller
datasets limiting the possibility to detect small or underrepre-
sented biological subgroups (clusters). Regarding cluster diameter,
cluster solutions with lower diameter values generate tight/stable
clusters, whereas those with greater diameter values produce more
relaxed clusters. Importantly, the diameter needs to be considered
in the context of the stability and occurrence of a solution across
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iterations. Another important SRIQ parameter is the bag size. Based
on our analyses it is evident that not choosing a very small value
should in general be sufficient. The combination of a large bag size,
high number of permutations, and large datasets (samples and fea-
tures) can make running SRIQ computation and memory intensive.
Despite taking advantage of the symmetrical nature of the pairwise
similarity matrix and the parallelism by Java programming, more
optimized computing strategies could be employed to facilitate
the application of SRIQ to, e.g., single cell sequencing and epige-
nomic data. Future improvements to the provided SRIQ pipeline
could include additional data pre-processing procedures for differ-
ent data types, additional distance metric methods beside Pearson
and Euclidean distance, additional metrics for cluster stability to
facilitate cluster solution selection, and flexibility to add metadata
to the clusters to, e.g., facilitate the evaluation of cluster solutions.

In summary, we have demonstrated that SRIQ is an unsuper-
vised analysis method for gene expression data that can circum-
vent problematic issues in unsupervised clustering. In the case of
LUAD, it can be used to provide strong support for refinement of
previously proposed transcriptional subtypes based on improved
separation of subtypes by better capturing tumor intrinsic and
microenvironmental transcriptional patterns. As such, we believe
that SRIQ can become a valuable new tool for translational cancer
research and may in the future also apply to other types of high-
dimensional omics data beyond gene expression.
CRediT authorship contribution statement

Jacob Karlström: Visualization, Methodology, Formal analysis,
Software, Data curation, Investigation, Writing – original draft.
Mattias Aine: Data curation, Writing – original draft. Johan Staaf:
Formal analysis, Investigation, Supervision, Writing – original
draft, Writing – review & editing, Funding acquisition, Project
administration, Conceptualization. Srinivas Veerla: Conceptualiza-
tion, Formal analysis, Visualization, Data curation, Methodology,
Software, Investigation, Writing – original draft, Writing – review
& editing.

Acknowledgements

The authors would like to acknowledge Dr Pontus Eriksson at the
Division of Oncology, Lund University, Sweden for constructive
methodological input.
Funding

This work was supported by the Swedish Cancer Society, the
Mrs Berta Kamprad Foundation, Sweden, The Swedish Research
Council, and The National Health Services (Region Skåne/ALF).
Conflict of interests statement

Authors declare that they have no competing interests.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.03.036.

References

[1] World Health Organization (WHO) http://www.who.int. Accessed Nov 26
2021.

[2] Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular
portraits of human breast tumours. Nature 2000;406:747–52.
1578
[3] Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A, et al. A review of
clustering techniques and developments. Neurocomputing 2017;267:664–81.

[4] Kaufman L, Rousseeuw P. Partitioning around medoids (Program PAM). Wiley
Series in Probability and Statistics. Wiley; 1990.

[5] Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package for
determining the relevant number of clusters in a data set. J Stat Softw
2014;61:1–36.

[6] Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and
analysis of coexpressed genes. Genome Res 1999;9:1106–15.

[7] Rodriguez A, Laio A. Machine learning. Clustering by fast search and find of
density peaks. Science 2014;344:1492–6.

[8] A’lZoubi WA. A survey of clustering algorithms in association rules mining. Int
J Comput Sci Inf Technol 2019;11:17–25.

[9] Kriegel H-P, Kröger P, Zimek A. Clustering high-dimensional data: a survey on
subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans Knowl Discov Data 2009;3. Article 1.

[10] Zimek A, Schubert E, Kriegel H-P. A survey on unsupervised outlier detection in
high-dimensional numerical data. Statistical Anal Data Mining
2012;5:363–87.

[11] Reunanen N, Räty T, Lintonen T. Automatic optimization of outlier detection
ensembles using a limited number of outlier examples. Int J Data Sci Anal
2020;10:377–94.

[12] Tolosi L, Lengauer T. Classification with correlated features: unreliability of
feature ranking and solutions. Bioinformatics 2011;27:1986–94.

[13] Kim Y, Kim T-H, Ergün T. The instability of the Pearson correlation coefficient
in the presence of coincidental outliers. Finance Res Lett 2015;13:243–57.

[14] Breiman L. Random forests. Machine Learn 2001;45:5–32.
[15] Breiman L. Bagging predictors. Machine Learn 1996;24:123–40.
[16] Petersen ML, Molinaro AM, Sinisi SE, van der Laan MJ. Cross-validated bagged

learning. J Multivariate Anal 2007;98:1693–704.
[17] Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al.

The 2015 World Health Organization classification of lung tumors: impact of
genetic, clinical and radiologic advances since the 2004 classification. J Thorac
Oncol 2015;10:1243–60.

[18] Crino L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced
(non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice
Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;21(Suppl
5):v103–115.

[19] Wilkerson MD, Yin X, Walter V, Zhao N, Cabanski CR, Hayward MC, et al.
Differential pathogenesis of lung adenocarcinoma subtypes involving
sequence mutations, copy number, chromosomal instability, and
methylation. PLoS ONE 2012;7:e36530.

[20] Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, et al. Gene-
expression profiles predict survival of patients with lung adenocarcinoma. Nat
Med 2002;8:816–24.

[21] Hayes DN, Monti S, Parmigiani G, Gilks CB, Naoki K, Bhattacharjee A, et al. Gene
expression profiling reveals reproducible human lung adenocarcinoma
subtypes in multiple independent patient cohorts. J Clin Oncol
2006;24:5079–90.

[22] Cancer Genome Atlas Research N: Comprehensive molecular profiling of lung
adenocarcinoma. Nature 2014, 511:543-550.

[23] Planck M, Edlund K, Botling J, Micke P, Isaksson S, Staaf J. Genomic and
transcriptional alterations in lung adenocarcinoma in relation to EGFR and
KRAS mutation status. PLoS ONE 2013;8:e78614.

[24] Ringner M, Jonsson G, Staaf J. Prognostic and Chemotherapy Predictive Value
of Gene-Expression Phenotypes in Primary Lung Adenocarcinoma. Clin Cancer
Res 2016;22:218–29.

[25] Ringner M, Staaf J. Consensus of gene expression phenotypes and prognostic
risk predictors in primary lung adenocarcinoma. Oncotarget
2016;7:52957–73.

[26] The Cancer Genome Atlas http://cancergenome.nih.gov/. Accessed Nov 26
2021.

[27] Dama E, Melocchi V, Dezi F, Pirroni S, Carletti RM, Brambilla D, et al. An
aggressive subtype of stage I lung adenocarcinoma with molecular and
prognostic characteristics typical of advanced lung cancers. Clin Cancer Res
2017;23:62–72.

[28] Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The
immune landscape of cancer. Immunity 2019;51:411–2.

[29] Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods
2015;12:453–7.

[30] Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to
the ionizing radiation response. Proc Natl Acad Sci U S A 2001;98:
5116–21.

[31] Karlsson A, Jonsson M, Lauss M, Brunnstrom H, Jonsson P, Borg A, et al.
Genome-wide DNA methylation analysis of lung carcinoma reveals one
neuroendocrine and four adenocarcinoma epitypes associated with patient
outcome. Clin Cancer Res 2014;20:6127–40.

[32] Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr:
interactive and collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinf 2013;14:128.

[33] Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al.
Enrichr: a comprehensive gene set enrichment analysis web server 2016
update. Nucleic Acids Res 2016;44:W90–97.

[34] Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene
set knowledge discovery with enrichr. Curr Protoc 2021;1:e90.

https://doi.org/10.1016/j.csbj.2022.03.036
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0010
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0010
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0015
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0015
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0020
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0020
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0025
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0025
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0025
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0030
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0030
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0035
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0035
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0040
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0040
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0045
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0045
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0045
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0050
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0050
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0050
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0055
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0055
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0055
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0060
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0060
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0065
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0065
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0070
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0075
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0080
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0080
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0085
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0085
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0085
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0085
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0090
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0090
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0090
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0090
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0095
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0095
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0095
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0095
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0100
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0100
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0100
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0105
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0105
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0105
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0105
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0115
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0115
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0115
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0120
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0120
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0120
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0125
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0125
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0125
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0135
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0135
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0135
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0135
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0140
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0140
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0145
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0145
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0145
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0150
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0150
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0150
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0155
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0155
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0155
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0155
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0160
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0160
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0160
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0165
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0165
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0165
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0170
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0170


J. Karlström, M. Aine, J. Staaf et al. Computational and Structural Biotechnology Journal 20 (2022) 1567–1579
[35] Rodriguez MZ, Comin CH, Casanova D, Bruno OM, Amancio DR, Costa LDF, et al.
Clustering algorithms: a comparative approach. PLoS ONE 2019;14:e0210236.

[36] Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV,
et al. Signatures of mutational processes in human cancer. Nature
2013;500:415–21.
1579
[37] Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung
microenvironment: an important regulator of tumour growth and metastasis.
Nat Rev Cancer 2019;19:9–31.

http://refhub.elsevier.com/S2001-0370(22)00111-8/h0175
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0175
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0180
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0180
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0180
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0185
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0185
http://refhub.elsevier.com/S2001-0370(22)00111-8/h0185

	SRIQ clustering: A fusion of Random Forest, QT clustering,�and KNN concepts
	1 Introduction
	2 Materials & methods
	2.1 SRIQ
	2.2 Patient cohorts
	2.3 Gene expression data preprocessing
	2.4 Consensus clustering
	2.5 Clustering comparison metrics
	2.6 Lung adenocarcinoma TCGA molecular subtype classification
	2.7 Differentially expressed genes, biological metagenes, and GO enrichment analysis
	2.8 SRIQ computation time

	3 Results
	3.1 Technical reproducibility and benchmarking of SRIQ
	3.1.1 SRIQ clustering of 434 LUAD cases
	3.1.2 Assessment of SRIQ stability for key parameters
	3.1.3 Core and spiral cluster samples show similar transcriptional characteristics
	3.1.4 Comparison of SRIQ to consensus clustering

	3.2 Molecular investigation of SRIQ K6 cluster solution
	3.2.1 Characterization of SRIQ K6 solution versus molecular subtypes and biological metagenes

	3.3 SRIQ clustering refines the TRU molecular phenotype
	3.3.1 SRIQ differentiates immune type infiltration within the TRU molecular subtype
	3.3.2 Differential gene expression and GO enrichment between clusters
	3.3.3 SRIQ refinement of the proximal-proliferative (PP) TCGA subtype
	3.3.4 Transcriptional features of clusters different between SRIQ and consensus clustering


	4 Discussion
	CRediT authorship contribution statement
	ack27
	Acknowledgements
	Funding
	Conflict of interests statement
	Appendix A Supplementary data
	References


