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SUMMARY

Dynamic thermal emitters have attracted considerable attention due to their po-
tential in widespread applications such as radiative cooling, thermal switching,
and adaptive camouflage. However, the state-of-art performances of dynamic
emitters are still far below expectations. Here, customized to the special and
stringent requirement of dynamic emitters, a neural network model is developed
to effectively bridge the structural and spectral spaces and further realizes the in-
verse design with coupling to genetic algorithms, which considers the broadband
spectral responses in different phase-states and utilizes comprehensivemeasures
to ensure the modeling accuracy and computational speed. Besides achieving an
outstanding emittance tunability of 0.8, the physics and empirical rules have also
been mined qualitatively through decision trees and gradient analyses. The study
demonstrates the feasibility of using machine learning to obtain the near-perfect
performance of dynamic emitters, as well as guiding the design of other thermal
and photonic nanostructures with multifunctions.

INTRODUCTION

Dynamic thermal emission control has attracted considerable attention in the fields of radiative cooling,1–4

adaptive camouflage,5–9 thermostats,10,11 thermochromic smart windows,12–14 spacecraft thermal

control15,16 and thermophotovoltaic cells.17–19 Among various dynamic thermal emission devices, the

VO2-based dynamic emitter is a promising representative, which undergoes a reversible metal-to-insulator

transition (MIT) at a critical temperature Tc (68
�C for intrinsic VO2).

20,21 The occurrence of MIT is always

accompanied by a dramatic change in the optical properties, which transforms the phase-change material

from an infrared lossless ‘‘insulator state’’ (T<Tc) to an infrared lossy ‘‘metallic state’’ (T>Tc).
22 To exploit this

intriguing property, many VO2-based emitters are investigated theoretically and experimentally for intel-

ligent thermal modulation. Taylor et al. proposed an asymmetric Fabry-Perot emitter, which consists of

a sandwiched configuration with a lossless dielectric spacer inserted between a VO2 thin film and an opa-

que metal substrate, and displayed a total emittance change of over 0.45 across the VO2 phase transi-

tion.23,24 Omam et al. designed an Al/VO2/Dolomite multilayered film to generate hybrid Fano resonances,

realizing a temperature-dependent near-unity narrowband emission, which might be a promising alterna-

tive for the temperature or biochemical sensors.25 Hu et al. demonstrated a spatiotemporal modulation

platform based on thermal hysteresis emission characteristics of VO2 phase-change materials, which

achieved various thermotronic functionalities including negative-differential thermal emission, thermal di-

odes/transistors, and provided a unique perspective for dynamic thermal management.26 Most recently,

Wang et al. fabricated a kind of scalable smart windows composed of Low-E coating/Glass/Low-E

coating/PMMA/VO2 multilayers and presented distinct emissivities of 0.61 and 0.21 at high and low tem-

peratures, manifesting excellent dynamic radiative cooling capability for self-adapting applications across

different climate zones.1 These planar multilayered devices, including those important but not enumer-

ated,27–29 have clear physical mechanisms and are scalable for mass production, laying a solid foundation

for further performance enhancement.

Besides these planar configurations,23–29 many artificial metamaterials with delicately designed nanostruc-

tures30–34 have also been proposed, striving to push the boundaries of device performance and advanced

functionality. For instance, Buhara et al. proposed a hybrid design by embedding the ultrathin VO2

film into a silicon grating for thermal camouflage applications and numerically demonstrated the
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narrowband-to-broadband spectral tunability.30 Long et al. fabricated a tunable VO2 metasurface from an

etch-free process and experimentally demonstrated a�6-fold enhancement of radiative thermal conductance

on VO2 phase transition.31 Jia et al. designed a patterned VO2 metamaterial arranged periodically on the

multilayer substrate and a TiO2/polyethylene composite layer, obtaining an ultrahigh emissivity of 0.952 in

the atmospheric window.32 Zhang et al. devised a cooling system composed of a filter and a periodic trape-

zoidal VO2-Ge multilayer absorber, the net cooling power of which theoretically meets the demanding

requirement of dynamic radiative cooling in the daytime.33 Lei et al. conceived a complex metamaterial

composed of nested subcells, providing new freedom tomanipulate the emission intensity and spectral band-

width simultaneously.34 Tang et al. proposed amechanically flexible coating that consisted of an array ofWxV1-

xO2 nanodisk embedded into the BaF2 dielectric layer, realizing an emissivity tunability of 0.7 in the mid-

infrared range (8–13 mm) and an absorption ratio of 0.25 in the solar spectral range (0.3–2.5 mm).2 Although

effective in dynamic switching, these designs either toward a narrowband emissivity undesired for radiative

cooling or rely heavily on trial-and-error experiences lacking deep optimization to extreme performance

and, in some cases, the invented metamaterials are too complex for cost-efficient production.

In this work, assisted by machine learning methods, we utilize a VO2 metasurface with classic metal-insu-

lator-metal architecture to investigate the possibility of realizing a simple configuration with near-perfect

thermal modulation capability for radiative cooling. Instead of the conventional case-by-case method, we

construct a purpose-designed machine learning architecture to automatically model and optimize three-

dimensional dynamic emitters.35–39 In the forward modeling process, the well-trained neural network func-

tions as a fast prototyping tool with high accuracy comparable to full-wave simulations; whereas in the

inverse design, the network is coupled with genetic algorithms to retrieve the optimized geometric param-

eters for the given spectral requirements. Although the machine learning approach has been widely

applied to many fields,18,19,40,41 its combination with the dynamic emitter has rarely been reported. By us-

ing an ensemble machine-learning toolkit, the implicit relationship between structural features and spec-

tral responses is elucidated qualitatively. Different from the thermal switching at a specific wavelength, the

concerned thermal emitter requires broadband emission tunability over the whole atmospheric window,

which is highly desired for the emerging field of dynamic radiative cooling. The investigation designed suc-

cessfully a dynamic emitter with a powerful machine-learning scheme, which also provides beneficial guid-

ance for inversely designing other photonic and thermal devices.
RESULTS

Design purpose and strategy

The typical configuration of the dynamic emitter is shown in Figure 1A, which is composed of three layers

from bottom to top including the metallic substrate (e.g., W layer), the dielectric spacer (e.g., Si layer), and

the phase-change metasurface (e.g., VO2 layer) that consists of an array of blocks (l3l3t1) on a two-dimen-

sional square lattice with a pitch of P. The thicknesses of the spacer and substrate are denoted as t2 and t3,

respectively. The structural feature of the emitter can be described using the parametric vector of [P, l, t1, t2,

t3]. Owing to the nanoscale skin depth, the metallic substrate (or the substitute metallic film) is always thick

enough to block the mid-infrared emission; therefore t3 is set at a fixed value and then the variable struc-

tural vector is reduced to [P, l, t1, t2]. Besides the spatial dimension, the dynamic emitters have another de-

gree of freedom to be considered, i.e., the two distinct working modes corresponding to the two phase-

states of the VO2 metasurface. As T<Tc, the VO2-based emitter works in the insulator state and is expected

to have low emittance to suppress the overcooling; as T>Tc, the emitter works in the metallic state and is

desired to possess high emittance to enhance the radiative cooling. Therefore, the ideal requirement of the

dynamic emitter for radiative cooling is maximizing the emittance at high temperatures, while minimizing

the emittance at low temperatures across the whole atmospheric window.

For relieving the computational burden of three-dimensional full-wave simulations, as shown in Figure 1B,

the neural network is built to relate the structural and spectral space of the system, which dramatically re-

duces the computational time and simultaneously ensures the modeling accuracy by utilizing the spectral

decomposition, transfer learning methods and so on while taking account of the broadband spectral re-

sponses at both phase-states, making the genetic algorithm feasible for inversely optimizing the three-

dimensional electromagnetic problems. The machine-learning toolkit such as the decision tree and

gradient analysis is employed as an efficient way to enhance the model explanation. Figure 1C shows

the mean square error (MSE) of the neural network prediction compared to numerical simulations, where

200 sets of structural parameters are sampled for both the metallic and insulator cases. As shown in
2 iScience 26, 106857, June 16, 2023



Figure 1. Schematic diagram of dynamic emitters and employed design strategies

(A) Dynamic emitter with phase-change metasurface. The dynamic emitter switches between the high-emissivity and low-

emissivity modes as the VO2 metasurface undergoes phase-changing from the metallic state to the insulator state,

showing a fascinating tunability of emissivity in the mid-infrared regime.

(B) Synthetical approaches in this work to bridge the structural and spectral space of dynamic emitters. The neural network

is utilized in not only the forward prediction (indicated by blue arrows) but also the inverse design (indicated by red

arrows). The decision trees and gradient analysis are also employed to uncover the latent relations between the structural

and spectral parameters.

(C) Loss evaluation of two training strategies: with (blue points) and without (red points) spectral decomposition. The

samples with 200 sets of structural parameters, in both metallic and insulator states, are given for precision evaluation.

The left-half panel distinguished by the purple line corresponds to themetallic state samples; whereas the right-half panel

corresponds to the insulator state samples.

(D) Flowchart of the inverse-design process with a combination of the neural network (indicated by the dashed square and

purple color) and the genetic algorithm (indicated by the green color). The initial structural configuration is randomly

generated, the emittance of which is then predicted via different neural networks, determined by which phase condition is

required. Next, the predicted emittance is imported into the genetic algorithm flow, such as the fitness calculation, merit

function evaluation, and other routine operations.
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Figure 1C, in the case of the metallic state, the neural network trained with the dataset of decomposed

spectra (indicated by blue points) has much higher precision (average MSE z6.43 3 10�4) than that of

the undecomposed (MSE z2.75 3 10�3); whereas in the case of the insulator state, the opposite is

true – the neural network trained with the dataset of undecomposed spectra (indicated by red points)

has much higher precision (MSEz2.603 10�4) than that of the decomposed (MSEz2.483 10�3). Accord-

ingly, the neural networks for the real and imaginary parts of spectra are built respectively for the metallic

state case. However, as shown in Figure 1D, the neural network for the imaginary spectra (Im-part NN) can

be transferred from the neural network for the real part (Re-part NN) with aid of the transfer learning

method, because of the inherent spectral similarity. It is noted that the transfer learning neural network

might further increase the computational speed and accuracy. Furthermore, Figure 1D displays roughly
iScience 26, 106857, June 16, 2023 3



Figure 2. Transfer learning neural network for the real and imaginary spectra

(A) Neural network structure for the real-part emissivity spectra.

(B) Transferred neural network for the imaginary-part emissivity spectra.

(C) Loss values measured by logarithmic MSE during training and testing at different epochs, corresponding to the neural

network in (A).

(D) Matrix table of the loss evaluation for the transferred neural network with the transferred layer starting at the n1 layer

and stopping at the n2 layer.

(E) Loss values measured by logarithmic MSE during training and testing at different epochs, corresponding to the neural

network in (B).
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the flowchart of inverse design, which incorporates the neural network, as a substitute for the electromag-

netic solver, in the global optimization process of the genetic algorithm.

The details of the transfer learning neural network are given in Figure 2. As shown in Figure 2A, the real part

prediction network is constructed with the fully connected hidden layers of size {150, 120, 80}, where the

same activation function of tanh is applied to match the data range of [-1, 1]. The output layer has 169 neu-

rons corresponding to the same amount of spectral points. The action of the neural network can be ex-

pressed as a parameterized function f, which performs the following transformation,

spectrum = f
�
p; l; t1; t2; q

�
(Equation 1)

The data-driven algorithm allows the neural network model to automatically infer and update the parameter q

from the training dataset to minimize the gap between the predicted and the label results.42–44 However, as

shown in Figure 2B, because Im-part NN and Re-part NN adopt the same network structure, q of Im-part NN

does not learn from the initial random value but updates from the transfer part of the well-trained Re-part

NN that has a good prediction accuracy (as shown in Figure 2C). The matrix table in Figure 2D shows the aver-

aged losses of the transferred neural networks with the transferred layer starting from the n1 layer and stopping

at the n2 layer, where 1%n1 % 4, andn1%n2 % 4. As shown in Figure 2D, as the first two layers of Re-partNNare

transferred, the best training effect of Im-partNN is obtainedwith aminimum loss ofMSE= 2.693 10�3. Besides

the accuracy, as shown in Figure 2E, the epochs required for the transferredmodel to reach stability are reduced

significantly compared to the direct training, which indicates the actual training time can be cut at least in half.

Spectral accuracy and model generality for forward prediction

To observe intuitively the performance of the neural network, we randomly select a few groups of structural

parameters from the verification dataset and generate the spectral response via the trained neural network

model, which is then compared with the full-wave simulations. Figure 3A shows the decomposed reflection

coefficient (S11) of the emitter with a parameter vector of [1.4, 1.1, 1.3, 0.2]. The spectra in Figure 3A correspond

to the metallic state case, characterized by the dramatic variation across almost all of the spectral range.

Despite so, the spectrum of Re(S11) or Im(S11) is more or less smoother than that of |S11|, which might be

the reason why the spectral decomposition has a positive impact on the prediction accuracy for the metallic

case. As shown in Figure 3A, all the predicted spectra (dashed lines) of Re(S11), Im(S11), and |S11| coincide well

with the full-wave simulations (solid lines) even in the region with sharp transitions.
4 iScience 26, 106857, June 16, 2023



Figure 3. Evaluation of the trained neural network in forward prediction with respect to full-wave calculations

(A) Real, imaginary, and amplitude of the reflection coefficient (S11) for the dynamic emitter in the metallic state.

(B) Amplitude of the reflection coefficient (S11) for the dynamic emitter in the insulator state.

(C) Regression result of the true and predicted emissivity. The white line represents the regression line where the

predicted emissivity coincides exactly with the true emissivity, and the color represents the corresponding sample

number.
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Different from the metallic-state case, the insulator-state case is associated with a generally lossless (or

transparent) feature and a flat spectrum of the refractive index that changes little as the wavelength varies,

which leads to corresponding flat |S11| spectra, especially at long wavelengths. Therefore, the insulator-

state dataset might be overfitted by using the decomposition approach. However, without the presence

of the spectral decomposition, as shown in Figure 3B, the predicted spectrum realizes superb agreement

with the full-wave simulations with an exemplified structural parameter vector of [0.6, 0.7, 1.3, 0.1].

For the verification of generality, a dataset with 200 groups of structural parameters is examined. The

regression output is given in Figure 3C, where the predicted emittance, true emittance, and occurrence

probability are displayed together. The white line represents the situations where the predicted emittance

exactly equals the true emittance, and the color represents the number of occurrences. As shown in Fig-

ure 3C, the vast majority of red points are clustered near the white line, which indicates the predicted emit-

tances are highly consistent with the true emittances, manifesting excellent forward prediction accuracy

and model reliability.

Optimized performance and underlying physical mechanism

The reverse design is performed to retrieve the optimal structure corresponding to the demanding perfor-

mance, which is challenging because of the high degree of freedom and the large parameter space. More-

over, each design parameter might affect either the metallic-state or the insulator-state spectral responses

in distinct ways. To resolve the multi-factor comprehensive optimization problem and avoid the local min-

imum situation, the genetic global optimization algorithm is employed with an objective function of 1 �
Dε = 1 � ðεM � εIÞ. The computational details can be referred to in Figure 1D and the STARMethodssec-

tion. Figure 4 displays the optical responses of the optimized device with a parameter vector of [1.84, 1.06,

1.55, 0.23]. As shown in Figure 4A, the |S11| spectra in the metallic (blue dashed line) and insulator states

(black dashed line) predicted by the neural network coincide well with the full-wave finite element simula-

tions (solid lines), suggesting excellent prediction accuracy. The corresponding emittance spectra are dis-

played in Figure 4B. The designed dynamic emitter shows a near-perfect emittance (εM = 0.98) at a high

temperature across the whole atmospheric window (i.e., 8�13 mm); meanwhile, the emittance at the low

temperature is suppressed as low as εI = 0.18. Therefore, Dε reaches an outstanding value of 0.8, manifest-

ing an excellent emittance tunability that was rarely been exceeded so far (See Table S1).16–22
iScience 26, 106857, June 16, 2023 5



Figure 4. Optimized performance and microcosmic mechanism

(A) Direct comparison between the amplitude of the reflection coefficients obtained by neural networks and full-wave

simulations.

(B) Spectral emittance of the emitter in the insulator and metallic states.

(C) Contour map of the spectral emittance as a function of incident angle.

(D) Averaged emittance as a function of the azimuthal angle at a wavelength of 11 mm.

(E and F) Magnetic field distributions of the device working in the metallic (E) and insulator states (F).
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Furthermore, the angle-dependent performance of the dynamic emitter at high temperatures is explored.

Figure 4C presents the contour map of emittance versus wavelength and emission angle. As shown in Fig-

ure 4C, the spectral bandwidth narrows gradually as the emission angle increases. However, the feature of

near-perfect emittance within the atmospheric window still preserves at a large emission angle of 60�. To
inspect the influence of polarization angles, the emittance with varying polarization angles (from 0� to 180�)
is extracted while keeping the wavelength at 11 mm and the emission angle at 45�. It can be seen from Fig-

ure 4D that the emittance of the device is independent of the polarization angle, remaining constant in the

vicinity of ε = 0.98. The feature of angular invariance further demonstrated the advantage of the optical

metasurface with nanopatterned VO2 structures.

To explore the origin of broadband near-perfect emittance, the field distributions associated with an emit-

tance peak of 11 mm are rendered. Figures 4E and4F display the magnetic intensity profiles for the metallic

and insulator cases, respectively. As shown in Figure 4E, in a unit cell, a strong magnetic dipole is formed,

because of the anti-phase electric dipole oscillations around the VO2 meta-atoms induced by the localized

surface plasmon resonance (LSPR).45,46 Interacted with LSPR, the metallic VO2 with a giant extinction coeffi-

cient leads to considerable nonradiative loss, which thus yields broadband emittance peaks. As the VO2 turns

into the insulator state, as shown in Figure 4F, the LSPR does not exist and the cavity mode almost disappears,

bringing about low emittance values. Besides the optimization for the broadband emittance, the narrowband

optimization is also feasible (see Figure S1).

Model interpretability

In addition to model accuracy, physical interpretability is also critical, which facilitates discovering the intricate

relationships behind the data and then provides beneficial guidance to rational design. Figure 5A gives the

feature importance with the aid of the decision tree which logically uses a series of simple tests to establish

the connection between features and labels.47,48 Compared with the black-box model (e.g., neural network),

the classifier such as the decision tree has more advantages in terms of interpretability because its logical de-

cision rules are easier to understand than the weight values of neural network nodes. As shown in Figure 5A,

the features ofp and lplay an overwhelming role, which together account formore than 85%of the importance

in the cases of ε = 0.7 and ε = 0.8. Owing to the crucial physical significance of the filling factor (i.e., ðl=pÞ2), the
feature l/p instead of p is employed in the importance evaluation; otherwise, the decision tree would generate

too many branches and reduce the interpretability. It can be seen from Figure 5A that, the importance of l/p

continues to increase as the emittance increases, which originates from the sensitivity of LSPR to the filling fac-

tor that determines the resonance wavelength of the metasurface. In the meanwhile, the influence of t1 grad-

ually increases, and finally exceeds the influence of l for an emittance of 0.9, becoming the secondmost impor-

tant feature, which indicates that, once LSPR is excited, the fine-tuning of t1 can improve the absolute volume
6 iScience 26, 106857, June 16, 2023



Figure 5. Inherent relations between the structural parameters and the physical quantity of emittance uncovered

by the analysis of decision trees

(A) Feature importance of key parameters (l/p, l, t1, t2) with respect to the physical quantity of emittance.

(B) Data distribution of the low-temperature emittance at different l/p values and the corresponding decision tree.

(C) Statistical map and the underlying decision tree for the emittance of the device in the metallic state. Two red lines

indicate the sampling space defined by the l and l/p. The straight white lines display the critical points and the color

represents the number of samples with an emittance greater than 0.8.
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of the active layer and thus the emittance. It is worth noting that all the first three important parameters, ac-

counting formore than 90%of feature importance, are directly relevant to the VO2meta-atom, which indirectly

suggests that the other component such as the dielectric spacer might be not that sensitive and can be

substituted according to the convenience of processing.

Figure 5B presents the emittance scatterplot for the emitter in the insulator state, with the smallest decision

tree. As shown in Figure 5B, the emittance is positively correlated with l/p in general, suggesting the emis-

sion in the insulator state is directly proportional to the surface coverage of VO2. If an emittance of 0.2 is set

as the design criterion, l/p should be smaller than 0.567, meaning the surface coverage of the VO2 metasur-

face should be no more than 32% to fulfill the design objective of ε< 0.2.

The metallic state case seems a little complicated because of the extremely nonlinear light-matter interaction.

According to the feature importance shown in Figure 5A, a two-level decision tree is generated with the key

predictors of l and l/p. As shown in the left panel of Figure 5C, the colormap represents the occurrence of high

emittance with ε> 0.8, the red lines show the boundary of training data and the white lines indicate the critical

values that correspond to the chance nodes of l< 0.665 and l/p % 0.76. It can be concluded from Figure 5C

that, to inversely design an emitter with high emittance (e.g., ε> 0.8), the VO2 block should be not too small

(i.e., l> 0.665), and the filling factor should be not too large (i.e., l/p % 0.76). Although these values are not

necessarily exact, they can provide some physical hints and design references.

To investigate the influence of the structural parameters on the evolution trend of emittance, gradient analysis

is performed. Figure 6A shows the emittance at an exemplified parameter vector of [1.62, 0.91, 1.90, 0.23] and

its gradient vector with respect to each structural parameter (i.e., vε
vxi
), where the red and blue histograms/vec-

tors correspond to the metallic and insulator states, respectively. Themagnitude of the gradient vector is pro-

portional to the inset scale and the upward (downward) direction presents the positive (negative) sign of the

gradient. It can be concluded from Figure 6A that, under present conditions, the emittance in the metallic

(insulator) state can be further improved by increasing l (l, t1, t2) and/or decreasing p, t1, t2 (p), among which

the measure of increasing l would exert the biggest influence because of the largest gradient magnitude.

Beyond a specific structural vector, the gradient of emittance with respect to l is further examined in a large

data space. Figures 6B and 6C give vε
vl versus l and p for the metallic and insulator cases, respectively. As
iScience 26, 106857, June 16, 2023 7



Figure 6. Gradient analysis of emittance with respect to key structural parameters

(A) Emittance at the metallic (red bar) and insulator (blue bar) states and gradient vector of emittance with respect to key

parameters (p, l, t1, t2). The upward and downward arrows represent the positive and negative gradients respectively. The

red and blue colors indicate the metallic and insulator states, respectively.

(B and C) Partial derivative of εwith respect to l for the cases of metallic state (B) and insulator state (C). Data distribution of

the low-temperature emittance at different l/p values and the corresponding decision-tree structure.

(D and E) Emittance (presented by curves) as a function of t1 and partial derivative (presented by colorbars) of ε with

respect to t1 for the cases of the metallic (D) and insulator states (E).
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shown in Figure 6B, there is a rough dividing line (i.e., vεvl = 0) between the positive and negative gradients,

which suggests the existence of the optimal l value for a certain parameter of p. For example, on the lon-

gitudinal line of p = 1.4 mm, it can be seen that vε
vl first increases, then reaches saturation, and finally de-

creases gradually as l increases from 0.3 to 1.5 mm; the optimal l tends to occur in the saturation region,

or with a slight lag (e.g., 0.8 <l< 1.2 mm). Different from the metallic state case, the insulator case that re-

quires a low emittance expects the structural parameter to be adjusted toward the negative gradients.

However, as shown in Figure 6C, the positive gradient pervades almost all the (l, p) space, indicating the

challenge of reducing the intrinsic emittance of the insulator case via nanostructures substantially; there-

fore, it becomes the next-best principle to restrain the emittance from rising too high.

According to the results obtained from the decision tree model (as shown in Figure 5), t1 is also a nontrivial

parameter to make the emittance go to extremes. To clarify the relationship between the structural

gradient of t1 and the emittance in a clearer one-dimensional perspective, Figures 6D and 6E respectively

give the partial derivatives of vε
vt1

for the metallic and insulator cases, where the corresponding parameter

vector is [1.62, 1.07, t1, 0.12] and t1 varies from 0.6 to 2.0 mm. It is noted that, as shown in Figure 6B, the

data point of [p, l] = [1.62, 1.07] falls rightly in the saturation region with vε
vlz0. Although the l-dominated

increase is saturated, the parameter t1 might still be able to bring about a further increase. As shown in Fig-

ure 6D, with increasing t1, the emittance slightly decreases as t1 is small (e.g., t1 = 0.7 mm), and then in-

creases significantly, reaching a high emittance of 0.96 at t1 = 1.45. In the meantime, the emittance for

the insulator case (as shown in Figure 6E) is affected little by the increase of t1 on the whole, consistent
8 iScience 26, 106857, June 16, 2023
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with the conclusion from decision trees. However, as shown in Figure 6E, the emittance is even slightly

decreased with a negative gradient in the vicinity of t1 = 1.5, which facilitates enhancing the emittance

tunability and falls exactly in line with the design expectations.

DISCUSSION

Aiming at the potential application of dynamic radiative cooling, we have studied the VO2-based metasurface

with a metal-insulator-metal architecture, with the aid of an ensemble of data-driven methods. The neural

network is constructed and well-trained to predict the optical response of the dynamic emitter with remarkable

accuracy comparable to full-wave simulations, which is then coupled to the genetic algorithm for inverse design.

To improve the accuracy and computational speed, spectral decomposition and transfer learning strategies are

employed, which adapt the neural network to be qualified successfully to the concerned problem of dynamic

emitters. Compared to conventional case-by-casedesign, the combinationofmachine learning and thedynamic

emitter bring about many advantages. First, despite the structural simplicity, the metasurface has been opti-

mized with an outstanding emittance and an emittance tunability that have rarely been exceeded so far. The

fundamental reason is that the data-driven optimization can search the optimal parameters from the continuous

dataspace ensured by the well-trained neural network model which is far beyond the discrete dataspace gener-

ated by the parameter-scanning simulation. Besides the interpolation-like feature of the well-trained neural

network, the extrapolating function outside but close to the training scope is also theoretically feasible. Second,

the accelerated speed of the neural network enables thousands of iterations possible for the time-consuming

three-dimensional full-wave optimization. Finally, machine-learning toolkits such as the decision tree and

gradient analysis can not only uncover the latent relationship between the structure and optical response

semi-quantitatively but also shed more light on the underlying physics qualitatively. Though the investigation

has focused on dynamic emitters, the combined data-driven approach can also provide opportunities for other

thermal and photonic devices with versatile functionality.

Limitations of study

Taking account into the convenience of scalable fabrication, the investigated phase-change metasurface is

confined to a regular geometric topology. However, with the rapid development of nanotechnology, more

and more metasurfaces with complex meta-atom and topologic configurations can be prepared with high

quality and cost-effectively. Therefore, from a theoretical perspective, the topology optimization of the

phase-change meta-atom is still interesting work that might provide new opportunities to improve the per-

formance and hence deserve to be done further in the field of dynamic radiative coolers. Second, as for a

dynamic device, the VO2-based thermal emitter undergoes a time-dependent phase-transition process

and has transient intermediate states between the initial and final steady states; however, the transient in-

termediate states are not considered in the manuscript for simplification. Moreover, not limited to VO2,

other phase-change materials such as Ge-Sb-Te (GST) and Ge-Sb-Se-Te (GSST) can also be considered

as another degree of freedom in the design49–51 and the experimental realization is desired in the future.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Figshare repository with data This paper https://doi.org/10.6084/m9.figshare.

22730780

Figshare repository with codes This paper https://doi.org/10.6084/m9.figshare.

22730864

Software and algorithms

Python 3.6 Python Software Foundation https://www.python.org/

Pycharm 2021 JetBrains https://www.jetbrains.com/pycharm/

Tensorflow 2.3.0 GitHub https://github.com/tensorflow/tensorflow

Sklearn0.23.2 Google http://scikit-learn.org/
RESOURCE AVAILABILITY

Lead contact

Further information and other requests should be directed to and will be fulfilled by the lead contact, Xiao-

feng LI (xfli@suda.eud.cn)

Materials availability

This work did not generate new unique reagents.

Data and code availability

d Structural and spectral data have been deposited at Figshare and are publicly available as of the date of

publication. DOIs are listed in the key resources table.

d All original code has been deposited at Figshare and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This work is relevant to the light-matter interaction in the optical nanostructures, and did not use any bio-

logical models or any animal/human subjects/samples. The specific modeling details can be referred to as

method details.

METHOD DETAILS

Data generation and preprocessing

The numerical range of the structural parameters is predefined as P˛[0.6, 2.0], l˛[0.4 P, 0.9P], t1˛[0.6, 2.0],
t2˛[0.1, 0.4] (in units of mm). It is about 5000 groups of structural parameters that are randomly generated,

and their spectral responses at both metallic and insulator states are calculated by using the full-wave

method, which is performed using the finite element solver in conjunction with Python. The refractive index

of VO2 is obtained from the experimental measurement.52 The spectral range is considered from 4 to 20 mm

and 169 wavelength points are sampled corresponding to the 169 outputs of the neural networks. Accord-

ing to the reciprocity principle of thermal radiation, the spectral emittance is calculated as follows,

εðl;TÞ = Aðl;TÞ = 1 � jS11ðl;TÞj2 (Equation 2)

Where ε is the emittance, A the absorbance, S11 the reflection coefficient. The integrated emittance is

calculated as the ratio of the emissive power of the metasurface to the transmitted power of the blackbody

at the same temperature in the atmospheric window band (8 � 13 mm) where thermal emission can escape

successfully to the deep space,2,53–55
12 iScience 26, 106857, June 16, 2023
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εðl;TÞ =

R 13mm

8mm Ibbðl; TÞεðl; TÞdlR 13mm

8mm Ibbðl;TÞdl
(Equation 3)

where Ibb(l, T) represents the spectral intensity of the standard blackbody emission at temperature T, and

ε(l, T) represents the spectral emittance of the sample.
NEURAL NETWORK TRAINING

The neural network uses mean square error (MSE) as a loss function tomonitor the updating of parameter q.

MSE is defined as,

MSE =
1

N

XN
i = 1

ðyi � by iÞ2 (Equation 4)

whereN is the sample size, yi the predicted value, by i the true value. The neural network used to predict the

real part response of the structure used a total of 5000 sets of data (80% for training and 20% for testing).

After 2000 iterations of training, the overall test error of the real part training network reaches 2.5310�3. We

choose tanh and sigmoid as the activation function in the neural networks for the metallic and insulator

cases, respectively. The learning rate of 0.01 and the Adam optimizer are chosen in both cases. All training

is performed using TensorFlow 2.3.0 on NVIDIA GeForce GTX 1650 SUPER graphics card.
Decision tree and genetic algorithm models

In the decision tree model, the emittance is set as the output variable and the structural parameters are set

as predictors. The smallest tree pruning is used to avoid over-fitting and an excessive number of decision

nodes. The maximum depth is set as 2 and 1 for the metallic and insulator cases; the minimum sample sizes

of the branch and the leaf node are both set at 30. The labels were divided into two categories using the

thresholds of 0.8 and 0.2 for the metallic and insulator cases. The scikit-opt framework is employed for the

genetic algorithm and the script details can be referred to in the key resources table.
QUANTIFICATION AND STATISTICAL ANALYSIS

Electromagnetic simulations were performed using COMSOL Multiphysics. Figures were produced with

Python from the raw data.
ADDITIONAL RESOURCES

Any additional information about the simulation and data reported in this paper is available from the lead

contact on request.
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