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Forecasting of landslide 
displacements using a chaos theory 
based wavelet analysis-Volterra 
filter model
Yuanyao Li1*, Ronglin Sun2, Kunlong Yin1, Yong Xu3, Bo Chai2 & Lili Xiao4

Landslide displacement time series can directly reflects landslide deformation and stability 
characteristics. Hence, forecasting of the non-linear and non-stationary displacement time series is 
necessary and significant for early warning of landslide failure. Traditionally, conventional machine 
learning methods are adopted as forecasting models, these forecasting models mainly determine the 
input and output variables experientially and does not address the non-stationary characteristics of 
displacement time series. However, it is difficult for these conventional machine learning methods to 
obtain appropriate input-output variables, to determine appropriate model parameters and to acquire 
satisfied prediction performance. To deal with these drawbacks, this study proposes the wavelet 
analysis (WA) to decompose the displacement time series into low- and high-frequency components 
to address the non-stationary characteristics; then proposes thee chaos theory to obtain appropriate 
input-output variables of forecasting models, and finally proposes Volterra filter model to construct 
the forecasting model. The GPS monitoring cumulative displacement time series, recorded on the 
Shuping and Baijiabao landslides, distance measuring equipment monitoring displacements on 
the Xintan landslide in Three Gorges Reservoir area of China, are used as test data of the proposed 
chaotic WA-Volterra model. The chaotic WA-support vector machine (SVM) model and single chaotic 
Volterra model without WA method, are used as comparisons. The results show that there are chaos 
characteristics in the GPS monitoring displacement time series, the non-stationary characteristics of 
landslide displacements are captured well by the WA method, and the model input-output variables are 
selected suitably using chaos theory. Furthermore, the chaotic WA-Volterra model has higher prediction 
accuracy than the chaotic WA-SVM and single chaotic Volterra models.

The safety of local people’ life and property are threatened seriously by the reservoir landslides distributing along 
the Three Gorges Reservoir1–3. Forecasting of Landslide displacements is considered as an important part of an 
operational early warning system2,4–7. Hence, it is crucial and significant to forecast the landslide displacements 
for early warning8.

Over the past decades, Global Position System (GPS) has been widely and successfully used to monitor the 
landslide displacement time series9. GPS technology makes it possible to real-timely track the deformation pro-
cesses of a landslide. The landslide displacement prediction models mainly include physically based models and 
data-based models6,10. The data-based models are established through training and testing the input-output var-
iables using linear and/or non-linear models. The modeling processes of data-based models are more simple and 
accurate than those of physically based models6,11. Hence, this study propose data-based models to forecast the 
landslide displacement time series.

Some data-based models namely the classical black box models (Auto Regressive, Moving Average, Multiple 
Linear Regression, et al.) have been proposed for time series prediction since 197012. These classical black box 
models are not accurate enough for nonlinear time series prediction because they are linear models. In the 
past three decades, many Artificial Intelligence (AI) methods, which provide a way to solve the problems of 
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complexity, dynamism and nonlinear characteristics in nonlinear time series, had been used to predict land-
slide displacement time series. These models include artificial neural networks (ANNs)13–16, extreme learning 
machine17, fuzzy logic approach18 and support vector machine (SVM)19–22, et al.

However, the nonlinear time series prediction performances of these AI methods are limited. This is because 
that, (1) the nonlinear and non-stationary characteristics of landslide displacement time series are not captured 
fully by single AI models; (2) the input-output variables of the AI methods are determined empirically without 
appropriate determination law for input-outputs; and (3) the nonlinear fitting and predicting abilities of these 
AI models should be improved effectively4,11,19,23,24. In additional, related literature indicates that AI models have 
some disadvantages of local optimum, slow training and testing rate and over-fitting problem, which also hinder 
the prediction accuracy for the nonlinear time series2,4. To address these three limitations existed in AI models, 
this study proposes a chaos theory based wavelet analysis-Volterra filter model (chaotic WA-Volterra model) for 
displacements prediction.

For the first limitation, wavelet analysis (WA) is used to address the serious nonlinear and non-stationary 
problems in the landslide displacement. WA is an effective signal processing tool that can solve the nonlinear 
and non-stationary signal and offer the time-scale localization for signals25. The main features of WA method are 
exploring the time series from both time domain and frequency domain, which provide meaningful information 
for the physical structure of time series15. Hence, WA based AI models firstly decompose a time series into several 
multi-resolution frequency components and then these components are respectively predicted in the AI models 
with higher prediction performance13,14. Recently, WA-AI models have been effectively introduced to the areas 
of reservoir fluid contacts prediction26, stream flow data series prediction14 and seasonal variation of landslide 
displacement27. This study also introduces WA into AI methods for non-linear and non-stationary cumulative 
landslide displacements prediction.

In addition, the prediction performance of AI method is essentially depend on the input-output variables. 
In this study, the chaos theory, which can track the evaluation of nonlinear time series and rebuild its original 
evaluation system, is used to determine the input-output variables of the AI models. Chaos theory is an important 
method for input-output variables selection which is widely used in many areas6,28. In theory, based on the deter-
mination of the chaos evidence of landslide displacements, embedding theory and phase space reconstruction 
(PSR) methods of chaos theory can be used to build a chaos theory based model for displacements prediction. 
Based on embedding theory29, the landslide displacements might to be predicted using a single variable dis-
placement time series. Meanwhile, on the basis of PSR method30, a single variable displacement time series can 
be constructed into a multi-dimensional phase-space to obtain the input-output variables of prediction models.

Furthermore, after the conductions of chaos theory and WA method on landslide displacements, the Volterra 
filter model is innovatively introduced into this study31. The Volterra filter model can predict the chaotic time 
series using a few time series data in the training and testing processes, and can automatically track the motion 
trace of the chaotic time series. Hence, the Volterra filter model can overcome the disadvantages of traditional 
machine learning models, and it has been successfully used in many areas with excellent generalization per-
formance, such as air/fuel ratio prediction32, multi-scale stream flow forecasting33 and traffic flow prediction34. 
However, no attention has been attracted to use the Volterra filter model to predict landslide displacements, 
although the Volterra filter model has efficient prediction performance.

To summarize, a chaotic WA-Volterra model is innovatively proposed in this study to overcome the drawbacks 
of traditional machine learning models. Meanwhile, the chaotic WA-SVM model and the single chaotic Volterra 
filter model without WA method are used for comparisons. The GPS monitoring monthly displacement time 
series of the Shuping landslide and Baijiabao landslide, distance measuring equipment monitoring displacements 
on the Xintan landslide in Three Gorges Reservoir area (TGRA) are used as case study.

Study Area and Materials
The locations of the Shuping, Baijiabao and Xintan landslides are shown in Fig. 1; Shuping landslide locates on 
the south side of the Yangtze river in ZiGui County. The Baijiabao landslide is located on the west side of Xiangxi 
river, a tributary of the Yangtze river. Xintan landslide locates on the north side of the Yangtze river in ZiGui 
County.

Geological conditions and deformation characteristics of the shuping landslide.  The topo-
graphic map of the research site and its GPS monitoring network are shown in Fig. 2. Figure 2 shows that the 
upper boundary of the chair-like shaped Shuping landslide is defined by the bedrock-soil interface. The maxi-
mum elevation of the upper boundary is 415 m. Its toe elevation is approximately 144 m. The longitudinal dimen-
sion and width of the landslide are 800 m and 700 m, respectively. In addition, the mean depth of the sliding 
surface is approximately 55 m.

The materials of the landslide are composed of medium permeable quaternary deposits. The slope mass struc-
ture is loose and it varies from 10° to 35°. The dip direction and dip angle are approximately 143° and 15°, respec-
tively. The slip zone is composed of silty clay and fragmented rubble. The bedrock lithology is characterized by 
triassic formation of middle Badong formation.

Shuping landslide was activated in June 2003 and it exhibited a large amount of local deformation and failure. 
Some reservoir bank collapses occurred in the frontal part of this landslide from October 2003 to January 2004. 
Surface investigations showed that shearing and crush-pressing cracks had occurred since January 2004. The 
deformation of the study area had rapidly progressed since April 2007. Figure 3(a) illustrates a small debris flow 
that occurred. Figure 3(b) shows a large amount of significant road deformation and cracking that occurred in 
the road at the upper part of the landslide. The deformation and failure characteristics of Shuping landslide are 
serious.
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In general, the deformation and failure of reservoir landslides are related to the rapid changes in the ground-
water seepage field35–37. The mechanical effects of hydraulic uplift pressure and reverse seepage pressure on the 
landslide will increase when the groundwater level rises38. Meanwhile, the physical effects of groundwater seepage 
on landslides are mainly reflected in the reduction of soil shear strength and in the softening of sliding surface39,40. 
However, it is not easy to obtain sufficient groundwater level time series for building prediction models. Hence, 
this study does not put groundwater levels into the chaotic WA-Volterra model for landslide displacements 
prediction.

Geology and deformation characteristics of baijiabao landslide.  Baijiabao landslide (Fig. 4), which 
is a fan shape and destructive landslide, is composed by the quaternary deposits (silty clay interspersed with 
fragmented stone). The structure of these quaternary deposits is loose and porous. The bedrock under this sliding 
mass is composed by Jurassic mudstone and sandstone. In addition, the Baijiabao landslide is a large landslide 

Figure 1.  Geographic location information of Shuping and Baijiabao landslides (Adobe Photoshop CS3, http://
www.adobe.com/cn/products/photoshop.html, drawn by Yuanyao Li; the photograph is taken from Yuanyao Li).

Figure 2.  Topographical map of Shuping landslide, with locations of GPS points (AUTOCAD 2014, https://
www.autodesk.com.cn/, drawn by Yuanyao Li).

https://doi.org/10.1038/s41598-019-56405-y
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with an approximately volume of 9.9 × 106 m3, an approximately area of 2.2 × 105 m2 and an approximately sliding 
depth of 45 m. The average slope of Baijiabao landslide is about 12°, the elevation of the frontal part of the land-
slide is about 125 m (extending to the bed of Xiangxi River) and the elevation of the upper part is about 275 m. 
Figure 4 shows that the boundaries of Baijiabao landslide are identified as gully and bed rock.

Geology and deformation characteristics of baijiabao landslide.  The Xintan landslide (Fig. 1) is 
an accumulate landslide composed by silty clay and sandstone fragments. Its elevation ranges between 70 m and 
500 m from frontal part to the upper part of the landslide with thickness of accumulative layer about 25.5 m. 
The Xintan landslide is generally inclined towards to the Yangtze river with average slope of 25° and a multilevel 
terraced terrain. The right and left landslide boundaries are characterized by steep cliffs. The bedrock lithology 
of Xintan landslide is mainly featured as Silurian sandstone and shale. Its groundwater is replenished by rainfall. 
There is almost no groundwater in this landslide because the slide mass is loose and the discharge of the ground-
water is very good.

There are several reasons for the landslide instability. One reason is that, the surface slope of this landslide 
is steep, the accumulative layer of this landslide is loose and there is weak intercalated layer in this landslide. 
Another reason is that, the seasonal heavy rainfall decreases the shear strength of this landslide, as a result, the 
landslide is reactivated. The deformation and instability processes of Xintan landslide began in January 1977, and 
completely destroyed in May 1985. The local people’s life and properties are seriously threatened by the deforma-
tion of Xintan landslide.

GPS system building on shuping and baijiabao landslides.  To monitor the displacement time series 
of the Shuping and Baijiabao landslides, the GPS system was respectively built on the Shuping landslide in June 

Figure 3.  Deformation characteristics of Shuping landslide (photographs taken by Yuanyao Li).

Figure 4.  Terrain map of the Baijiabao landslide with GPS locations (AUTOCAD 2014, https://www.autodesk.
com.cn/, drawn by Yuanyao Li).
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2003 and built on the Baijiabao landslide in September 2006. Figure 2 shows that the GPS points ZG85 ~ ZG90 
were set as observation points, while the points ZG83 and ZG84 were set as reference points. Two GPS reference 
points were placed in the stable zones outside the Shuping landslide to ensure that there were no deformations 
in the reference points. Six GPS observation points were built in the deformation zone of the landslide. The same 
as Shuping landslide, Baijiabao landslide was also monitored by the GPS system with G4 ~ G5 as reference points 
and G1 ~ G3 as observation points (Fig. 4).

The reference stations respectively constructed a landslide monitoring control network with each GPS obser-
vation points ZG85 ~ ZG90 (Fig. 5(a)) and G1 ~ G3 in turn every month. Then, the displacements of GPS obser-
vation points are calculated comparing to the reference points based on the constructed landslide monitoring 
control network. The GPS receiving signals were processed by baseline processing and network adjustment in 
the GAMIT/GLOBK software41. Then, the monitored cumulative displacements can be obtained and displayed. 
In this study, two series of GPS monitoring landslide displacement time series were obtained from June 2003 to 
November 2012 on Shuping landslide (Fig. 5(b)) and from October 2006 to August 2011 on Baijiabao landslide 
(Fig. 6).

GPS monitoring displacements of shuping landslide.  Figure 5(b) indicates that the cumulative displacements 
of the Shuping landslide are of non-linear and non-stationary characteristics. Figure 5(b) also shows that the 
cumulative displacement values of points ZG85, ZG86 and ZG88 on the frontal part of the landslide are greater 
than those of the points on the upper part, which suggests that the Shuping landslide is a translational landslide 
with earth sliding42. In this study, the cumulative displacements of ZG85 ~ ZG88 points with non-linear and 
non-stationary characteristics are predicted using the proposed models.

Figure 5.  GPS system on Shuping landslide and obtained cumulative displacements with ZG83 ~ ZG90 GPS 
points (Drawn by Yuanyao Li).

Figure 6.  GPS monitoring cumulative displacements of Baijiabao landslide with G1 ~ G3 GPS points (Drawn 
by Yuanyao Li).
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GPS monitoring displacements of baijiabao landslide.  The Baijiabao landslide has been activated by the water 
level fluctuation of Three Gorges Reservoir and the seasonal rainfall since September, 2006. As a result, some 
shear and tensile fissures occurred in the middle and upper parts of this landslide (Fig. 4). Three GPS sensors 
have been placed on the landslide for landslide displacements monitoring since September, 2006 (Fig. 6). The 
nonlinear and non-stationary deformation features of Baijiabao landslide are reflected by these three displace-
ment curves. Furthermore, in order to verify the prediction performance of WA-Volterra model for landslide 
displacement prediction, the G3 GPS point is used in this study as study case.

Creep deformation characteristics of the three landslides.  Related literature shows that, the nature 
of soil landslide failure can be regarded as the creep deformation process of sliding mass43,44. In general, according 
to the landslide deformation rate and cumulative displacements, the ideal landslide creep deformation-time curve 
can be divided into three stages44: slow deformation stage with small deformation rate and low slope of cumu-
lative displacements (0 ~ T1), uniform deformation stage with almost uniform deformation rate and gradually 
increasing cumulative displacements (T1 ~ T2), and accelerated deformation stage with high deformation rate and 
rapidly increasing cumulative displacements until landslide failure occurs (T2 ~ T3) (Fig. 7(a)). The last stage can 
be further divided into initial accelerated deformation and critical failure stages.

The landslide deformation falling into the accelerated deformation stage is a very important warning indi-
cator of landslide failure45. Therefore, it is significant to analysis the deformation features according to the creep 
deformation-time curves. Specially, The cumulative displacements of Shuping and Baijiabao landslides belong 
to non-ideal creep deformation-time curves. Instead, the cumulative displacements of Xintan landslide belongs 
to ideal creep deformation-time curve. The deformation of Shuping landslide is a type of continuous and almost 
uniform creep deformation feature, with slow deformation stage from June 2003 to September 2006, uniform 
deformation stage from October 2006 to October 2011 and initial accelerated deformation stage from November 
2011 to January 2013 (Fig. 7(b)). Meanwhile, the deformation of Baijiabao landslide has a type of seasonal 
step-like creep deformation feature, with slow deformation stage from October 2006 to June 2009 and uniform 
deformation stage from July 2009 to August 2011(Fig. 7(c)). In addition, the Xintan landslide has also a seasonal 
step-like creep deformation feature, with slow deformation stage from January 1978 to August 1979, with uniform 
deformation stage from September 1979 to July 1982, and then with critical accelerated deformation stage from 
May 1984 until this landslide was completely destroyed(Fig. 7(d)).

Results
Chaos evidences identification of monthly cumulative displacements.  Related literature shows 
that the chaos theory based models have been widely studied in many areas of non-linear time series prediction, 
such as water level prediction35 and electronic power prediction46. In this study, the phase spaces of GPS moni-
toring displacement time series are reconstructed firstly, then their chaos evidences are identified using the LLE 
and CD methods.

Reconstruct the phase spaces of cumulative displacements.  The phase spaces of ZG85 (xi
ZG85) ~ ZG88 (xi

ZG88)(i = 1, 
2, ……, 114) of Shuping landslide, G3 (xi

G3) (i = 1, 2, ……, 57)of Baijiabao landslide, T1 (xi
T1) (i = 1, 2, ……, 89)

of Baijiabao landslide, cumulative displacement time series are reconstructed. The τ of ZG85 ~ ZG88, G3 and T1 
displacements are set to 1 and the optimal m values of ZG85 ~ ZG88, G3 and T1 displacements are respectively 

Figure 7.  landslide ideal creep deformation-time curve (a), and deformation characteristics analysis of Shuping 
landslide (b) and Baijiabao landslide (c).
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3, 2, 3, 3, 5 and 3 based on the false nearest neighbor method. These reconstructed phase spaces are shown in 
Table 1.

Chaos evidence of monthly cumulative displacements.  Final calculated LLE values of the ZG85 ~ ZG88, G3 and 
T1 displacement time series are respectively 0.0862, 0.0315, 0.0227, 0.0577, 0.1232 and 0.0526. The results show 
that there are chaos characteristics in all of the ZG85 ~ ZG88, G3 and T1 displacements because their LLE values 
are all greater than zero47. In addition, the non-linearity of the displacement time series can be measured by com-
paring the LLE values of the displacements. A greater LLE value means a higher non-linearity. The comparison 
results show that the G3 displacement has the highest non-linearity, while the ZG87 displacement has the lowest 
non-linearity.

CD method is also in this study, the corresponding D(m) are all calculated with the m increases from 1 to 18. 
It can be seen from Fig. 8 the relationships between C(r) and r of ZG85 ~ ZG88, G3 and T1 GPS monitoring dis-
placements are respectively calculated. The calculation results indicate that the slopes of the lines in Fig. 8 respec-
tively converge to a constant when m is increased to 8, 10, 14, 8, 11 and 12. Hence, we can draw conclusions that 
there are chaos characteristics in the ZG85 ~ ZG88, G3 and T1 GPS monitoring displacements, and the chaotic 
WA-Volterra and chaotic WA- SVM models can be adopted to predict the landslide displacements.

Displacements Reconstructed phase spaces (input variables) Output variables
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Table 1.  Reconstructed phase spaces of ZG85 ~ ZG88, G3 and T1 GPS monitoring cumulative displacements.

Figure 8.  The correlation dimension curves of ZG85 ~ ZG88 of Shuping landslide, G3 of Baijiabao landslide 
and T1 of Xintan landslide cumulative displacements (drawn by Yuanyao Li).
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Wavelet analysis of GPS monitoring landslide cumulative displacements.  The chaotic 
WA-Volterra and WA-SVM models predict cumulative displacements through forecasting all the low- and 
high-frequency components. These components are obtained from the wavelet analysis of GPS monitoring cumu-
lative displacements. The decomposition levels of ZG85 ~ ZG88 of Shuping landslide, G3 of Baijiabao landslide 
and T1 point of Xintan landslide cumulative displacements are all two according to Eq. (11). Then we can decom-
pose the ZG85 ~ ZG88, G3 and T1 landslide cumulative displacements using WA method as:

= + +x x x x (1)i
ZG

a i
ZG

d i
ZG

d i
ZG

2, 1, 2,

= + + = + +x x x x x x x xand (2)i
G

a i
G

d i
G

d i
G

i
T

a i
T

d i
T

d i
T

2, 1, 2, 2, 1, 2,

where xi
ZG, xi

G and xi
T respectively presents the cumulative displacements of ZG85 ~ ZG88, G3 and T1; xa2,i, xd1,i 

and xd2,i respectively donates the low-frequency, the first high-frequency and the second high-frequency compo-
nents of ZG85 ~ ZG88, G3 and T1 landslide cumulative displacements. Taking the ZG85, G3 and T1 cumulative 
displacements as examples, the final decomposition results of ZG85, G3 and T1 cumulative displacements are 
respectively shown in Fig. 9.

Phase space reconstructions of each frequency component.  The reconstructed phase spaces of each 
frequency component provide input and output variables of Volterra filter and SVM models. In this study, we set 
the τ of all the frequency components as one, and we calculate the optimal m of all the frequency components 
using the FNN method. The results show that the optimal m of xa2,i

ZG85, xd1,i
ZG85, xd2,i

ZG85 are respectively 2, 4 and 
4; m of xa2,i

ZG86, xd1,i
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T1 are respectively 2, 3 and 4;. The results of PSR are shown in Table 2. Then we can fit and predict 
landslide displacements using Voltterra filter and SVM models as:

= =+ +x Volterra X x SVM X( ) or ( ) (3)i i i i1 1

Displacements prediction using chaotic WA-Volterra and chaotic WA-SVM models.  In order 
to train and test the Volterra filter and SVM models, the ZG85 ~ ZG88 landslide displacements are divided into 
two subsets: the former 94 months of ZG85 ~ ZG88 GPS monitoring landslide displacements from June 2003 to 
March 2011 are adopted to train the model, while the remaining later 20 landslide displacements are adopted 
to test the models. The same as the Shuping landslide, there are a total of 57 months of monitoring data on the 
Baijiabao landslide, the former 42 monthly displacement time series of G3 from December 2006 to May 2010 are 
used to train the models, while the remaining 15 data points from June 2010 to August 2011 are used to test the 
models. Meanwhile, a total of 89 months of displacements on the Xintan landslide were monitored, the former 
74 monthly displacements of T1 from January 1978 to February 1984 are used to train the models, while the 
remaining 15 displacements are used to test the models. The input-output variables of the chaotic WA-Volterra 
and chaotic WA-SVM models are obtained as shown in Table 2.

Figure 9.  Displacement time series decomposition of ZG85 on Shuping landslide, G3 on Baijiabao landslide 
and T1 on Xintan landslide, with a2 reflecting low-frequency component, d1 reflecting the first high-frequency 
component and d2 reflecting the second high-frequency component of these cumulative displacements. (drawn 
by Yuanyao Li).
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The second-order Volterra filter model is used to construct the models for predicting the landslide displace-
ments on Shuping landslide and Baijiabao landslide. The predictive results of the chaotic WA-Volterra model are 
shown in Fig. 10. To compare Volterra filter model with SVM model, the same input-output variables that have 
been used in the chaotic WA-Volterra model are used again in the chaotic WA-SVM model. The optimal param-
eter combination (C, ε, γ) of SVM is shown in Table 3. In addition, single chaotic Volterra filter model is also 
adopted in this study for comparison. The final predictive values of chaotic WA-SVM and single chaotic Volterra 
models are also shown in Fig. 10, and their prediction performances are assessed in Table 4.

Discussion
Chaos characteristics identify.  The calculated LLE and correlation dimensions values show that there are 
chaos characteristics in the GPS monitoring landslide displacements. Hence, we are sure that the ZG85 ~ ZG88 
GPS of Shuping landslide, G3 of Baijibao landslide and T1 cumulative displacements of Xintan landslide can be 
forecasted using the chaos-based models. The predictive results shown in Fig. 10 and Table 4 suggest that, the cha-
otic WA-Volterra, chaotic WA-SVM and single chaotic Volterra models accurately predict the GPS monitoring 
cumulative displacements as a whole. We can presume that appropriate input and output variables for the three 
nonlinear models are acquired from the reconstructed phase spaces, and can further extrapolate that the original 
nonlinear evaluation process of landslide displacement time series is effectively rebuilt by the PSR method of 
chaos theory.

Comparison between volterra filter and svm models.  The prediction performances of the three mod-
els are also shown in Fig. 10 and Table 4, which show that the chaotic WA-Volterra model is more accurate and 
credible than the chaotic WA-SVM model. We can conclude that the Volterra filter model is more appropriate for 
a finite nonlinear displacement time series than the SVM model. In actual, several nonlinear models are present 
to describe the nonlinear system, including Volterra filter, Taylor series and Wiener series, et al.34. Volterra filter 
model is one of the most popular nonlinear models for nonlinear dynamic time series prediction. There are 
several reasons, from a mathematical point of view, Voltera filter is essentially a functional series expansion of 
nonlinear time-invariant systems, and can also be regarded as the generalization of one-dimensional convolution 
in multidimensional convolution space48. From a physical point of view, the Volterra filter, which is similar to the 
linear impulse response function, can describe the substantive features of the nonlinear system with clear physical 
meaning. Moreover, the Volterra filter model can fit the nonlinear continuous functions with arbitrary precision 
because of its universal characteristic and ability of adaptive memory49. Similarly, the GPS monitoring landslide 
displacement time series is a nonlinear system with dynamic response and temporal memory features. Hence, 
the Volterra filter model can be used to accurately fit and predict the dynamic evaluation behavior of landslide 
displacements.

Comparisons between chaotic WA-Volterra and single chaotic Volterra models.  Figure 10 and 
Table 4 show that the predictive displacements of both chaotic WA based models deviate slightly from the real mon-
itoring displacements, indicating that both chaotic WA based models have great prediction performances. On the 
contrary, results in Fig. 10 also show that, cumulative displacements of ZG85 ~ ZG88, G3 and T1 are underestimated 
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Table 2.  PSR of each frequency component of ZG85 ~ ZG88, G3 and T1 cumulative displacements.
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overall by the single chaotic Volterra model. Specially, the chaotic Volterra model has difficulty in estimating the 
step-like features of these cumulative displacements, while chaotic WA-Volterra model overcomes this difficulty. In 
can be concluded that the chaotic WA based models have remarkably higher prediction performance than the single 
chaotic Volterra model. This is because that the nonlinear and non-stationary characteristics of GPS monitoring 
cumulative displacements are addressed reasonably well by the WA method before predict cumulative displacements 
using Volterra filter and SVM models. The “noises” existed in the original GPS monitoring landslide cumulative 
displacements are effectively removed by the WA method. As a result, the valuable information with less “noises” in 
the low- and high-frequency components can be fully extracted to train and test the Volterra filter and SVM models.

In addition to wavelet analysis, some other methods have also been proposed to implement time series decom-
position and errors reduction. These methods include empirical mode decomposition23, principal component 
decomposition50,51, Fourier transformation52, polynomial decomposition10, et al. Comparing to the other time 
series decomposition methods, wavelet analysis is used more widely and is considered to be of higher decomposi-
tion efficiencies in both time and frequency domains53,54. Especially, Wickersham, Li and Lin55 shows that wavelet 
analysis has advantages of great applicability to discrete signals, insensitivity to the choice of wavelet basis, and 
insensitivity to the target signal extracted from the raw measurements comparing to traditional Fourier and PCA 
methods. Hence, this study selects wavelet analysis to decompose GPS monitoring landslide displacement time 
series for building landslide displacements prediction model.

Unfortunately, the present chaotic WA-Volterra model is just an offline modeling procedure without practical 
application. Hence, it is necessary to software this proposed model for online real-time landslide displacement 

Figure 10.  Comparison between predicting and monitoring the monthly ZG85 ~ ZG88 displacements of 
Shuping landslide, G3 displacements of Baijiabao landslide, and T1 displacements of Xintan landslide (drawn 
by Yuanyao Li).
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prediction. In addition, we can still improve these three models. For example, it is necessary to obtain a longer 
length displacement time series of the displacement rather than a limit length landslide displacement time series. 
As a result, the reconstructed strange attractors can be fully unfolded to reflect the original strange attractors.

Conclusions
In this study, chaos evidences of landslide displacements of Shuping landslide, Baijiabao landslide and Xintan 
landslide are determined based on LLE and CD methods, and a novel forecasting model is proposed for landslide 
displacements prediction. We can conclude that chaos characteristics existed in the nonlinear landslide displace-
ments and these displacements are effectively predicted by the proposed chaotic WA-Volterra model. In addition, 
the chaotic WA-Volterra model obtains more accurate predictive displacements than the chaotic WA-SVM and 
single chaotic Volterra models. The main contributions of this study contain chaos characteristics identification 
of landslide displacements, landslide displacement time series decomposition using wavelet analysis, and Volterra 
filter model proposed for model construction.

GPS points
Frequency 
components (C, ε, γ)

Chaotic WA-Volterra, 
Chaotic WA-SVM

ZG85

a2 (97.64, 0.005, 0.48)

d1 (18.12, 0.01, 0.18)

d2 (53.38, 0.005, 0.28)

ZG86

a2 (486.52, 0.001, 0.31)

d1 (45.42, 0.005, 0.19)

d2 (38.22, 0.003, 0.32)

ZG87

a2 (974.83, 0.005, 0.35)

d1 (20.28, 0.008, 0.21)

d2 (63.18, 0.031, 0.37)

ZG88

a2 (52.47, 0.005, 0.39)

d1 (42.36, 0.011, 0.21)

d2 (73.62, 0.008, 0.22)

G3

a2 (137, 0.02, 0.38)

d1 (526, 0.06, 0.31)

d2 (688, 0.005, 0.41)

T1

a2 (73, 0.03, 0.45)

d1 (81, 0.05, 0.33)

d2 (125, 0.002, 0.32)

Table 3.  Parameters of the SVM model.

GPS point Prediction model RMSE(mm) MAPE(%)

ZG85

Chaotic WA-Volterra 19.13 0.45

Chaotic WA-SVM 23.89 0.56

Single chaotic Volterra 28.46 0.72

ZG86

Chaotic WA- Volterra 20.31 0.63

Chaotic WA- SVM 24.22 0.76

Single chaotic Volterra 29.67 0.83

ZG87

Chaotic WA- Volterra 6.32 0.86

Chaotic WA- SVM 8.17 0.93

Single chaotic Volterra 8.66 0.96

ZG88

Chaotic WA- Volterra 19.17 0.54

Chaotic WA- SVM 23.64 0.66

Single chaotic Volterra 26.48 0.75

G3

Chaotic WA- Volterra 7.88 1.59

Chaotic WA- SVM 9.57 1.72

Single chaotic Volterra 18.22 3.12

T1

Chaotic WA- Volterra 57.19 0.009

Chaotic WA- SVM 72.93 0.012

Single chaotic Volterra 116.92 0.016

Table 4.  Displacements prediction results of chaotic WA-Volterra, chaotic WA-SVM and single chaotic Volterra 
models for ZG85 ~ ZG88 of Shuping, G3 of Baijiabao and T1 of Xintan landslides.
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Methods
The present chaotic WA-Volterra model has five steps as shown in Fig. 11: (1) the landslide cumulative displace-
ments are obtained using the GPS system. (2) these cumulative displacement time series are normalized. (3) 
the chaos evidences of cumulative displacements are determined. (4) the cumulative displacements are decom-
posed into different low- and high-frequency components using WA method. (4) phase space of each frequency 
component is reconstructed using chaos theory, then Volterra filter model are trained and tested using these 
inputs-outputs obtained from reconstructed phase spaces. (5) through summing the predictive displacements of 
each frequency component, we can obtain the predictive cumulative displacements.

Landslide displacement monitoring using the GPS system.  Introduction to the GPS system.  The 
proposed GPS system is composed of the signal receiver, signal processing and displacement presentation sub-
systems. The architecture of the GPS system is shown in Fig. 12. In the signal receiver subsystem, some GPS 
positioning methods used for monitoring the landslide displacements are proposed, such as the static relative 
positioning measurement56 and carrier phase measuring method57, et al. The static relative positioning measure-
ment, which is of millimeter accuracy, is used in this study to construct the GPS monitoring system. The reason 
is that the static relative positioning measurement method can eliminate the orbit and atmosphere errors by a 
spatial correlation between the reference point and measuring points25. At the same time, the errors between the 
clocks in the GPS receivers and related satellites can also be removed by this method.

The production type of the GPS antenna is Trimble R8 GNSS with multi-channels and multi-frequencies. 
These GPS positioning messages contain a carrier phase, pseudo-range, the known coordinates and some other 
data56. The reference points and observation points receive one-day signals synchronously as the signal monitor-
ing phase. The GPS antennas should receive at least five satellite signals at the same time, and then, the received 
signals will be transmitted to the signal processing subsystem.

The signal processing subsystem is mainly composed of GPS signal processing software (GAMIT/GLOBK 
software41) and a computer server, with display software. In the computer server, GAMIT/GLOBK software is 
used to obtain mm level positioning results of the measured points. First, the three-dimensional coordinate val-
ues of all of the points are measured. Then, the three-dimensional coordinate values of the measured points are 
compared to the reference point to determine the landslide displacements of the measured points.

Error analysis of the GPS system.  It is important to analyze the errors of the GPS system. The displacement 
errors of the GPS system can be mainly divided into the system errors and random errors. Most of the system 
errors are removed when the received GPS signals are processed based on the principle of differential GPS; as 
a result, the random errors with a few system residual errors are the main type of errors of the GPS monitoring 

Figure 11.  Flowchart of the chaotic WA-Volterra model (Drawn by Yuanyao Li).
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displacements25. The random errors reduce the accuracy of the fitting and prediction of the non-linear models. 
The errors of the GPS system on the Shuping and Baijiabao landslides have been calculated and shown that 
the horizontal errors and vertical errors in the monitoring landslide displacements are less than ±2.00 mm and 
±5.00 mm, respectively58. Hence, the impact of the total errors on the prediction accuracy of the chaotic WA 
based model is limited6.

Data normalization.  It is necessary to perform data normalization to help the Volterra filter and SVM mod-
els converge to the optimal solution before model building. The original cumulative displacements are trans-
formed into the desired range of [0, 1] as:

=
−

−
x

x x
x x (4)

i
old i old

old old

, ,min

,max ,min

where xold,i(i = 1, 2, ……, N) are the monitoring cumulative displacements, xold ,min and xold ,max are respectively 
their lower and upper bounds, N is the number of cumulative displacements. The predictive normalized displace-
ment is back-transformed, so as to obtain final predictive displacement. The result is shown in Eq. (5), where yi is 
the predictive normalized cumulative displacement.

= × − +ŷ y x x x( ) (5)i i old old old,max ,min ,min

Wavelet analysis.  Wavelet analysis (WA)21 is a significant tool which deals with the time series based on the 
processes of dilation and translation. we define the mother wavelet function ϕ(t):
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where a and b are set to real numbers, and ϕa,b(t) donates the successive wavelet. This study use the discrete wave-
let transform (DWT)59, one wavelet analysis method, to decompose the landslide displacement time series. The 
parameters a and b of DWT can be determined as:
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where a0 is usually set to two, u and v are adopted to affect the processes of wavelet transform, b0 is usually set to 
one. Then a finite discrete time series f(t) can be defined by DWT as:

Figure 12.  Structure of the GPS system (drawn by Yuanyao Li).
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where Wf(u, v) is regarded as the wavelet coefficient, a = 2u, b = 2uv and K = 2U; v is regarded as time translation 
parameter varying between 0 and 2U−u − 1, where 1 < u < U. The DWT can effectively decompose the cumula-
tive displacement time series into the trend, period and fluctuation characteristics using its high-pass filters and 
low-pass filters. Meanwhile, the Mallat algorithm60 is used in the DWT method, then the cumulative displace-
ment xi is decomposed as:

= + + + +x x x x x (10)i a i d i d i dL i, 1, 2, ,

where L donates the decomposition level; xa,i presents the low-frequency component suggesting the trend char-
acteristics; xd1,i, xd2,i, ……, xdL,i respectively donates the first, second, ……, Lth level high-frequency components 
reflecting the periodic, fluctuation characteristics of the cumulative displacement time series. In addition, The 
db4 is used in this study as wavelet function according to Li, Huang, Jiang, Huang and Chang25. Further, Eq. (11) 
is used to determine the number of decomposition levels according to Nourani, Alami and Aminfar61, where N 
presents the length of the GPS monitoring landslide displacement.

=L Nint[log( )] (11)

Chaos theory and phase space reconstruction.  Introduction of chaos theory.  Chaos theory attempts 
to explain the fact that complex and unpredictable results can and will occur in nonlinear systems. A landslide 
displacement system has a temporal deterministic complexity. It has been proved by many studies that there is 
evidence of chaos in the monitoring displacement time series6,28. However, it is still necessary to determine the 
chaos evidence of the GPS monitoring landslide displacements of Shuping and Baijiabao landslides in this study. 
The reason is that the non-linearity of the landslide displacements can be established by determining the chaos 
evidence of the landslide displacements6. The chaos evidence of nonlinear time series is mainly identified through 
the Largest Lyapunov Exponent (LLE)62 and Correlation Dimension (CD) methods63. This study uses both two 
methods to determine the chaos characteristics of GPS monitoring landslide displacements.

Phase space reconstruction.  According to PSR, for example, a displacement time series xi can be fully embedded 
into m-dimensional phase space. As a result, the inputs and output of nonlinear predictor can be obtained from 
the reconstructed m-dimensional phase spaces35. The inputs of nonlinear predictor are represented by vector Xi 
as:

= τ τ τ− − − −X x x x x( , , , , ) (12)i i i i i m2 ( 1)

where i = (m − 1)τ + 1,(m − 1)τ + 2, ……, N is the number of vectors, N is the number of displacements, τ is 
delay time and m is embedding dimension (m ≥ d, where d is the dimension of the attractor). It is important to 
select appropriate delay time and embedding dimension values to effectively reconstruct the original phase spaces 
of the GPS monitoring displacements. The delay time of displacement time series is generally set to one for land-
slide displacement predictions because the displacements are noisy and the length of displacement time series is 
very limit24. In addition, the false nearest neighbor (FNN) method64 is used to calculate the appropriate m, this is 
because FNN is insensitive to finite and noisy displacements.

Identifying of chaos evidences of landslide cumulative displacements.  Chaos evidence identifica-
tion using LLE method.  Small-data set method65 is used to calculate the LLE value of landslide displacement. The 
LLE is set to L in this study then the average divergence at time t can be defined as

=d t ke( ) (13)Lt

where k is a constant that normalizes the initial separation. The reconstructed trajectory X can be expressed as:

= X X X X( , , , ) (14)M
T

1 2

where Xi is the ith data point of the dynamic system, M is the number of data points on the reconstructed attrac-
tor, and each Xi is given by Eq. (12). The nea rest neighbor Xj

Near is found by searching for the point that minimizes 
the distance to the particular reference point Xj:

= −d X X(0) min
(15)

j
X

j j
Near

j
Near

where dj(0) is the initial distance from the jth point to its nearest neighbor, and || || denotes the Euclidean norm. 
Based on the definition of L given in Eq. (13), the jth pair of nearest neighbors diverges approximately at the rate 
given by

≈ Δd t k e( ) (16)j i j
L i t( )
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where ti = iΔt, Δt is the sampling period of the time series, and kj is the initial separation of the jth pair of nearest 
neighbors. Taking the logarithm of both sides of Eq. (16), we have

≈ + Δd t k L i tln ( ) ln ( ) (17)j i j

Equation (18) represents a set of approximately parallel lines (for j = 1, 2, ……, M), each of which has a slope that 
is roughly proportional to L. The value of L can be calculated by

=
Δ

y t
t

d t( ) 1 ln ( ) (18)i j i

where 〈·〉 denotes the average over all j. This process of averaging is one very important step to determine an accu-
rate L based on a finite and noisy time series. Landslide displacement is considered as a chaotic time series when 
LLE value satisfies the condition for chaos, i.e., LLE > 0.

Chaos evidence identification using CD method.  CD method uses a non-integer fractal dimension to character-
ize the chaos characteristic of landslide displacement time series. In this study, the Grassberger-Procaccia (G-P) 
method66 is proposed to calculate the CD values of ZG85 ~ ZG88, G3 and T1 landslide displacements. Suppose 
two points Xi and Xj in the reconstructed phase space, we can describe CD as:
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where S is the Heaviside step function, the S(u) is set to 1 if u ≥ 0 and is set to 0 if u < 0; r represents the radius of 
the sphere centered on Xi or Xj. Suppose the D(m) as CD value, C(r) can be related to radius r as Eq. (20) when the 
nonlinear landslide displacement is featured by an attractor.

∝C r r( ) (20)D m( )

Take the logarithm of Eq. (20), then we can rearrange it as:

=
→

D m C r
r

( ) lim ln ( )
ln (21)r 0

Based on Eq. (21), we can obtain a series of D(m) through the increase of m value. When the nonlinear land-
slide displacements are of chaos characteristic, the D(m) will continuously increases and then converges to a 
constant with the increase of m value67.

Volterra filter model.  The Volterra filter is a model which can be adopted to predict the non-linear time 
series68. Volterra filter model has the ability to obtain the memory information through the model training and 
testing processes. We can get a second-order Volterra filter model when setting the degree of Volterra filter as 2. 
Relational literature shows that a second-order Volterra filter model has efficient performance for nonlinear time 
series prediction:
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where y(t) is single output prediction value, x1, x2, x3xS are time series and they are considered as input variable 
values, S represents the number of input variables, N donates length of time series about input variables, p repre-
sents the memory value which showing a significant lag relationship between different input variables, ξt repre-
sents the noises produced in model building.

Equation (22) shows that the second-order cross-kernels h2x
(n

1
,n

2
) represents a second-order nonlinear interac-

tive relationships between each unique pair of input variables named xn1 and xn2.We can simply Eq. (22) through 
combining the last two terms to yield Eq. (23) as:
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The Orthogonal Least Squares-Error Reduction Ration69 is used in this study to estimate the relative parame-
ters of two-order Volterra filter model. Finally, the proposed Volterra filter model can be adopted to predict each 
frequency component of landslide displacement time series.

Support Vector machine.  SVM70 is a time series prediction technique with good performance. we can 
approximate the regression function as follows:

ω ϕ= ⋅ +F X X b( ) ( ) (24)

where b is a scalar threshold, ω is the weight vector, φ(X) is a high-dimensional feature space, and φ(X) is from 
the input space X by nonlinear mapping. The SVM model performs linear regression in the high-dimensional 
feature space by ε-insensitive loss. Then, we can estimate the coefficients ω and b by minimizing the regularized 
risk function Eq. (25)71:
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Then, the regression problem can be transformed into the constrained formation:
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where the constant C stands for the penalty degree of the sample with an error that exceeds e. We can use the 
optimization method to maximize the function to deal with the dual problem as:
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where ai and ai
* are the Lagrange multiplier. The SVM predictor for the function fitting obtained by using the 

above-mentioned maximization function is then given as follows: 

∑= − +
=
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(28)i

n
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In Eq. (28), those sample points are called as support vectors. The radial basis kernel function 
ϕ=K x x X X( , ) ( , )i i j  is used as the kernel function of SVM35. Then particle swarm optimization (PSO) method is 

introduced to determine the appropriate parameters (C, ε and r) of SVM35.

Accuracy assessment.  In this study, we use two assessment methods, Root Mean Square Error (RMSE) 
and Mean Absolute Percentage Error (MAPE), to evaluate the prediction accuracies of each model72. The RMSE 
is calculated as

=
∑ −= ˆ
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where xold i,  is the original cumulative displacement time sereis, yi  is the final predicted values, and N0 is the length 
of the predicted data. MAPE can be described as:
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