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Exponential decay of spatial 
correlation in driven diffusive 
system: A universal feature of 
macroscopic homogeneous state
Qing-Yi Hao1,2, Rui Jiang3,4, Mao-Bin Hu4, Bin Jia3 & Wen-Xu Wang2,5

Driven diffusive systems have been a paradigm for modelling many physical, chemical, and biological 
transport processes. In the systems, spatial correlation plays an important role in the emergence of 
a variety of nonequilibrium phenomena and exhibits rich features such as pronounced oscillations. 
However, the lack of analytical results of spatial correlation precludes us from fully understanding the 
effect of spatial correlation on the dynamics of the system. Here we offer precise analytical predictions 
of the spatial correlation in a typical driven diffusive system, namely facilitated asymmetric exclusion 
process. We find theoretically that the correlation between two sites decays exponentially as their 
distance increases, which is in good agreement with numerical simulations. Furthermore, we find the 
exponential decay is a universal property of macroscopic homogeneous state in a broad class of 1D 
driven diffusive systems. Our findings deepen the understanding of many nonequilibrium phenomena 
resulting from spatial correlation in driven diffusive systems.

Driven diffusive systems are of current interest in nonequilibrium statistical mechanics due to their rich and com-
plex dynamic features1–5. A simple and typical model in these systems is the asymmetric simple exclusion process 
(ASEP) describing particles hopping with hard-core repulsion along a one dimensional lattice unidirectionally. 
The ASEP was introduced in 1968 by MacDonald and Gibbs to model protein synthesis in organisms6. Recently, 
numerous variants of ASEP have been developed to model biological transport7–10, polymer dynamics in dense 
media11, diffusion through membrane channels12, traffic flow13,14, and so on. Despite relatively simple rules, the 
ASEP and related models show a range of nontrivial macroscopic phenomena such as boundary induced and bulk 
induced phase transitions15–18, spontaneous symmetry breaking19,20, phase separation21–25, and thus serve as basic 
tools to investigate the systems far from thermal equilibrium26–28.

In driven diffusive systems, spatial correlation plays an important role in the formation of the diverse nonequi-
librium phenomena29,30. As an exceptional case, in the basic ASEP, the correlation is absent2,31. Thus, the simple 
mean-field analysis is able to offer the exact current ρ ρ= ( − )J p 1 , where ρ is the system density and p is the 
hopping rate. In contrast, spatial correlation usually exists in general situations, which makes the traditional 
mean-field analysis incapable of rendering the theoretical solution. In most cases, numerical simulation is still the 
exclusive tool to explore the spatial and temporal correlation in driven diffusive systems. The increased use of 
cluster mean-field, is another method of testing the correlations32. Some interesting phenomena have been 
observed from simulations. For instance, Gupta et al. found that density correlations display pronounced oscilla-
tions in both space and time, as a consequence of particles with extended length. The density autocorrelation has 
been found to decay exponentially at time increases, except at a special density when it decays as a power law33.

Here we aim to offer analytical results of the spatial correlation in a representative driven diffusive system, 
namely facilitated asymmetric exclusion process that is subject to a generalized class of ASEP models. Specifically, 
in the model, the hopping probability of a particle depends on the occupancies of two neighboring sites: one 

1School of Mathematics and Computational Science, Anqing Teachers College, Anqing 246133, P. R. China. 2School of 
Systems Science, Beijing Normal University, Beijing, 100875, P.R. China. 3School of Traffic and Transportation, Beijing 
Jiaotong University, Beijing 100044, P.R. China. 4School of Engineering Science, University of Science and Technology 
of China, Hefei 230026, P. R. China. 5Business School, University of Shanghai for Science and Technology, Shanghai 
200093, China. Correspondence and requests for materials should be addressed to R.J. (email: rjiang@ustc.edu.cn)  
or W.-X.W. (email: wenxuwang@bnu.edu.cn)

received: 27 August 2015

accepted: 21 October 2015

Published: 25 January 2016

OPEN

mailto:rjiang@ustc.edu.cn
mailto:wenxuwang@bnu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:19652 | DOI: 10.1038/srep19652

ahead and one behind34. The model was proposed to study nonequilibrium absorbing state phase transitions35. It 
is relevant to several facts such as the particle mobility decreases as the local density increases in glassy dynam-
ics36, and a moving particle can exert a hydrodynamic force that pushes other particles along in molecular motor 
models37. Moreover, due to particle-hole symmetry, the facilitated exclusion process is the counterpart of the 
ASEP with next-nearest-neighbor interaction as studied in ref. 14.

To explore the spatial correlation analytically, we first derive the joint occupancy probabilities in the facilitated 
asymmetric exclusion process theoretically. The formula of the joint occupancy probabilities allows us to provide 
the exact formula of the spatial correlation between any two sites in the model. The analytical results have been 
validated and are in good agreement with numerical simulations. Furthermore, we explore the spatial correla-
tion in several other driven diffusive systems, finding that the spatial correlation decays exponentially in all the 
investigated systems. These observations suggest that the exponential decay of spatial correlation is a universal 
feature in 1D driven diffusive systems with macroscopic homogeneous state. The findings considerably deepen 
our understanding of the emergence of many nonequilibrium phenomena that stem from the nonlinear spatial 
correlation, such as the jamming in a variety of transport systems in biology and social systems.

Results and Discussions
The sketch of the facilitated exclusion process studied in this paper is shown in Fig. 1. The model rules are as fol-
lows. A particle at site i moves to site i +  1 with probability p if the front site i +  1 is empty and the rear site i −  1 
is also empty. Otherwise, if the rear site i −  1 is occupied, the particle at site i hops to site i +  1 with probability q 
if site i +  1 is empty. In the model, random update rules and periodic boundary conditions are employed. In the 
special case p =  q, the model reduces to the basic ASEP.

We consider the four joint occupancy probabilities P(τi, τi+1). Here τ ∈ ,{0 1}i  denoting that site i is empty 
(τi =  0) or occupied (τi =  1). For the convenience of expression, we also use x, y and z to denote P(1, 1), P(1, 0) and 
P(0, 0) respectively. Note that due to symmetry, one has P(1, 0) =  P(0, 1). Via a two-cluster mean field analysis of 
the model (see section Methods), we can obtain

ρ= − + + , ( )x c1 2 1

ρ= − − , ( )y c1 2

= , ( )z c 3

where

ρ ρ ρ ρ ρ ρ=
( − )

( − − + − + − − + )c
p q

p q p q q pq q pq q1
2

2 2 2 4 4 4 42 2 2 2 2

when p ≠ q. In the special case p =  q, the solution is x =  ρ2, y =  ρ(1 −  ρ), z =  (1 −  ρ)2. As demonstrated in ref. 38, 
the two cluster mean field results are exact solution of the system.

Next we investigate the correlations in the system based on the exact solution. We define the correlation 
between two sites as

µ
τ τ

τ τ
=

( , )

( ) ( )
−

( )

P
P P

1
4

i j

i j

Obviously μ =  0 if and only if there is no correlation between sites i and j. Note that there are four correlation 
coefficients, and we let μ1 (μ2, μ3, μ4) denote the one with τi =  0 and τj =  0 (τi =  1 and τj =  0, τi =  0 and τj =  1, 
τi =  1 and τj =  1). Thus the correlation coefficient, say μ1, can be expressed as

µ
τ τ τ

( ) =
∑ ( , , … , )
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Figure 1.  Sketch of the model. A particle moves to the front empty site with probability p if the rear site is 
empty(configuration I). Otherwise, if the rear site is occupied, the particle moves to the front empty site with 
probability q (configuration II). In the case of p =  q, the model reduces to the basic ASEP. The filled circles 
indicate sites occupied by particles, and the dotted-open circles denote empty sites. The absence of circles means 
the site is empty or occupied.
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with n denoting the distance between sites i and j. Note that the classical correlation function 
τ τ τ τ= 〈 〉 − 〈 〉〈 〉C i j i j  is related to μ4 via µ µ ρ= ( ) =C P 14

2
4

2.
Using the joint occupancy probabilities, we can derive the correlation coefficients (see section Methods)

µ ρ
ρ
δ( ) =

−
,

( )
n

1 6
n

1

µ µ δ( ) = ( ) = − , ( )n n 7n
2 3

and

µ ρ
ρ
δ( ) =

−
,

( )
n 1

8
n

4

where

δ
ρ ρ

= +
( − )

.
y1

1

Note that when y >  ρ(1 −  ρ), the four correlation coefficients vary alternatively between positive and negative 
values. In the special case p =  q, μ =  0 as expected because y =  ρ(1 −  ρ).

Obviously, in the case of ρ =  0.5, µ µ µ µ= = =1 2 3 4 . Figure 2 shows the exponential relationship 
between µ1 , µ2 , µ4  and n. The Monte Carlo simulations and the analytical expressions are in perfect 
agreement.

Now we investigate physical implication of the exponential decay of correlation in the driven diffusive sys-
tems. To this end, we study four different models of driven diffusive systems.

•	 The Katz-Lebowitz-Spohn (KLS) model39,40. In the KLS model, particle hops with rate as follows: 1100 →  1010 
with rate 1 +  ε, 0101 →  0011 with rate 1 −  ε, 0100 →  0010 with rate 1 +  δ, 1101 →  1011 with rate 1 −  δ. Here 
“1” denotes a particle and “0” denotes an empty site.

•	 The Dierl-Maass-Einax (DME) model41. In the DME model, particle hops from site i to site i +  1 with rate 
τ τ( − ) /− +e v 2i i1 2 .

•	 The bus route model42. In the model, a particle (bus) hops with rate 1 if there is no passenger at the site. Oth-
erwise the particle hops with rate p <  1. At each empty site, passengers arrive with rate λ.

•	 The bidirectional two-lane model25. In the model, particles move with opposite direction on two parallel 
lanes and do not change lane. The inter-lane interaction is implemented as particles slow down when there is 
a particle at the same site in the other lane, which mimics narrow road section. In this case, particle hopping 
rate p <  1. Otherwise, particle hops with rate 1.

Although we cannot derive the exact expression of correlation, numerical simulations show that the correla-
tion also decays exponentially in the KLS model and the DME model, see Fig. 3. Note that in the KLS model, the 
DME model, and the facilitated ASEP, the system is always macroscopically homogeneous.

Figure 4(a) shows the plot of average velocity versus particle density in the bus route model. Figure 4(b) shows 
the plot of flow rate versus particle density in the bidirectional two-lane model. In the bus route model, when 
the density is above a critical value ρc, the system is macroscopic homogeneous, see Fig. 5(a). However, below ρc, 
bus bunching occurs and the system becomes macroscopically non-homogenous, see Fig. 5(b). In the bidirec-
tional two-lane model, the system is homogenous when density is below ρc1 or above ρc2, see Fig. 6(a,b). When 

Figure 2.  Plot of absolute value of correlation coefficients µ  versus distance n. Here the density ρ =  0.45. 
The symbols denote the simulation results with system size L =  6000, the lines indicate the analysis results from 
Eqs (6)–(8).
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the density is in the range ρc1 <  ρ <  ρc2, the system is non-homogeneous because phase separation occurs, see 
Fig. 6(c).

Figures 7 and 8 show the correlation in the bus route model and in the bidirectional two-lane model. One can 
see that when the system is homogenous, the correlation decays exponentially (Figs 7(a) and 8(a,b)). However, 
when the system is not homogenous, the correlation does not decay exponentially, which bends upward in the 
semi-log plane (Figs 7(b) and 8(c)).

Figure 3.  Plot of absolute value of correlation coefficients µ  versus distance n in (a) the Katz-Lebowitz-
Spohn model and (b) the Dierl-Maass-Einax model. Here the density ρ =  0.45. The symbols denote the 
simulation results with system size L =  6000, the lines indicate the linear fit.

Figure 4.  The velocity or flow rate versus system density. (a) The bus route model with system size L =  6000. 
Note that when p =  0.7, λ =  0.2, the critical density ρc =  0 and bus bunching disappears. (b) The bidirectional 
two-lane model with system size L =  6000.

Figure 5.  The spatiotemporal patterns in the bus route model. (a) Homogeneous state, the density ρ =  0.4 
and p =  0.7, λ =  0.2. (b) Bus bunching state, the density ρ =  0.2 and p =  0.5, λ =  0.02.
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Our studies thus demonstrate that the exponential decay behavior of correlation might be a universal property 
in a broad class of 1D driven diffusive systems with macroscopic homogeneous state. This might be because there 
is a specific correlation length, which should be the same for homogeneous cases. However, such one length does 
not exist for inhomogeneous cases. Of course further efforts are needed upon this issue in the future work.

Methods
Mean Field Analysis.  In the mean field analysis, the two equations

ρ( , ) + ( , ) = − ( )P P0 0 0 1 1 9

ρ( , ) + ( , ) = ( )P P1 0 1 1 10

can be written easily. The third equation can be obtained via the master equation for P(1, 0) according to the 
evolution configurations as shown in Fig. 9, which presents the configurations at t and t +  1 as well as the 

Figure 6.  The spatiotemporal patterns in the bidirectional two-lane model. (a) Homogeneous state, the 
density ρ =  0.29, the parameter p =  0.7. (b) Homogeneous state, the density ρ =  0.63, the parameter p =  0.7. 
(c) Phase separation state, the density ρ =  0.4, the parameter p =  0.4. Here we show patterns on one of the two 
lanes, patterns on the other lane are similar.

Figure 7.  Plot of absolute value of correlation coefficients µ  versus distance n in the bus route model with 
(a) p = 0.7, λ = 0.2, ρ = 0.4 and (b) p = 0.5, λ = 0.02, ρ = 0.2. The symbols denote the simulation results with 
system size L =  6000, the lines indicate the linear fit.
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corresponding transition probabilities. The first column shows all those configurations which can give rise to 
the configurations shown in the second column. The second column lists exhaustive clusters configurations with 
τi =  1, τi+1 =  0. The third column presents the corresponding transition probabilities from the configurations in 
the first column to the corresponding configurations in the second column. Thus,

( , ) = ( − ) ⋅ ( , , ) + ( − ) ⋅ ( , , )
+ ⋅ ( , , , ) + ⋅ ( , , , ) + ⋅ ( , , ). ( )

P p P q P
p P q P q P

1 0 1 0 1 0 1 1 1 0
0 1 0 0 1 1 0 0 1 1 0 11

In the 2-cluster mean field analysis, τ τ τ τ( , , , )− − +P i i i i2 1 1  can be expressed mathematically as13,43–45

Figure 8.  Plot of absolute value of correlation coefficients µ  versus distance n in the bidirectional two-lane 
model with (a) p = 0.7 and ρ = 0.29, (b) p = 0.7 and ρ = 0.63, (c) p = 0.4 and ρ = 0.4. The symbols denote the 
simulation results with system size L =  6000, the lines indicate the linear fit.

2i− 1i− 1i+ 2i+i 2i− 1i− 1i+ 2i+i

t t+1

1-p
1-q
p
q
q

Q

Figure 9.  Sketch of possible evolutions of 3 or 4-clusters and corresponding transition probabilities 
to develop into the situation τi = 1, τi+1 = 0 (the configuration in the dotted box). The circles in the first 
two columns represent the states of the sites at time t and t +  1, respectively. The last column presents the 
corresponding transition probabilities. The dotted-open and filled circles correspond to empty sites and sites 
occupied by particles, respectively. The absence of circles means whether the site is empty or occupied does not 
matter.
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τ τ τ τ τ τ τ τ τ τ( , , , ) = ( ) ( ) ( , ), ( )− − + − − − +P P P P 12i i i i i i i i i i2 1 1 2 1 1 1

where

τ τ
τ τ
τ τ

( ) =
( , )

( , ) + ( , ) ( )−
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P
P P0 1 13i i

i i
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1

1

is 2-cluster conditional probability. Similarly, τ τ τ( , , )− +P i i i1 1  and τ τ τ( , , )+ +P i i i1 2  can be expressed as

τ τ τ τ τ τ τ( , , ) = ( ) ( , ), ( )− + − +P P P 14i i i i i i i1 1 1 1

τ τ τ τ τ τ τ( , , ) = ( , ) ( | ), ( )+ + + + +P P P 15i i i i i i i1 2 1 1 2
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is also 2-cluster conditional probability. So the probabilities of 4-clusters and 3-clusters involved in the 
right-hand-side of Eq. (11) can be expressed as follows

ρ ρ
( , , , ) =

( , )
( , ) + ( , )
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Note that the first P (1, 1, 0) in Eq. (11) corresponds to τ τ τ( , , )− +P i i i1 1 , thus

ρ
( , , ) =

( , )
( , ) + ( , )

( , ) =
( )

P
P

P P
P xy1 1 0

1 1
0 1 1 1

1 0
20

The second P (1, 1, 0) in Eq. (11) corresponds to τ τ τ( , , )+ +P i i i1 2 , thus

ρ
( , , ) = ( , )

( , )
( , ) + ( , )

=
( )

P P
P

P P
xy1 1 0 1 1

1 0
1 0 1 1 21

which is identical to Eq. (20). This feature can be easily proved in the general case, since

∏

∏

τ τ τ τ τ τ τ τ τ τ

τ τ

τ τ
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1
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where τ τ τ= + + … + −s m2 3 1 and t =  m −  2 −  s. This is independent of the location of i.
Substituting Eqs (17)–(21) into Eq. (11), we have the third equation about x, y, z

ρ ρ ρ ρ ρ( − ) + ( − − ) + ( − ( + − ) − ) = ( )x zq y p z1 1 1 1 0 22

Solving the three Eqs (9), (10) and (22), we can obtain x, y, z as shown in Eqs (1)–(3).

Correlation Coefficient Analysis.  Now we derive the correlation coefficient μ1. We denote

∑ τ τ τ= ( , , … , ) ,
( )τ τ τ, …

−
−

a P 0 0
23

n n1 2 1
n1 2 1

which can be written as

∑ ∑τ τ τ τ τ τ= ( , , … , , ) + ( , , … , , )
( )τ τ τ τ τ τ, …

−
, …

−
− −

a P P0 1 0 0 0 0
24

n n n1 2 2 1 2 2
n n1 2 2 1 2 2
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Since
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Substituting Eq. (27) into Eq. (5) and simplifying, we can obtain
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

( − ) +





−



 + −










( − )

+



 + −





+
−





−




− .

( )

n x z n x z n

x z z y
z

x

1
1 1

1
2

1 1
1

28

1 1 1

2

Since z =  1 −  ρ −  y and x =  ρ −  y, one can easily prove

ρ ρ ρ ρ ρ




 + −





+
−





−




= .

( )

x z z y
z

x
1 1

1
29

2

Thus

µ µ µ( ) = ( − ) + ( − ) ( − ), ( )n s n s n1 1 2 301 1 1

where

ρ ρ
= +

−
.

( )
s x z

1 31
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From Eq. (30), we can easily prove that

µ µ µ( ) =
− +

((( − ) − + ) ( ) + (( − ) − ( − ) ) ( )).
( )

n
s s

s s s s1
3 2

1 1 2 1 1 1
32

n n
1 2 1

2
1

via mathematical induction method. Substituting µ ( ) = −
ρ( − )

1 1z
1 1 2

 and µ ( ) = + −
ρ ρ ρ( − ) ( − )

2 1y z
1 1 1

2

2

2

3
 into 

Eq. (32), one can derive μ1(n), μ2(n), μ3(n) and μ4(n) as shown in Eqs (6)–(8).
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