
1Scientific RepoRts | 6:33096 | DOI: 10.1038/srep33096

www.nature.com/scientificreports

PMMA-Etching-Free Transfer 
of Wafer-scale Chemical Vapor 
Deposition Two-dimensional 
Atomic Crystal by a Water Soluble 
Polyvinyl Alcohol Polymer Method
Huynh Van Ngoc1, Yongteng Qian1, Suk Kil Han2 & Dae Joon Kang1

We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by 
chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol 
(PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique 
not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but 
also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with 
minimum contamination. We applied this method to transfer various 2D materials grown on different 
rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on 
SiO2/Si. This facile transfer technique has great potential for future research towards the application of 
2D materials in high performance optical, mechanical and electronic devices.

Two-dimensional (2D) materials have attracted much attention due to their unique properties and great potential 
in various applications. Controllable synthesis of 2D materials with high quality and high efficiency is essential 
for their large scale device applications. Chemical vapor deposition (CVD) has been one of the most reliable 
technique for the synthesis of 2D materials. To explore novel applications and the discovery of new phenomena in 
these materials, it is necessary to develop a process to transfer high quality and large area 2D materials onto desir-
able substrates with great efficiency and high yield. Currently, the most commonly used transfer method relies on 
the use of sacrificial polymethyl-methacrylate (PMMA) film to support the 2D layers and to prevent them from 
folding during the etching of the growth substrate. However, the removal of PMMA is usually incomplete and 
leads to surface contamination due to undissolved PMMA residues1–7. These contaminants are trapped on the 
surface of the transferred 2D materials, resulting in the degradation of the intrinsic properties, and reduce the 
reliability of devices fabricated from them. This effect also has consequences for the formation of multiple layer 
heterostructures from 2D materials in that it severely limits future work on these, which are usually formed using 
layer-by-layer transfer methods. Other transfer methods which do not involve PMMA have been also investi-
gated, including using thermal release tapes as transfer membranes1, direct transfer onto polydimethylsiloxane 
(PDMS)2, or using two-layer structures consisting of polyethylene terephthalate (PET) and silicone3, and hot 
pressing4. But so far, the wide applicability of these methods is still limited due to limitations in size, uniformity 
and quality of the transferred 2D layers. Moreover, eliminating the metal etching step and transferring graphene 
by a direct delamination from the growth substrate is the most effective way to avoid contamination from both 
metal and PMMA impurities. Several direct delamination and transfer methods without PMMA have been 
also proposed, such as, use of mechanical fracture testing instrument5,6 and Polyvinyl Alcohol (PVA) assisted 
transferring7. However, the degree of freedom and uniformity in the transfer process is still significantly limited 
by graphene not being in an isolated state, since the delamination and the transfer of graphene are performed 
simultaneously using an adhesion layer. Moreover, wrinkling of the graphene surface due to the Poisson effect 
of the elastomer stamp during the transfer process cannot be avoided. Especially, direct delamination methods 
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to transfer 2D transition metal dichalcogenide materials grown on oxide substrates have not been demonstrated 
due to their strong Van der Waals interaction between the 2D transition metal dichalcogenide materials and its 
growth oxide substrates.

In this communication, we demonstrate that adding a water soluble PVA layer in-between the PMMA layer 
and 2D material grown on a rigid substrate allows not only the effective transfer to arbitrary target substrates 
with a high degree of freedom but also avoids the etching of the PMMA layer to obtain contamination-free high 
quality 2D materials by avoiding detrimental effects related to surface contaminants. Graphene transferred by this 
process exhibits excellent quality, indicated by a charge neutrality point being close to zero. Due to the elimination 
of contamination from the PMMA residues, both graphene and MoS2 FETs fabricated using our transfer method 
showed higher mobility and current modulation values compared to those formed using conventional PMMA 
assisted transfer of the 2D materials. We describe the details of the PMMA/PVA based transfer method for 2D 
materials grown on different rigid substrates, for instance, graphene on copper foil, h-BN on platinum and MoS2 
on SiO2/Si substrates. The quality of the transferred 2D materials has been evaluated systematically and the ver-
satility of the transfer method is demonstrated by fabricating reliable graphene and MoS2 field effect transistors.

Results and Discussion
Figures 1a,b show schematic illustrations of the PMMA/PVA assisted transfer of CVD graphene and h-BN, 
respectively, onto various rigid target substrates. The detailed transfer procedure is described in the Methods 
Section. There are three essential steps in the PMMA/PVA assisted transfer of graphene: first, coating PMMA/
PVA onto the graphene, second, etching of the Cu layer and third, releasing the graphene layer followed by the 
transfer onto the target substrate. The crucial breakthrough in our newly developed PMMA/PVA assisted method 
when compared with the conventional PMMA assisted method is in the third step. Usually, PMMA is removed 
by dissolving in acetone, whereas, in the PMMA/PVA assisted method, PMMA is released in hot water at 130 °C. 
Due to the low viscoelastic properties of PVA, PVA alone is not strong enough to support the transfer of graphene, 
thus it can easily break in a form of thin film. Therefore, PMMA is still needed as an intermediate support-
ing membrane in transferring 2D materials similar to the conventional PMMA assisted 2D materials transfer 
method, thus facilitating easy handling of 2D materials. On the other hand, in the PMMA/PVA assisted transfer 
method, a thin PVA layer of 100 nm is employed as a buffer layer between graphene and PMMA. As PVA can be 
easily dissolved in hot water, PMMA can be peeled off directly, leaving graphene on the substrate. We exploited 
the PVA’s unique property of being easily dissolved in hot water, thus leaving no trace on the surface of the 2D 
materials as demonstrated in the transfer of mechanically exfoliated 2D layers8. Therefore, with the PMMA/
PVA assisted transfer method, which has all the advantages of the conventional PMMA transfer method such as 
simplicity, large area, and high degree of freedom, we can easily transfer 2D materials of different morphologies 
onto arbitrary target substrates with controlled transfer orientation while minimum contamination. There are a 
few studies that use a similar method for the crystal transfer9–12. However, it should be clearly noted that in this 
dry-transfer method, the 2D material is mechanically transferred onto the top of PMMA/PVA and 2D/PMMA 

Figure 1. Schematic illustration of PVA assisted transfer of CVD-grown 2D materials. (a) Graphene 
transfer by copper etching method, (b) Single layer h-BN transfer by bubbling method.
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layer is released from the substrate by dissolving PVA in water and then transferred to a target substrate for 
device fabrication. Therefore, the complete removal of PMMA from 2D material remains as a technical issue to 
be resolved.

We have compared the quality of the graphene layers transferred onto SiO2/Si substrate by PMMA and 
PMMA/PVA assisted transferring methods by using optical microscopy, atomic force microscopy (AFM), Raman 
spectroscopy and electrical measurement. Figure 2 shows optical microscopy (a,c) bright field and (b,d) dark 
field images of graphene on SiO2/Si substrate transferred by copper etching method using PMMA and PMMA/
PVA, respectively. Compared to the PMMA method, the graphene transferred by PMMA/PVA exhibited a much 
cleaner surface. The problem associated with the incomplete etching of PMMA has been well documented; ace-
tone cleaning cannot completely remove PMMA residues due to their strong Van der Waals interaction with 
graphene13–15. The morphological features of graphene transferred using both transfer methods were also exam-
ined using AFM (Fig. 2e,g). Graphene transferred using PMMA/PVA shows a flat and clean surface after trans-
fer and no residual polymer particles are observed, in clear contrast to the graphene transferred using PMMA. 
Contamination-free high quality graphene layer was obtained simply by dissolving PVA in hot water, even with-
out any additional thermal-annealing process7,15,16.

Raman spectroscopy is a quick and unambiguous method to evaluate the quality and the number of graphene 
layers. Figure 2f,h are representative Raman spectra of the transferred single-layer graphene on the target sub-
strate (SiO2/Si) using the PMMA and PMMA/PVA assisted transfer methods, respectively. The difference of the 
D, G and 2D peaks indicates the quality and uniformity of the graphene3. The D peak, at 1,350 cm–1 is caused by 
the presence of structural disorder, randomly distributed impurities, surface charges or doping in graphene7. 
Disorder in sp2-hybridized carbon systems leads to resonance in their Raman spectra, which makes Raman 
spectroscopy one of the most sensitive techniques to characterize such disorder and to evaluate the quality of 
graphene17–19. Here we found that the high intensity of the D peak in the case of PMMA transferred sample is 
due to the presence of PMMA residues or due to wrinkles formed during the transfer process20,21. The D peak is 
almost absent in the case of the PMMA/PVA transferred graphene, which suggests that the graphene sustained 
physical damage and/or contamination both during the transfer processes and during PMMA/PVA removal, 
thus leading to uniform and high quality transferred graphene17,18. Moreover, it has been demonstrated that the 
increase in the 2D/G ratio points to a cleaner surface with lower doping level or contamination22,23. The Raman 
spectra also showed that the 2D/G ratio of the graphene transferred using PMMA/PVA is greater than 2 while the 
2D/G ratio of graphene transferred by PMMA is less than 2, indicating a better quality and cleaner surface for the 
PMMA/PVA transferred graphene.

An additional thermal annealing was performed for graphene transferred by both PMMA and PMMA/PVA 
methods in an attempt to remove polymer residues on the surface and thereby reduce the number of trapping sites 
at the interface between the transferred graphene and the target SiO2/Si substrate14,16,24. The annealing was carried 
out at 250 °C for 6 h under a gas flow containing 100 sccm argon and 5% hydrogen. As shown in Supplementary 
Fig. S1, even after the thermal annealing process, some PMMA residues were still observed in the AFM images 
indicating the difficulty in completely removing these residues from the graphene surface. Thus, the difficulty to 
completely remove residual PMMA by annealing is the main drawback that leads to a high Dirac voltage and a 
large hysteretic window in FETs made from graphene transferred using PMMA14,24. The quality of the PMMA/
PVA-transferred graphene on the SiO2/Si substrate after annealing, was also evaluated by Raman spectroscopy 
as shown in Supplementary Fig. S2. We observed the D band for the annealed graphene whereas we observe no 
D band before annealing (Fig. 2h). We therefore conclude that annealing at high temperature not only brings 

Figure 2. Graphene transfer. Optical microscopy images of (a,c) bright field and (b,d) dark field, (e,g) AFM 
images and (f,h) Raman spectra of transferred graphene on SiO2/Si substrate by copper etching method using 
PMMA and PVA, respectively.
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graphene in close contact with SiO2 dielectric layer that increases the coupling between them, but also introduces 
other undesirable defects, resulting in the activation of the D band. These two observations may lead to heavy 
hole doping and a severe degradation of carrier modulation and reduced mobility in graphene FET devices as 
reported by Cheng et al.15 Thus, taking into account the advantage of our PMMA/PVA transferring method, high 
quality, large area and clean 2D materials can be easily transferred even without the need for subsequent thermal 
treatment, which makes this process particularly attractive for the fabrication of various devices that need to be 
fabricated at low temperature. It is obvious that the scale of the graphene transferred by PMMA/PVA can be as 
large as that transferred by the conventional PMMA method, thus making it viable for large-area graphene trans-
fer for industrial applications.

To evaluate the electrical property of the transferred graphene, back-gated graphene FETs were fabricated 
using graphene transferred on 100 nm thick SiO2/Si substrates, with Cr/Au (20/50 nm) as the source and drain 
electrodes, respectively. Figure 3 shows the electrical characteristics for graphene FETs in which graphene was 
transferred both by the conventional PMMA and by the newly developed PMMA/PVA methods. A drastic 
enhancement in the device performance was clearly observed in the PMMA/PVA transferred graphene FETs in 
terms of 1) Dirac voltage (VDirac) and its distribution, 2) hysteresis, and 3) modulation of electron and hole cur-
rents. Figure 3a,c represent the resistivity versus the back gate voltage and Fig. 3b,d show the histograms of Dirac 
voltages of the graphene FETs transferred by the copper etching method with the help of PMMA and PMMA/
PVA transfer methods while the gate voltage was scanned from − 60 V to 60 V forward and backward. The optical 
images of the corresponding graphene FETs are shown as insets in the figures. We note that, a high Dirac voltage 
was observed for the PMMA transferred sample, which changed from 29 to 46 V when the gate voltage was swept 
forward and backward. The 17 V difference between the Dirac voltages for the forward and backward gate voltage 
sweep (Δ VDirac) is a measure of the hysteresis window. The large hysteresis window and the high Dirac voltage 
are mainly attributed to doping effects from both the SiO2 substrate and from the residues resulting from the 
incomplete removal of PMMA15. These residues create trapping sites at the surface of the transferred graphene, 
which results in a degradation of the electrical properties and reduce the reliability of graphene devices13. A 
narrow distribution of the Dirac voltage is indicative of both less doping and less trapping in the transferred 
graphene. For the PMMA/PVA transferred graphene FETs, a more negative shift in the Dirac voltage from − 2 to 
10 V while the gate voltage was scanned forward and backward, and a clear reduction of the hysteresis window 
(12 V) were observed (Fig. 3c). This result is a proof of the clean surface and low levels of doping or polymer 

Figure 3. Graphene FETs characteristics. (a,c) Resistivity versus the back gate voltage, (b,d) Histogram of 
Dirac points, of graphene on SiO2/Si substrate transferred by copper etching method using PMMA and PVA, 
respectively. Insets show the optical images of the corresponding devices.
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residues in the transferred graphene. An average Dirac voltage value of 4 V, which is close to the ideal value for 
graphene FETs (i.e. 0 V), and a small hysteresis window was observed for the PMMA/PVA method, which could 
be due to the inevitable doping effects originated from contamination with ionic or metal residues, to maintain 
its charge neutrality14,24. It has been reported that the presence of water molecules at the graphene/SiO2 interface 
enhances the molecular adsorption from the ambient environment resulting in p-doping, high Dirac voltage, 
gate hysteresis, and reduced mobility in graphene FETs16,25,26. For a complete and consistent analysis, more than 
100 graphene FET devices made using both PMMA and PMMA/PVA methods were evaluated; the PMMA/
PVA graphene FETs showed small average Dirac voltage (4 ±  5 V, N =  140) while a large average Dirac voltage 
(38 ±  7 V,N =  100) was observed for the PMMA graphene FETs (Fig. 3b,d). Further, a large negative shift in the 
average Dirac voltage from 4 V to 38 V was observed for the PMMA and PMMA/PVA methods, respectively. The 
effective suppression of hysteresis and low Dirac voltage in the PMMA/PVA graphene FET originates from the 
absence of charge-trapping sites, i.e., polymer residues on the surface of the transferred graphene.

In addition to change in the Dirac voltage and the hysteresis window, the FETs from PMMA/PVA transferred 
graphene exhibited much enhanced mobility, conductivity and improved symmetry in charge-carrier transport 
as compared to the PMMA transferred graphene FETs. The mobilities of the n-type and p-type carriers of 
graphene FETs are also extracted from the Ids–Vg transfer characteristics and are shown in Fig. 3a,c. The carrier 
modulation and the average electron mobility are 1,607 and 3,587 cm2 V−1 s−1 for the PMMA and PMMA/PVA 
samples, respectively and the hole mobilities are increased from 1,687 in the PMMA sample to 3,800 cm2 V−1 s−1 
for the PMMA/PVA graphene FET. Thus, the mobility for both n-type and p-type carriers is enhanced by more 
than twice for the PMMA/PVA graphene. The mobility value was extracted using the Drude model, which gives 
the dependence of the mobility on the carrier concentration27. The carrier mobility (µ) and the carrier density (n) 
can be calculated from the equation

µ =
ne R
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C V V
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where ns is the variable carrier density, which depends on the back-gate voltage; Cox is the gate oxide capacitance 
(34.5 nF cm−2) and e is the electronic charge. The sheet resistance (Rsh) was calculated as
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where w =  10 μm is the channel width, d =  10 μm is the distance between the voltage leads X2 and X1, and I  is the 
current flowing between the leads 1 and 2.

Apart from substrate etching methods, transfer methods based on bubbling have also been used to transfer 
CVD grown 2D materials such as h-BN layer on Pt foil28 and graphene on Cu foil29,30 onto arbitrary substrates 
using PMMA assisted transfer. This method avoids metal etching and the 2D material films are transferred by 
direct delamination from the growth substrate. We also successfully demonstrated a PMMA/PVA assisted trans-
fer of CVD grown single layer h-BN on Pt foil onto an arbitrary substrate by using the bubbling method. The 
schematic diagram of the PVA assisted transfer of CVD-grown h-BN by bubbling transfer method is shown 
in Fig. 1b. The detailed transfer procedure is also described in the Experimental Section. Similar to the PVA 
graphene transfer process, instead of etching the copper foil in step 2, the bubbling method based on an electro-
chemical reaction was used to release the single layer of h-BN from the Pt foil28. The quality of the transferred 
h-BN on 300 nm SiO2/Si substrate was examined in detail by optical microscopy, SEM, AFM and Raman spec-
troscopy for both PMMA and PMMA/PVA based transfer methods for comparison. As in Fig. 4, optical micros-
copy images of (a,c) bright field and (b,d) dark field, (e,g) SEM images and (f,h) AFM images of the transferred 
single layer h-BN on SiO2/Si substrate by the bubbling method using PMMA and PMMA/PVA, respectively are 
shown. From these results, we can conclude that, the PMMA/PVA method leads to a much cleaner sample, almost 
free from polymer residue when compared to the PMMA method. The single layer h-BN was also characterized 
by Raman spectroscopy but so far, we did not observe any significant difference in the Raman spectrum between 
the PMMA and PMMA/PVA transferred h-BN sample (Supplementary Fig. S3). It should noted that in the case 
of the PMMA/PVA transferred graphene, while no visible polymer residues were observed in the AFM images 
(Fig. 2g), the optical dark field image (Fig. 2d) revealed the presence of some residual contamination on the 
surface. These could be either ionic impurities from the metal etchant or metallic residues from the incomplete 
etching of the metal. These contaminants are trapped at the interface between the transferred graphene and the 
target substrate, which results in a degradation of the electrical properties and reduces the reliability of graphene 
devices14,29. A clean surface free of contamination was observed in the case of PMMA/PVA transferred h-BN as 
shown in Fig. 4c,d,g,h. We can expect that the bubbling transfer method can therefore lead to better electrical, 
optical and mechanical properties in devices based on 2D materials. In general, our PMMA/PVA method can be 
applied to transfer other 2D materials grown on metal substrates such as graphene on copper foil29,30, MoS2 on 
Au foil31 among others.

Finally, the PVA assisted transfer of CVD grown atomic layers of MoS2 on 300 nm SiO2/Si substrate onto 
arbitrary substrates was also successfully demonstrated. A schematic diagram of this process involving the etch-
ing of the oxide layer is shown in Supplementary Fig. S4. The detailed transfer procedure is described in the 
Experimental Section. Similar to the PMMA/PVA graphene transfer process, the SiO2 oxide layer etching was 
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carried out instead of etching the copper foil in step 2. The quality of the transferred MoS2 on 300 nm SiO2/Si 
substrate was carefully examined by optical microscopy, AFM and Raman spectroscopy for both PMMA and 
PMMA/PVA methods for comparison. From optical, and AFM images (Fig. 5) we can conclude that the PMMA/

Figure 4. Single layer h-BN transfer. Optical microscopy images of (a,c) bright field and (b,d) dark field, (e,g) 
SEM images, (f,h) Raman spectra and AFM images of single layer h-BN on SiO2/Si substrate transferred by 
bubbling transfer method using PMMA and PMMA/PVA, respectively.

Figure 5. MoS2 transfer. Optical microscopy images of (a,c) bright field and (b,d) dark field, (e,g) AFM 
images, (f) Raman spectra; (i,k) Ids–Vg transfer characteristics and (j) optical images of MoS2 FETs fabricated 
from MoS2 on SiO2/Si substrate transferred by SiO2 substrate etching transfer method using PMMA and PVA, 
respectively.
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PVA method helps to transfer clean MoS2 layers onto arbitrary substrates without polymer residues. The presence 
of single and multi-layer MoS2 was confirmed by Raman spectroscopy as shown in Fig. 5f,i,k present the transfer 
characteristics of the drain current versus gate-source voltage (Ids–Vg) for several n-type single layer MoS2 FETs 
using MoS2 on 100 nm SiO2/Si substrate transferred by the conventional PMMA and PMMA/PVA methods, 
respectively are shown. These were obtained by sweeping the gate voltage continuously from − 25 to + 15 V with 
a drain voltage of 0.1 V. The transconductance (gm), the electron mobility (μe), the subthreshold swing (S.S) and 
the carrier concentration are estimated from the transfer characteristics of the drain current vs the gate-source 
voltage (Ids–Vg). We also observed an enhancement in the device performance. For instance, the transconduct-
ance increased from 7.5 to 83 nS, electron mobility increased from 1.1 to 12 cm2 V−1 s−1 while subthreshold swing 
reduced from 30 to 22 mV dec−1 for PMMA and PMMA/PVA-MoS2 FETs, respectively (Supplementary S5). 
These results further confirm that the PMMA/PVA transfer method leads to materials with high quality, low lev-
els of contamination and free from polymer residues. In general, our PMMA/PVA method can be used not only 
for transferring atomic layers of MoS2, but can also be applied to other 2D transition metal dichalcogenide mate-
rials grown on oxide substrates onto different types of substrates for high quality, large area, contamination-free 
layers for many viable device applications.

In summary, we have developed a novel, facile transfer technique for CVD-grown 2D materials. Several 2D 
materials grown on different rigid substrates such as graphene on copper foil, h-BN on platinum and MoS2 on 
SiO2/Si substrates have been transferred using this method. The quality of the transferred materials is carefully 
examined by optical microscopy, SEM, AFM, Raman spectroscopy and IV characteristics. Graphene and MoS2 
FET devices from PMMA/PVA transferred layers showed negative shift of Dirac point and higher performance 
when compared to devices fabricated using the PMMA assisted transfer process. This strategy can be extended 
to several other 2D material systems grown on different types of substrates. Multilayer stacking of heterostruc-
tures of 2D materials can be reliably performed on the wafer-scale, thus paving the way to better optoelectronic, 
mechanical and nanoelectronic devices.

Methods
PMMA/PVA assisted transfer of CVD-grown graphene on copper foil. The monolayer graphene 
used in this study was grown on a polished copper (111) foil using CVD method, as reported previously by 
Nguyen et al.32

A schematic illustration of the transfer process by PMMA/PVA assisted transfer of single-layer graphene is 
shown in Fig. 1a. The first step of the process involves spin-coating an aqueous PVA solution on CVD-graphene 
growth substrate (graphene/copper/PET), at step1:1000 rpm for 10 s and step 2:3000 rpm for 60 s, followed by 
baking at 100 °C for 60 s using a hotplate. Aqueous PVA solution was prepared by dissolving 150 mg of PVA 
powder in 20 ml DI water and stirring at 120 °C for 2 h. Next, a layer of PMMA was spin-coated on top of the PVA 
layer, at step1:1000 rpm for 10 s and step2:3000 rpm for 60 s. The PMMA/PVA/graphene/copper foil block was 
floated on the surface of a solution of 0.3 M ammonium persulfate (Aldrich, ≥ 98%) at 0 °C for 24 h to etch the 
copper foil. After the copper was etched, the PMMA/PVA/graphene block was rinsed with deionized water three 
times at 0 °C and transferred onto a 100 nm thick SiO2/Si substrate. Prior to the transfer, the SiO2/Si substrate 
was treated for 5 min in oxygen plasma to render the SiO2 substrate hydrophilic and ensure a better wetting of 
graphene. The transferred substrate was dried under reduced pressure (~10 millitorr) for 24 h and left in air for 
three days. Finally, the PMMA/PVA carrier was removed by dissolving the PVA in deionized water at 130 °C.

PMMA/PVA assisted transfer of CVD-grown single layer h-BN on Pt substrate. The single layer 
h-BN samples used in this study were grown on Pt foil by CVD method, as reported in detail by Kim et al.28

The bubbling-based transfer method was used to successfully transfer the h-BN layer grown on Pt foil onto 
arbitrary substrates that allowed the Pt foil to be recycled28. Figure 1b shows the schematic of the bubbling-based 
transfer method, which is based on the electrolysis of water. After the growth of h-BN on Pt foil, the first layer 
of PVA was coated by spin-coating an aqueous PVA solution on the h-BN/Pt foil followed by a layer of PMMA 
on top of the PVA layer. Next, the structure composed of PMMA/PVA/h-BN/Pt foil was slowly dipped vertically 
into a 1 M aqueous solution of NaOH at 0 °C. The PMMA/PVA/h-BN/Pt foil structure was used as the cathode 
and a piece of bare Pt foil was used as the anode. The application of a constant current for a few min caused the 
PMMA/PVA/h-BN layer to detach from the Pt foil due to the formation of bubbles upon H2 evolution. After the 
completion of the transfer process, the PMMA/PVA/h-BN layer was rinsed with deionized water at 0 °C three 
times to remove any remaining NaOH and transferred onto the target substrate. It should be noted that the Pt 
foil used in the growth of h-BN could be recycled since it was not consumed during the process. The transferred 
substrate is dried under reduced pressure (~10 millitorr) for 24 h and left in air for three days. Finally, the PMMA/
PVA carrier is removed by dissolving the PVA in deionized water at 130 °C.

PMMA/PVA assisted transfer of CVD-grown single layer MoS2 on SiO2/Si substrate. The atomic 
layers of MoS2 used in this study were grown on 300 nm SiO2/Si substrate by CVD, as reported in detail by Yu et al.33

After the growth of MoS2 on SiO2/Si substrate, the first layer of PVA was coated by spin-coating an aqueous 
PVA solution on the MoS2/SiO2/Si substrate. The substrate was baked at 100 °C for 1 min on a hotplate. This is 
followed by coating a second layer of PMMA on top of the PVA layer. The PMMA/PVA/MoS2/SiO2/Si substrate 
block was floated on the surface of 1 M Potassium hydroxide solution (Aldrich, ≥ 98%) at 0 °C for 48 h to etch 
the SiO2. After the etching, the PMMA/PVA/MoS2 block was rinsed three times with deionized water at 0 °C 
and transferred onto a 100 nm thick SiO2/Si substrate. Prior to the transfer, the SiO2/Si substrates were treated 
for 5 min in oxygen plasma to render them hydrophilic to ensure better wetting of graphene. The transferred 
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substrate was then dried under reduced pressure (~10 millitorr) for 24 h and left in air for three days. Finally, the 
PMMA/PVA carrier was removed by dissolving PVA in deionized water at 130 °C.

Fabrication and measurement of Graphene and MoS2 field effect transistors. Graphene and 
MoS2 were transferred onto a silicon substrate using both PMMA and PMMA/PVA methods. A heavily doped 
p-type Si substrate (0.005 Ω cm) was employed as the back gate with a 100-nm-thick, thermally oxidized SiO2 top 
layer as the gate oxide layer. Multiple electrodes were patterned on the 2D materials by a conventional photoli-
thography process. Subsequently, contact electrodes to form ohmic contacts were deposited by electron-beam 
evaporation as follows: a 20-nm-thick chromium layer was first evaporated, followed by a 50-nm-thick Au layer. 
The electrical characteristics of the devices were measured in vacuum using a probe station with a Keithley  
SCS-4200 system.
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