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Abstract: The present paper assesses petrographic, mineralogical, chemical, and technological fea-
tures of different zeolitic tuff samples from various western USA districts of the Basin and Range
Province containing mainly erionite, mordenite, clinoptilolite/heulandite and phillipsite. The aim of
this characterization is to evaluate the pozzolanic activity of these samples according to European
normative UNI-EN 196/5 (Fratini test) to program a possible use as addition for blended cements.
Petrographic and mineralogical results show that the two phillipsite-bearing tuffs have a higher
theoretical Cation Exchange Capacity (CEC) than the other samples; technological characterization
shows a pozzolanic behavior for all the samples but higher for the tuff samples containing phillipsite,
which shows a higher reactivity with CaO. All the samples could be thus advantageously employed
for the preparation of blended cements, potentially reducing CO2 emissions by 70–90%.

Keywords: zeolites; blended cement; pozzolanic addition

1. Introduction

Cement is a key building material for worldwide infrastructures, but its production is
strictly linked to the CO2 emissions. Since about 10% of the global CO2 derives from the
cement production [1,2], it is necessary to limit the emission of this gas using supplementary
cementitious materials (SCM), such as cement, but requiring a smaller amount of energy
for their production. The most suitable SCM is certainly natural pozzolan.

Pozzolan s.s. is a volcanic incoherent to pseudo-coherent pyroclastic deposit linked to
the Neapolitan Yellow Tuff formation [3] with grain size varying from fine to coarse ash
and with subordinated lapilli (pumices and scoriae). It has a typical light grey color and
comprises very fine pumiceous and vitreous fragments as well as fine ash, both with an
alkali-trachytic composition [4–6]. Nowadays, the name pozzolan suits any kind of finely
grained, mainly glassy volcanic ash [5] but, as the name suggests, pozzolan s.s. was mined
in the area of Pozzuoli (Naples, southern Italy).

The pulvis puteolana, mentioned as “Cuma’s sand” in the Vitruvius’ De Architectura, is
the most important Phlegraean product as it has been used since the Roman epoch in the
production of long-lived cements with a quick setting underwater [7].

Since the late Renaissance, pozzolan has been and is nowadays used for the preparation
of hydraulic cements, thanks to properties (e.g., the lime setting and the water resistance)
deriving from its composition. As a matter of fact, pozzolan is mainly made of poorly
crystalline to completely amorphous silica (SiO2) and alumina (Al2O3), which react quickly
(because of the large surface area and non-crystalline nature of their grains and their
siliceous composition) with the lime and water, forming calcium hydrate silicates (C-S-H)
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and calcium hydrate aluminates (C-A-H). Upon hardening, these hydrated Ca-Al silicates
display high-mechanical resistance either in aerial or in sub-aqueous environments [7].

The shortage of natural pozzolans has led to the search for materials displaying poz-
zolanic activity (PAM), i.e., the capability to easily react with lime. There are many siliceous
materials which behave as pozzolans: blast furnace slags (BFS), fly ash (a secondary prod-
uct of coal combustion) and silica fume (a by-product of the silicon industry) but great
attention has been paid recently to zeolitic tuffs [8].

The use of zeolitic tuffs as pozzolanic additions for the cement production is an
increasingly widespread practice, given the unavailability of natural pozzolan in several
countries (e.g., Bulgaria, Germany, Turkey, China, Russia, and USA) and, conversely, the
considerable abundance in these countries of zeolites [2,9].

The use of zeolitic tuffs to produce pozzolanic cements is of great industrial interest
because zeolite-bearing cements have properties comparable with respect to those made
with natural pozzolans. In fact, zeolitic tuffs can even display a better pozzolanic behavior
than the pozzolan itself [10].

Moreover, pozzolan has a lower cost than clinker, making pozzolanic cement cheaper
with respect to common Portland cements, and above all, with its use it is possible to
considerably reduce the consumption of the fuel [2,11,12] necessary for the preparation of
the clinker, thus reducing CO2 emissions. This, together with the excellent technological
properties of pozzolanic cement, makes its use extremely advantageous both economically
and environmentally, and its study is of great interest nowadays.

In this paper, mineralogical and technological features of some tuff samples from
Basin and Range Province were considered to shed some light on the correlation between
the presence of different zeolitic types, theoretical Cation Exchange Capacity (CEC) and
pozzolanic behavior. This research represents an attempt to characterize these tuffs as
possible re-usable material, defining their technological characteristics for possible planning
of future applications.

2. Geological Setting, Samples Localities and General Remarks

Zeolites in deposits of saline, alkaline lakes (fluids with pH = 9.5–10) are widespread,
and these settings contain the largest relatively pure concentrations of natural zeolites [10].
Phillipsite, clinoptilolite erionite, and the less common mordenite and chabazite easily
form from interaction between fluids of saline, alkaline lakes and silicic vitric ash. The
deposits of the western United States in Miocene to Pleistocene Lake (e.g., Teels Marsh
in Nevada, Big Sandy Formation in Arizona, Green River Formation of Utah, and Lake
Tecopa deposits of California; see Refs. [13–16]), contain beds of clinoptilolite, phillipsite,
erionite, chabazite and analcime. It has been proved that their formation from silicic glass
is mainly determined by pore-fluid composition. Among the abovementioned western
United States provinces is the Basin and Range (Figure 1). It is an exceedingly complex
area of the western Cordillera resulting from the superposition of 600 million years of
recurring tectonic and volcanic activity. In the late Cenozoic, the already highly fragmented
geology of the Basin and Range was further disrupted by subsidence, by the covering of
approximately half the province by alluvial deposits in the valleys, and by the exposure of
different stratigraphic and structural levels in adjacent ranges [17].
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widest part of the rim, and in this region Fish Creek Mountains were eroded into very 
rugged badland topography that is associated with a dendritic drainage pattern. The Fish 
Creek Mountains are composed almost entirely of a single ash-flow deposit, the Fish 
Creek Mountains Tuff, a crystal-rich rhyolitic tuff erupted by an early Miocene volcano. 
The eruption was probably of a low-energy type and formed a relatively thick pile of tuff. 
This tuff shows little lithologic variation [21]. 

2.3. Shoshone, California (Sample 25705) 
Composed primarily of Cenozoic rocks [22–24], the Shoshone terrane (Figure 1) is 
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Figure 1. Basin and Range Province sketch map with samples localities (modified after [18]).

2.1. Rome Beds, Oregon

The Rome area is a northern extension of the Basin and Range Province. Intermittent
gentle folding affected the area from Miocene to Pleistocene, and Pliocene folding resulted
in the development of local basins which received sediments, including the Rome basin [19].
The Pliocene Rome Beds (Figure 1) are composed of tuffaceous mudstones, volcanic and
lithic (epiclastic) sandstones and conglomerates of lacustrine and fluvial origin. Diagenesis
produced different types of zeolites, phyllosilicates, carbonates, iron oxides, gypsum and
other authigenic minerals. Erionite-bearing rocks (mostly lacustrine tuffs) are frequent in
the Miocene Rome Beds, over an elongated north–south area between Rome and Crooked
Creek to the west [20].

2.2. Fish Creek, Nevada

The Fish Creek Mountains in central Nevada (Figure 1) form a circular-shaped range
that covers an area of about 518 km2 [21]. Fish Creek Mountains has a broad arcuate
southern edge. The profile of the range shows a rim of uniform height (about 460 m)
above the surrounding valley floor and a broad shallow central basin (several hundred
feet lower than the rim; [21]. The southern and western part of the range form the highest
and widest part of the rim, and in this region Fish Creek Mountains were eroded into very
rugged badland topography that is associated with a dendritic drainage pattern. The Fish
Creek Mountains are composed almost entirely of a single ash-flow deposit, the Fish Creek
Mountains Tuff, a crystal-rich rhyolitic tuff erupted by an early Miocene volcano. The
eruption was probably of a low-energy type and formed a relatively thick pile of tuff. This
tuff shows little lithologic variation [21].

2.3. Shoshone, California (Sample 25705)

Composed primarily of Cenozoic rocks [22–24], the Shoshone terrane (Figure 1) is
located within the Black Mountains block of the Death Valley region (eastern California) and
covers an area of about 1300 km2 [25]. Volcanic rocks of this terrane consist predominantly
of rhyolites but also include dacites, andesites and basalts. The so-called “Shoshone
Volcanics” are included within the rhyolitic rocks as an accumulation of lava flows and
tuffs, as much as 900 m thick. They consist of pumice lapilli tuff and welded tuff: the
welded units contain abundant plagioclase, hornblende, and biotite phenocrysts, whereas
the unwelded units consist of blocks of andesite and rhyolite, rare clasts of dolomite and
quartzite, and a devitrified pumice lapilli matrix [26]. Clastic sediments deriving from the
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igneous rocks (pumices), whose vesicles are locally filled with zeolites, were deposited in
local basins [27].

2.4. Pine Valley, Nevada (Sample 25706)

Pine Valley basin (Figure 1) is an asymmetrically actively subsiding half graben
situated in northeastern Eureka County, Nevada. Unlike most valleys in the Basin and
Range province, Pine Valley is significantly dissected, and the dissection began after this
formerly closed basin was captured by Pine Creek River. The filling of Pine Valley is known
as the Hay Ranch Formation, whose exposed rocks are mainly Pliocene and Pleistocene in
age according to paleontological evidence [28,29]. This formation is composed of tuffaceous
siltstones, sandstones, conglomerates, limestones, and mudstones; these last containing
thin volcanic ash beds altered to zeolites [30] and overlies the older Miocene volcanic and
sedimentary rocks of the Humboldt Formation [31].

When the Hay Ranch Formation was deposited, the Pine Valley basin drained inter-
nally. Lacustrine deposits found along the basin axis, along with paleocurrent indicators
and the slopes of Pleistocene terraces, indicate that the basin was closed [32]. Pine Valley
was opened by Pine Creek river sometime after deposition of 0.6 myr-old ash layer [31].

3. Materials and Methods

In this work, petrographic, mineralogical and chemical analyses were performed on the
four tuff samples from Rome Beds (25411), Fish Creek Mountains (25521), Shoshone (25705)
and Pine Valley (25706) (Figure 1) at the Department of Earth, Environmental and Resources
Sciences (DiSTAR) of the University of Naples Federico II, whereas technological tests were
mainly devoted to establishing the pozzolanic activity of the investigated materials were
conducted at the Department of Chemical, Materials and Industrial Production Engineering
(DiCMAPI) of the University of Naples Federico II.

Petrographic analysis was carried out on thin sections through polarized optical mi-
croscopy (POM) with a Leica Laborlux 12 Pol microscope (Leica Camera, Wetzlar, Germany).

Qualitative and quantitative phase analysis was performed by means of X-ray powder
diffraction (XRPD and QXRPD, respectively) using a Malvern Panalytical X’Pert Pro diffrac-
tometer equipped with a RTMS X’Celerator and a X’Pert High Score Plus 3.0c software
(Malvern PANalytical, Almelo, The Netherlands).

Operating conditions were: CuKα radiation, 40 kV, 40 mA, 2θ range from 4 to 70◦,
equivalent step size 0.017◦2θ, equivalent counting time 120 s per step. Data sets were
analyzed using RIR/Rietveld method [33,34] with internal standard and TOPAS 5 software
(BRUKER AXS Company). Powders with grain size <10 µm were obtained using a McCrone
micronizing mill (agate cylinders and wet grinding time of 15 min; Retsch-Alle, Haan,
Germany). An α-Al2O3 internal standard (1 µm, Buehler Micropolish) was added to each
sample at a rate of 20 wt.%.

Starting atomic coordinates for identified phases were taken from literature [35] and
were the following: erionite [36], mordenite [37], clinoptilolite [38], heulandite [39], cal-
cite [40], phillipsite [41], searlesite [42], quartz [43], mica [44], K-fekdspar [45], and pla-
gioclase [46]. Background profile was fitted using a Chebyshev polynomial function with
variable number of coefficients (5–12); diffraction peak profiles were modeled refining crys-
tallite size and strain (Lorentzian contribution) coefficients and two Gaussian coefficients.
Unit cell parameters along with weight fractions were also refined. PO (preferred orien-
tation) was treated with March–Dollase approach [47], whenever needed. All agreement
index Rwp are below 8.

X-ray fluorescence spectroscopy (XRF; AXIOS Panalytical Instrument; Malvern PANa-
lytical, Almelo, Netherlands) have been performed to determine the chemical composition
of samples in the form of pressed pellets. The oxides of the major elements determined were
SiO2, TiO2, Al2O3, Fe2O3tot, MnO, MgO, CaO, Na2O, K2O and P2O5, whose concentrations
are expressed in weight percentages (wt.%). The trace elements determined were Rb, Sr, Y,
Zr, Nb, Ba, Cr, Ni, Sc and V, whose concentrations are expressed in ppm (parts per million).
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Accuracy and precision are generally of 1–2% for the major elements and 5–10% for the
trace elements [48].

The weight loss on ignition (LOI) was determined with standard thermo-gravimetric
techniques, by predrying 1 g of powder of the sample overnight at 110 ◦C and then heating
the sample to 1000 ◦C for 4 h.

Micro-textural observations and quantitative micro-chemical analyses were carried out
by Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS;
Zeiss Merlin VP Compact and JEOL JSM-5310 coupled with Oxford Instruments Microanal-
ysis Unit equipped with an INCA X-act detector; Carl-Zeiss-Strasse, Oberkochen Germany
and Jeol Ltd., Tokyo, Japan respectively). Measurements were performed with an INCA
X-stream pulse processor (using a 15-kVprimary beam voltage, 50–100 A filament current,
variable spot size, from 30,000 to 200,000× magnification, 20 mm WD and 50 s net acquisi-
tion real time). The INCA Energy software was employed using the XPP matrix correction
scheme and the pulse pile up correction. The quant optimization was carried out using
cobalt (FWHM–full width at half maximum peak height- of the strobed zero = 60–65 eV).
The following Smithsonian Institute and MAC (Micro-Analysis Consultants Ltd., Saint
Ives. UK) standards were used for calibration: diopside (Ca), fayalite (Fe), San Carlos
olivine (Mg), anorthoclase (Na, Al, Si), rutile (Ti), serandite (Mn), microcline (K), apatite (P),
fluorite (F), pyrite (S) and sodium chloride (Cl). Precision and accuracy of EDS analyses are
reported in [49].

The chemical method used to evaluate pozzolanic activity is the Fratini’s test, still
accepted as European Standard (UNI EN 196-5, [50]) despite dating back to more than
fifty years ago [51,52]. This test allowed us to estimate the amount of Ca(OH)2 leached
from 20 g of blended cement mixed with 100 mL of deionized water and kept at 40 ◦C for
8 days. At the end of the experiment, Ca2+ and OH− concentrations in the contact solu-
tion are estimated using volumetric analysis methods (i.e., complexometric titration with
ethylenediaminetetraacetic acid-EDTA and acid-base titration, respectively). Experimental
results (i.e., the average values of runs performed in triplicate) have been reported in a
plot of Ca(OH)2 (expressed as CaO) solubility at 40 ◦C as a function of OH- concentrations
in solution (i.e., vs. alkalinity). Points representing under-saturated solutions, and thus
proving the existence of pozzolanic activity given by the specific mineral addition to the
OPC, should be under the curve, which means that some of the lime resulting from the
hydrolysis of the clinker was fixed by the pozzolanic materials. On the contrary, points
above and on the curve represent over-saturated and saturated solutions, respectively,
indicating the lack of pozzolanic activity.

4. Results and Discussion
4.1. Optical Microscopy, XRPD Analysis and SEM Observations

All the four samples show the most common features of zeolitic tuffs, with presence
of both pyrogenic and secondary mineralogical phases.

The 25411 sample (Figure 2a) shows a reddish color and is microcrystalline, consisting
of erionite and mordenite crystals with dimension ranging from microns to sub-microns set
into a cineritic matrix. At SEM (Figure 2b), erionite crystals are homogenously distributed
in the whole sample and appear as bundles. Occasionally, individual erionite fibers with a
clearly hexagonal shape have been observed.

The 25521 sample (Figure 2c) has a cineritic matrix with abundant pumices. The micro-
metric to sub-micrometric subhedral white clinoptilolite crystals with prismatic-lamellar
habit are commonly dispersed in both the matrix and in the pumice voids. Clinoptilolite
crystals appear at SEM (Figure 2d) as lamellar, forming layered or sheeted structures.
Moreover, the presence of aggregates of acicular/fibrous mordenite crystals has been
occasionally noticed.

The 25705 sample (Figure 2e) shows a reddish color and is microcrystalline, with
prismatic phillipsite crystals and subordinate opaque minerals set into a cineritic matrix.
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Figure 2. Crossed polarized light microphotograph (a) and SEM (b) images of sample 25411;
crossed polarized light microphotograph (c) and SEM (d) images of sample 25521; crossed polarized
light microphotographs of (e) 25705 and (f) 25706 samples; SEM images of sample (g) 25705 and
(h) 25706 samples.
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The 25706 sample (Figure 2f) has a grayish-white color and a microcrystalline texture,
consisting of prismatic phillipsite crystals and opaque minerals set into a cineritic matrix.

Scanning electron microscopy revealed that phillipsite crystals of the 25705 (Figure 2g)
sample appear prismatic, sometimes slightly elongated and with a stocky habit, whereas
phillipsite crystals from the 25706 sample (Figure 2h) are arranged in aggregates and display
less regular and defined shapes with respect to the 25705 sample.

Quantitative XRPD analysis has been carried out to give the amount of the detected
mineralogical phases (Table 1). XPRD patterns are shown in Figure 3.

Table 1. QXRPD results of the investigated tuff samples. reported in wt.%.

Sample 25411 25521 25705 25706

Amorphous content * 8 15 51 25
Quartz 2 3 3 1

Alkali feldspar 4 6 11 7
Plagioclase 4 3 7 -

Erionite 79 - 1 -
Mordenite 3 20 - -

Clinoptilolite/Heulandite - 52 - -
Calcite - 1 1 -

Phillipsite - - 25 65
Searlesite - - 1 -

Mica - - - 2
Total 100 100 100 100

* By difference.
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Figure 3. XRPD patterns of the investigated tuff samples. Abbreviations: Eri = erionite;
Mor = mordenite; Pl = plagioclase; Hul = heulandite; Cpt = clinoptilolite; Php = phillipsite; Cal
= calcite; Mca = mica; Afs: alkali feldspar; Qz = quartz. Mineral abbreviations from [53].

According to quantitative XRPD analysis (Table 1), amorphous content lies between
8 and 15 wt.% for the 25411 and 25521 samples, respectively, and is significantly higher
for the 25705 and 25706 samples, reaching about 51 wt.% for the former and 25 wt.% for
the latter. This percentages comprise the amount of clay minerals since they are low-order
mineralogical phases.

The 25411 sample contains mainly erionite (79 wt.%), and the 25521 sample con-
tains mainly clinoptilolite/heulandite (51 wt.%), with not negligible amounts of morden-
ite (19 wt.%) and subordinate quartz, alkali feldspar and calcite. The 25705 and 25706
phillipsite-bearing tuffs are quite different, showing different amorphous content (26 and
25, respectively) and different amounts of phillipsite (25 and 64 wt.%, respectively). Both
the samples contain subordinate alkali feldspar and quartz, only the 25705 sample also
contains plagioclase, erionite, calcite and searlesite, whereas only the 25706 sample contains
mica as subordinate mineralogical phase.
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These investigations, especially QXRPD analysis, allowed us to establish that all samples
(except for 25705) can be considered as “zeolitites”, containing almost completely zeolites.

4.2. Whole-Rocks Compositions and Zeolite Crystal Chemistry

Major element analyses and loss on ignition (LOI) values of the investigated samples
are reported in Table 2.

Table 2. Chemical analysis (XRF) of major oxides (wt.%) and LOI (wt.%) of the investigated tuff samples.

Sample 25411 25521 25705 25706

SiO2 59.91 60.73 58.77 57.70
TiO2 0.07 0.07 0.19 0.20

Al2O3 13.67 10.56 9.74 15.58
FeO 0.93 0.84 1.80 2.39
MnO 0.01 0.02 0.04 0.02
MgO 0.50 0.71 1.41 0.42
CaO 0.13 4.40 1.03 0.32

Na2O 5.81 2.01 4.20 7.54
K2O 3.70 2.28 5.22 3.57
P2O5 0.05 0.02 0.04 0.08
LOI 15.22 18.37 17.55 12.19

Si/Al 7.44 9.76 10.24 6.29
Notes: total Fe expressed as FeO; Si/Al = molar ratio.

The chemical composition of the investigated tuff samples is difficult to differentiate,
except based on their molar Si/Al ratio, varying from 6.29 to 10.24 wt.% (Table 2) and
theirSiO2 values. As the Na2O + K2O vs. SiO2 and CaO vs. SiO2 binary diagrams of
Figure 4a,b report, all the investigated tuff samples show a limited compositional range and
the overall SiO2 values range from 57.7 to 60.7 wt.%. However, the 25411 and 25521 samples
have slightly higher SiO2 values (59.9 and 60.7 wt.%, respectively) with respect to the 25705
and 25706 samples. Moreover, the 25521 sample has CaO values higher with respect to the
other samples.

Crystallization of zeolite phases is the dominant process occurring within the analyzed
samples. Thus, the following section focus on the dominant zeolites (erionite, mordenite,
clinoptilolite and phillipsite) detected in the tuff samples. Representative electron micro-
probe analyses of the chemical composition are listed in Table 3. These data have been used
to calculate the average chemical formulas of the zeolites, based on 72 oxygens for both
erionite and clinoptilolite, on 96 oxygens for mordenite and on 32 oxygens for phillipsite.
The chemical composition of the investigated zeolites appears reliable, as the sum of silicon
and aluminum cations and extra-framework cations are stoichiometrically verified (see
Table 4 for further details).

As shown by calculated chemical formulas, the dominant extra-framework cations of
erionite [calculated formula: (Na6.21 K3.33Mg0.25Ca0.20) [Si28.15 Al7.85] O72 · 24.67 H2O] of
the 25411 sample are Na and K, but also slightly lower Mg and Ca are present; in the clinop-
tilolite [calculated formula: (Na2.49 Ca1.64 K1.57 Mg0.30) [Si30.20 Al5.80] O72 · 20.94 H2O] of the
25521 sample Na and Ca are the dominant extra-framework cations, but also subordinate K
and Mg are present; in the mordenite [calculated formula: (Na3.44 Ca2.48 K1.83Mg0.25) [Al7.10
Si40.908] O96 · 32.023 H2O] of the 25521 sample most of the extra-framework site is occupied
by Na and Ca, with subordinate K and Mg; phillipsite [calculated formula: (Na3.50 K2.37
Ca0.13) [Si12.95 Al3.05 O32 · 11.99 H2O] of the 25705 sample have K and Na as dominant
extra-framework cations, whereas in the phillipsite [calculated formula: (Na4.28 K1.68 Ca0.04)
[Si11.74 Al4.26] O32 · 8.89 H2O] of the 25706 sample the dominant extra-framework cation is
Na, with subordinate K. A ternary plot of the exchangeable cation content, displaying the
above described features, is shown in Figure 4c.

The chemical compositions of the investigated tuff samples (Figure 4a,b) are consistent
with the mineralogy and thus with the mole plot of exchangeable cation content (Figure 4c),
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in that the higher Na2O and K2O contents displayed by 25411, 25705 and 25706 samples and
the higher CaO content displayed by the 25521 sample agree with their extra-framework
cation population.
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Regarding the pozzolanic activity, Figure 5 shows the result of the test for estimating
the reactivity of the various zeolite types detected in the analyzed tuffs as pozzolanic mate-
rials. All the investigated samples, having high zeolite content, provide under-saturation
conditions, being positioned under the equilibrium Ca(OH)2 solubility curve. Zeolite addi-
tion caused a progressive decrease in Ca2+ and raising of OH- concentrations in solution.

These results allow us to quantify the pozzolanic activity of the investigated zeolites.
Starting from the empirical formula [CaOT = 350 ÷ (OH)−15], representing the theoretical
solubility data of Ca(OH)2 (as CaO) at 40 ◦C in the 35–90 mmol l−1 [OH−] range, it is
possible to evaluate the Ca(OH)2 reduction (in terms of CaO), and thus the effectiveness of
the pozzolanic addition (E) [50]:

E = [(CaOT − CaO) ÷ CaOT].

CaOT is the theoretical concentration, calculated through the above empirical formula
and CaO is the measured concentration obtained by Fratini’s test. The results of these
calculations are reported in Table 4.

All the examined samples display a high reactivity with lime, with a Ca2+ reduction
of at least 69% (Table 4). This means that zeolites (i.e., pozzolanic materials) react with
calcium hydroxide, leading to the formation of insoluble calcium aluminate silicate hydrate
(C-A-S-H) (acting as binding compounds). In fact, zeolites interacting with the solution
modify its chemistry, decreasing Ca2+ concentration and increasing alkalinity (OH)-. Dif-
ferent simultaneous reactions and equilibria occur: (a) dissolution of solid Ca(OH)2 and
related dissociation equilibria, (b) ion–exchange equilibria involving Ca2+ and Ca(OH)+ in
solution and cation in zeolite and (c) breakdown and dissolution of zeolite in basic solution
and/or conversion into a transient amorphous material, followed by the precipitation of
hydrated calcium aluminates (CAH) and hydrated calcium silicates (CSH) [54].
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The above results are also in good agreement with the theoretical Cation Exchange Ca-
pacity (CECteor) displayed by the investigated zeolites (Table 3). Moreover, despite all the
zeolites are effective in removing Ca2+ from the solution, since all the experimental points
are under the curve (Figure 4), 25706 sample appears to be more effective on controlling
the Ca2+ concentration, with a Ca2+ reduction of about 90%. This tuff sample with the best
pozzolanic behavior contains the less siliceous zeolites (i.e., phillipsite; cfr. Table 3) and this
is probably the reason of its higher selectivity for Ca2+. In fact, phillipsites show a better
capacity to exchange their extra-framework cation Na+ for Ca2+, as shown by the CEC > 3
with respect to the others (Table 3). At the same time, the 25705 and 25706 samples present a
significant amount of amorphous phases, which further promotes their pozzolanic activity.

The presence of zeolites as additives in the blend can improve resistance of the cements
to chemical attack, due to the decrease in CaO resulting from the hydrolysis of the hydrated
calcium and aluminum silicates. Furthermore, the reduction of the alkali of the blend
minimizes the risk of alkali–silica reactions, which can occur during cement setting between
hydroxyl ions in the pore solution and the reactive components of the blend, leading to
the formation of an alkali silicate gel and setting up the expansion forces that lead to the
deterioration of the cement [55,56].
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Table 3. Chemical composition (wt.%) and CECteor (meq/g) of zeolites from the investigated tuff samples.

Sample
25411 25411 25411 25411 25411 25521 25521 25521 25521 25521 25521 25521 25521 25521 25521 25705 25705 25705 25705 25705 25706 25706 25706 25706 25706

e e e e e c c c c c m m m m m p p p p p p p p p p

SiO2 58.35 58.32 63.38 59.72 60.3 67.36 65.56 70.05 68.61 69.89 69.16 67.72 71.1 66.59 68.03 56.6 54.28 55.94 56.11 58.86 56.52 58.34 56.14 59.52 60.46
TiO2 0.19 bdl bdl bdl bdl bdl bdl 0.14 0.64 0.62 0.04 bdl Bdl bdl bdl bdl 0.38 0.08 0.2 0.19 bdl 0.24 bdl 0.08 0.05

Al2O3 13.61 14.33 16.03 13.38 14.32 11.52 9.99 11.85 11.54 10.11 10.92 11.99 10.33 10.56 8.98 14.08 14.82 13.94 12.46 9.24 17.5 18.54 18.02 18.73 17.28
FeO * bdl bdl bdl 0.15 0.18 0.64 0.69 0.51 Bdl 0.82 0.09 0.43 0.98 bdl 0.37 0.23 0.3 0.23 0.58 bdl 0.72 0.17 0.29 bdl 0.72
MnO bdl bdl bdl bdl 0.31 0.07 0.01 0.09 0.1 0.16 0.31 bdl 0.35 bdl bdl bdl 0.1 0.03 0.07 0.15 bdl bdl bdl 0.15 bdl
MgO 0.27 0.36 0.4 0.38 0.03 0.11 0.24 0.08 0.31 bdl 0 0.46 0.34 0.31 bdl bdl 0.36 0.24 0.07 bdl 0.01 bdl 0.23 bdl 0.05
CaO 0.22 0.14 0.47 bdl 0.13 2.51 2.39 3.32 2.08 2.65 2.42 2.43 2.85 2.34 2.54 0.04 0.38 0.6 0.25 0.26 0.17 0.09 0.01 0.19 bdl

Na2O 4.85 5.95 5.82 5.23 5.62 2.34 1.87 2.21 2.02 2 1.94 1.85 2.44 2.25 1.4 4.77 4.7 4.79 3.88 2.7 7.45 8.24 7.64 7.08 7.19
K2O 4.12 4.79 4.46 4.54 4.48 1.67 1.73 1.36 3.57 1.31 1.71 3.46 1.3 1.44 1.02 6.49 5.79 6.3 5.63 3.53 4.05 4.91 5.39 5.6 4.01
TOT 81.62 83.88 91 83.4 85.38 86.21 82.49 89.62 83.87 87.55 86.59 88.33 89.7 83.5 82.34 82.21 81.11 82.15 79.25 74.94 86.43 90.53 87.72 91.36 89.75
H2O 18.38 16.12 9 16.6 14.62 20.449 27.08 14.794 11.13 18.113 13.41 11.67 10.3 16.5 17.66 17.79 18.89 17.85 20.75 25.06 13.57 9.47 12.28 8.64 10.25

cation based on 72 oxygens cation based on 96 oxygens cation based on 32 oxygens

Si 28.191 27.721 27.659 28.334 28.05 29.966 30.411 29.942 29.836 30.499 40.599 39.574 40.56 40.479 41.607 12.313 11.992 12.218 12.574 13.491 11.700 11.583 11.548 11.683 11.962
Ti 0.07 - - - - - 0.045 0.208 0.202 0.019 0 - - - - 0.063 0.013 0.033 0.034 - 0.036 - 0.011 0.007
Al 7.748 8.028 8.244 7.482 7.851 6.04 5.464 5.972 5.912 5.201 7.551 8.257 6.946 7.568 6.47 3.61 3.858 3.588 3.292 2.497 4.269 4.338 4.368 4.334 4.029
Fe - - - 0.058 0.068 0.237 0.27 0.182 - 0.3 0.044 0.208 0.469 - 0.191 0.042 0.056 0.042 0.109 - 0.124 0.029 0.051 - 0.119
Mn - - 0.13 - 0.099 0.02 0.003 0.027 0.031 0.048 0.128 - 0.139 - - - 0.016 0.005 0.011 0.024 - - - 0.021 -
Mg 0.197 0.252 0.262 0.269 0.024 0.075 0.166 0.053 0.201 - - 0.398 0.285 0.283 - - 0.117 0.078 0.022 - 0.003 - 0.071 - 0.015
Ca 0.116 0.071 0.22 0.002 0.066 1.194 1.189 1.52 0.97 1.241 1.522 1.521 1.743 1.523 1.662 0.01 0.091 0.14 0.06 0.064 0.039 0.019 0.001 0.041 -
Na 4.545 5.48 4.92 4.814 5.072 2.015 1.685 1.832 1 1.689 2.205 2.1 2.703 2.655 1.663 2.014 2.015 2.03 1.684 1.202 2.991 3.171 3.045 2.695 2.759
K 2.538 2.904 2.485 2.746 2.658 0.947 1.024 0.742 1.981 0.727 1.283 2.579 0.945 1.113 0.795 1.8 1.63 1.755 1.609 1.031 1.069 1.243 1.414 1.404 1.011

H2O 29.61 25.554 13.099 26.263 22.671 20.449 27.08 14.794 16.141 18.113 26.242 22.729 19.593 33.449 36.019 12.903 13.914 13 15.501 19.153 9.364 6.268 8.421 5.658 6.758
R 0.784 0.775 0.77 0.791 0.781 0.832 0.848 0.834 0.829 0.854 0.843 0.827 0.854 0.842 0.865 0.773 0.757 0.773 0.793 0.844 0.733 0.728 0.726 0.729 0.748

Si/Al 3.638 3.453 3.355 3.787 3.573 4.961 5.566 5.014 4.858 5.864 5.376 4.793 5.84 5.349 6.431 3.411 3.108 3.406 3.82 5.403 15.969 15.921 15.915 16.017 15.991
Na/K 1.791 1.887 1.98 1.753 1.908 2.129 1.646 2.467 1.958 2.323 1.719 0.814 2.86 2.385 2.092 1.119 1.236 1.157 1.047 1.166 4.099 4.434 4.461 4.139 3.771

CECteor 2.66 3.16 3.19 2.84 2.83 2.058 1.94 2.23 1.97 1.87 1.85 2.43 2.25 2.02 1.57 2.93 3.06 3.212 2.57 1.71 3.33 3.73 3.73 3.54 3.20

Notes: bdl = below detection limits; * = total Fe expressed as FeO; H2O calculated by difference. m = mordenite; p = phillipsite; CEC values are expressed in meq/g; R = Si/(Si + Al);
CECteor = theoretical Cation Exchange Capacity.
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Table 4. OH and CaO concentrations and CaOT and E evaluations obtained from the Fratini’s test.

Sample OH− mmol/L [CaO] mmol/L [CaO]T mmol/L E (%)

25706 80.23 0.55 5.37 89.8
25521 42.38 3.96 12.79 69.0
25411 96.65 1.14 4.29 73.3
25705 65.73 0.94 6.90 86.4

5. Conclusions

Results of the investigations carried out on erionite-, mordenite-, clinoptilolite- and
phillipsite-bearing tuffs object of this work and the related obtained results allowed us to
conclude the following:

(1) Detailed minero-petrographic and chemical characterization is fundamental for inves-
tigations about pozzolanic activity, for the definition of technological characteristics
of geomaterials and for planning future developments and applications as well;

(2) All the investigated samples behave as good pozzolanic materials;
(3) All investigated zeolites are effective in reducing the concentration of calcium hydrox-

ide in the solution in contact with the cement–zeolite blend;
(4) CEC values play a fundamental role in pozzolanic behavior: in fact, the less siliceous

phillipsites of the 25706 sample behave as better pozzolanic materials due to their
higher CEC with respect to the other zeolites;

(5) Given the good pozzolanic activity shown, all the investigated tuff samples can be
advantageously used for pozzolanic cements preparation;

(6) Collected data aim at exploiting the technological value of zeolitic tuffs, natural
resources other than pozzolana, in composite cement manufacturing.

(7) The use of mordenite- and erionite-bearing rocks analyzed here is controversial
because, as well as asbestos, they have a fibrous habit and represent a risk for human
health. In fact, if inhaled, they can cause, among other illnesses, lung damage, cancer
and mesothelioma [56–58].

Future developments should regard the technical aspects related to the presence of
such additives, by evaluating mechanical resistance of the hardened blended cements,
containing zeolites with different characteristics, during the hydration reactions.
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