$\gamma = 92.84 \ (1)^{\circ}$

V = 1256.2 (3) Å³

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Diaquabis[dimethyl (phenylsulfonylimino)phosphonato]cobalt(II)

Elizaveta A. Trush,^a* Victor A. Trush,^a Tetyana Yu. Sliva,^a Irina S. Konovalova^b and Volodymyr M. Amirkhanov^a

^aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and ^bSTC "Institute for Syngle Crystals", 60 Lenina ave., Khar'kov 61001, Ukraine Correspondence e-mail: elizaveta@univ.kiev.ua

Received 22 November 2010; accepted 17 February 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.029; wR factor = 0.066; data-to-parameter ratio = 15.9.

In the title diaquacobalt complex, $[Co(C_8H_{11}NO_5PS)_2(H_2O)_2]$, the Co^{II} atom is surrounded by six O atoms belonging to the phosphoryl and sulfonyl groups of two deprotonated chelate ligands and two additional O atoms from water molecules which are in *cis* positions with respect to one another. The coordination environment of cobalt can be described as a distorted octahedron. $O-H \cdots O$ hydrogen bonds between the water and sulfonyl O atoms of neighboring molecules form chains running parallel to [010]. Two methoxy groups attached to one phosphorus are disordered over two sets of sites in a 0.6:0.4 ratio.

Related literature

For the coordination chemistry of β -diketone derivatives and their structural analogues, see Skopenko *et al.* (2004). For details of the pharmacological and biological properties of sulfonylamide derivatives, see: Kishino & Saito (1979); Xu & Angell (2000). For structural discussion, see: Cremer & Pople (1975); Zefirov *et al.* (1990). For related structures, see: Moroz *et al.* (2009); Shatrava *et al.* (2010).

Experimental

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_8\text{H}_{11}\text{NO}_5\text{PS})_2(\text{H}_2\text{O})_2 \end{bmatrix}$ $M_r = 623.38$ Triclinic, $P\overline{1}$ a = 9.875 (1) Å b = 10.207 (1) Å c = 13.345 (2) Å $\alpha = 91.60$ (1)° $\beta = 110.59$ (1)°

Data collection

Oxford Diffraction Xcalibur3 diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{min} = 0.681, T_{max} = 0.903$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.066$ S = 0.905612 reflections 354 parameters Z = 2Mo K α radiation $\mu = 1.04 \text{ mm}^{-1}$ T = 294 K $0.40 \times 0.20 \times 0.10 \text{ mm}$

9231 measured reflections 5612 independent reflections 4025 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$

4 restraints H-atom parameters constrained $\Delta\rho_{max}=0.34$ e Å $^{-3}$
 $\Delta\rho_{min}=-0.22$ e Å $^{-3}$

Table 1

H	ydrog	gen-bond	geometry	' (A, '	٥)

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} D11 - H11A \cdots O3^{i} \\ D11 - H11B \cdots O6^{i} \\ D12 - H12A \cdots O1^{ii} \\ D12 - H12B \cdots O8^{ii} \end{array}$	0.88 0.90 0.92 0.88	1.93 1.92 1.98 1.96	2.7898 (19) 2.811 (2) 2.855 (2) 2.8035 (18)	167 167 157 163

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge the Ukrainian State Fund for Fundamental Researchers (SFFR) for financial support of the Research Program (Chemistry).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2630).

References

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kishino, S. & Saito, S. (1979). US Patent No. 4 161 524.
- Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). *Polyhedron*, 28, 1331–1335.
- Oxford Diffraction (2006). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Shatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397–m398.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Skopenko, V. V., Amirkhanov, V. M., Sliva, T. Yu., Vasilchenko, I. S., Anpilova, E. L. & Garnovskii, A. D. (2004). Usp. Khim. 73, 797–813.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16–23.
- Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–154.

Acta Cryst. (2011). E67, m369-m370 [doi:10.1107/S1600536811006027]

cis-Diaquabis[dimethyl (phenylsulfonylimino)phosphonato]cobalt(II)

E. A. Trush, V. A. Trush, T. Y. Sliva, I. S. Konovalova and V. M. Amirkhanov

Comment

Many efforts are devoted to the coordination chemistry of β - diketones derivatives and their structural analogues (Skopenko *et al.*, 2004). The phosphorylated sulfonylamides, RSO₂NHP(O)(*R*')₂ (SAPh), present such type of heterosubstituted structural analogues with different substituents at sulfur and phosphorus atoms. In the past few decades SAPh have been intensively used as bactericidal agents in medicine and toxicology (Xu & Angell, 2000). Some of them are effective pesticides (Kishino & Saito, 1979). So a variety of new s-, d-, and f- metals based coordination compounds containing this type of phosphoramides have been synthesized. Structural investigation of compounds with phosphorylated sulfonylamide ligands have already been reported (Moroz *et al.*, 2009, Shatrava *et al.*, 2010). Herein we report the structure of the title compound containing one of the simplest representative of this class of ligands: the dimethyl(phenylsulfonyl)amidophosphate.

The crystal structure of CoL_22H_2O (I) is built up from non-centrosymmetric molecular species with the two water molecules in *cis*- position to each other. The CoO₆ fragment is formed by two oxygen atoms of water molecules and four oxygen atoms of phosphoryl and sulfonyl groups from two ligands which are coordinated in bidentate chelating mode (Fig. 1). The coordination environment of cobalt can be described as a distorted octahedron.

The six-membered chelate rings have a twist-boat conformation (the puckering parameters (Cremer & Pople,1975) are θ =81.19, ψ =25.33, S=0.60 for CoO₂SNPO₃ fragment and θ =67.91, ψ =17.44, S=0.57 for the CoO₇S₂N₂P₂O₈ (Zefirov *et al.*, 1990). The O4 and O5 atoms of methoxy groups are disordered over two positions due to the rotation around P1—O4 and P1—O5 bonds with populations 40:60%.

O—H…O intermolecular hydrogen bonds between the water and non-coordinated sulfonyl oxygen atoms and coordinated phosphoryl groups of neighboring SAPh molecules (Table 1) build up chains parallel to the [0 1 0] direction (Fig.2).

Experimental

The sodium salt (NaL) was prepared by the reaction between equimolar amounts of sodium isopropylate (0,023 g, 1 mmol of Na was solved in 2-propanol) and HL (0,2652 g, 1 mmol) in an 2-propanol medium and was used for preparation of complexes without isolation from the reaction mixture.

The solution of NaL (1 mmol) was added to the solution of $CoCl_26H_2O$ (0,124 2 g, 0,5 mmol) in 2-propanol (10 ml). The resulting mixture was filtrated off and mother liquor was left on air at room temperature for several days. Precipitated from the solution purple crystals were filtered and washed with cool 2-propanol. Single crystals of $[Co(L)_22H_2O]$ were prepared by slow recrystallization in 2-propanol-chloroform (3:1) mixture (yield - 80–90%). This complex as prepared is less soluble in non-polar aprotic solvents and H₂O. Analysis found: IR (KBr pellet, cm⁻¹): 1220, 1060 (s, SO₂) and 1190 (s, PO).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(Caromatic)$ or $U_{iso}(H) = 1.5U_{eq}(Cmethyl)$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. In the last cycles of refinement, they were treated as riding on their parent oxygen atoms.

Two methoxy groups attached to one phosphorus are disordered over two positions. Two sets of positions were then defined for the atoms of these groups and the site occupation factors of each conformation were refined while restraining their sum to unity. The site occupation factor of the major conformation refined to 0.585(5). Then the occupancy factors were fixed to 0.6 and 0.4 respectively for the two components. The O-C distances were restrained to have chemically reasonable bond values of 1.45(0.02)Å.

Figures

Fig. 1. Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Only the major component of the disorder is shown in the figure.

Fig. 2. Partial packing view of compound (I), showing the formation of chains along [010] built from hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

cis-Diaquabis[dimethyl (phenylsulfonylimino)phosphonato]cobalt(II)

Crystal data	
[Co(C ₈ H ₁₁ NO ₅ PS) ₂ (H ₂ O) ₂]	Z = 2
$M_r = 623.38$	F(000) = 642
Triclinic, <i>P</i> T	$D_{\rm x} = 1.648 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 9.875 (1) Å	Cell parameters from 4537 reflections
b = 10.207 (1) Å	$\theta = 3.0 - 34.8^{\circ}$
c = 13.345 (2) Å	$\mu = 1.04 \text{ mm}^{-1}$
$\alpha = 91.60 \ (1)^{\circ}$	T = 294 K
$\beta = 110.59 \ (1)^{\circ}$	Plate, purple
$\gamma = 92.84 \ (1)^{\circ}$	$0.40 \times 0.20 \times 0.10 \text{ mm}$

V = 1256.2 (3) Å³

Data collection

Oxford Diffraction Xcalibur3 diffractometer	5612 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4025 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
Detector resolution: 16.1827 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -13 \rightarrow 12$
$T_{\min} = 0.681, \ T_{\max} = 0.903$	$l = -17 \rightarrow 17$
9231 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.066$	H-atom parameters constrained
<i>S</i> = 0.90	$w = 1/[\sigma^2(F_o^2) + (0.0363P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5612 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
354 parameters	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPRO (Oxford Diffraction, 2009)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates a	nd isotropic or equ	vivalent isotropic disp	lacement parameters (A^2)
---------------------------------	---------------------	-------------------------	-----------------------------

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Col	0.53757 (3)	0.25048 (2)	0.49629 (2)	0.02561 (8)	
S1	0.52838 (5)	0.13796 (5)	0.26446 (4)	0.02895 (11)	

S2	0.76726 (5)	0.37652 (5)	0.72245 (4)	0.02815 (11)	
O3	0.64121 (18)	0.39270 (13)	0.43552 (12)	0.0433 (4)	
P1	0.68038 (7)	0.38043 (6)	0.33995 (5)	0.04364 (16)	
O4	0.5573 (4)	0.4744 (3)	0.2591 (3)	0.0543 (9)	0.60
C7	0.5608 (12)	0.5119 (16)	0.1582 (8)	0.076 (3)	0.60
H7A	0.6552	0.5506	0.1673	0.115*	0.60
H7B	0.4895	0.5747	0.1292	0.115*	0.60
H7C	0.5399	0.4359	0.1100	0.115*	0.60
O5	0.8157 (3)	0.4492 (2)	0.3338 (2)	0.0464 (7)	0.60
C8	0.9520 (11)	0.3888 (12)	0.3764 (11)	0.071 (3)	0.60
H8A	0.9525	0.3375	0.4358	0.106*	0.60
H8B	1.0298	0.4557	0.4001	0.106*	0.60
H8C	0.9643	0.3328	0.3216	0.106*	0.60
O4A	0.6779 (5)	0.4913 (4)	0.2748 (3)	0.0520 (11)	0.40
C7A	0.5421 (13)	0.4968 (18)	0.1864 (11)	0.074 (5)	0.40
H7A1	0.5463	0.5724	0.1462	0.112*	0.40
H7A2	0.4646	0.5029	0.2137	0.112*	0.40
H7A3	0.5253	0.4188	0.1408	0.112*	0.40
O5A	0.8642 (5)	0.3924 (4)	0.4153 (3)	0.0464 (10)	0.40
C8A	0.9676 (14)	0.3964 (12)	0.3623 (13)	0.049 (4)	0.40
H8A1	1.0639	0.4028	0.4147	0.073*	0.40
H8A2	0.9540	0.4714	0.3187	0.073*	0.40
H8A3	0.9543	0.3178	0.3178	0.073*	0.40
P2	0.86187 (6)	0.16991 (5)	0.62440 (4)	0.02887 (12)	
01	0.57367 (17)	0.00623 (13)	0.26086 (12)	0.0414 (4)	
02	0.45315 (15)	0.15860 (13)	0.33970 (10)	0.0321 (3)	
06	0.79818 (17)	0.51694 (13)	0.72756 (12)	0.0384 (3)	
07	0.61859 (15)	0.33380 (13)	0.65460 (11)	0.0341 (3)	
08	0.71640 (15)	0.13434 (12)	0.54199 (11)	0.0334 (3)	
09	0.91160 (17)	0.06168 (14)	0.70876 (12)	0.0436 (4)	
O10	0.97392 (16)	0.17385 (15)	0.56604 (12)	0.0413 (4)	
011	0.36115 (15)	0.36550 (13)	0.46253 (11)	0.0370 (3)	
H11A	0.3755	0.4409	0.4997	0.055*	
H11B	0.3157	0.3944	0.3963	0.055*	
012	0.41962 (15)	0.11126 (12)	0.54596 (11)	0.0331 (3)	
H12A	0.4369	0.0941	0.6169	0.050*	
H12B	0.3853	0.0377	0.5082	0.050*	
N1	0.65693 (18)	0.23960 (16)	0.28018 (13)	0.0342 (4)	
N2	0.88326 (18)	0.30347 (16)	0.69393 (13)	0.0335 (4)	
C1	0.3978 (2)	0.16127 (18)	0.13660 (16)	0.0307 (4)	
C2	0.2605 (3)	0.1922 (3)	0.1249 (2)	0.0519 (6)	
H2	0.2330	0.2019	0.1844	0.062*	
C3	0.1620 (3)	0.2089 (3)	0.0225 (2)	0.0660 (8)	
H3	0.0683	0.2307	0.0137	0.079*	
C4	0.2014 (3)	0.1938 (3)	-0.0644(2)	0.0599(7)	
H4	0.1341	0.2036	-0.1325	0.072*	
C5	0.3395 (3)	0.1643 (3)	-0.05244 (19)	0.0561 (7)	
Н5	0.3667	0.1556	-0.1122	0.067*	
C6	0.4385 (3)	0.1473 (2)	0.04848 (17)	0.0458 (6)	
			· /	· · /	

H6	0.5324	0.1265	0.0569	0.055*
C10	0.7510 (3)	0.2074 (2)	0.87303 (19)	0.0443 (6)
H10	0.7241	0.1425	0.8181	0.053*
C11	0.7603 (3)	0.1775 (3)	0.9745 (2)	0.0555 (7)
H11	0.7395	0.0915	0.9884	0.067*
C12	0.7996 (3)	0.2720 (3)	1.0556 (2)	0.0576 (7)
H12	0.8043	0.2503	1.1240	0.069*
C13	0.8322 (3)	0.3988 (3)	1.0366 (2)	0.0566 (7)
H13	0.8603	0.4629	1.0922	0.068*
C14	0.8232 (3)	0.4313 (2)	0.93455 (18)	0.0430 (5)
H14	0.8449	0.5173	0.9211	0.052*
C15	0.7821 (2)	0.33569 (19)	0.85348 (16)	0.0306 (4)
C16	1.1267 (3)	0.2070 (3)	0.6236 (2)	0.0603 (7)
H16A	1.1755	0.2187	0.5734	0.090*
H16B	1.1679	0.1373	0.6694	0.090*
H16C	1.1380	0.2869	0.6663	0.090*
C17	0.9315 (3)	-0.0702 (2)	0.6758 (2)	0.0691 (9)
H17A	0.9856	-0.1161	0.7377	0.104*
H17B	0.9836	-0.0660	0.6272	0.104*
H17C	0.8386	-0.1159	0.6408	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.02756 (15)	0.02457 (13)	0.02328 (14)	0.00186 (11)	0.00724 (11)	0.00077 (10)
S1	0.0328 (3)	0.0307 (2)	0.0227 (3)	0.0018 (2)	0.0091 (2)	0.00059 (19)
S2	0.0289 (3)	0.0294 (2)	0.0243 (3)	0.0013 (2)	0.0073 (2)	-0.00163 (19)
03	0.0625 (11)	0.0311 (7)	0.0414 (9)	-0.0096 (7)	0.0267 (8)	-0.0037 (7)
P1	0.0558 (4)	0.0341 (3)	0.0529 (4)	-0.0083 (3)	0.0358 (3)	-0.0035 (3)
O4	0.060 (2)	0.056 (2)	0.064 (2)	0.0239 (17)	0.037 (2)	0.0253 (17)
C7	0.068 (6)	0.091 (7)	0.079 (4)	0.022 (4)	0.031 (4)	0.053 (4)
05	0.0392 (16)	0.0383 (14)	0.065 (2)	-0.0020 (12)	0.0234 (15)	0.0073 (14)
C8	0.039 (5)	0.106 (7)	0.070 (5)	0.006 (4)	0.021 (4)	0.021 (5)
O4A	0.055 (3)	0.049 (2)	0.054 (3)	-0.001 (2)	0.020 (2)	0.023 (2)
C7A	0.053 (6)	0.050 (6)	0.128 (15)	0.026 (5)	0.036 (9)	0.041 (10)
O5A	0.035 (2)	0.060 (3)	0.039 (2)	-0.011 (2)	0.010 (2)	-0.001 (2)
C8A	0.038 (6)	0.037 (5)	0.068 (8)	0.004 (4)	0.015 (5)	-0.008 (5)
P2	0.0269 (3)	0.0333 (3)	0.0255 (3)	0.0058 (2)	0.0078 (2)	0.0002 (2)
01	0.0565 (10)	0.0318 (7)	0.0353 (9)	0.0095 (7)	0.0145 (8)	0.0011 (6)
02	0.0348 (8)	0.0376 (7)	0.0238 (7)	-0.0052 (6)	0.0114 (6)	-0.0013 (6)
06	0.0481 (9)	0.0289 (7)	0.0368 (8)	0.0012 (7)	0.0133 (7)	0.0019 (6)
07	0.0268 (7)	0.0443 (8)	0.0274 (8)	0.0051 (6)	0.0053 (6)	-0.0071 (6)
08	0.0301 (8)	0.0314 (7)	0.0341 (8)	0.0049 (6)	0.0054 (6)	-0.0053 (6)
09	0.0526 (10)	0.0425 (8)	0.0331 (9)	0.0143 (8)	0.0102 (7)	0.0074 (7)
O10	0.0357 (9)	0.0571 (9)	0.0342 (8)	0.0069 (7)	0.0160 (7)	-0.0029 (7)
011	0.0401 (8)	0.0308 (7)	0.0352 (8)	0.0111 (6)	0.0060 (7)	0.0028 (6)
012	0.0417 (8)	0.0279 (7)	0.0293 (8)	-0.0029 (6)	0.0129 (7)	0.0008 (6)
N1	0.0315 (10)	0.0422 (9)	0.0309 (10)	-0.0012 (8)	0.0142 (8)	-0.0016 (8)

N2	0.0262 (9)	0.0410 (9)	0.0329 (10)	0.0008 (8)	0.0107 (8)	-0.0070 (8)
C1	0.0349 (12)	0.0289 (10)	0.0255 (10)	-0.0011 (9)	0.0077 (9)	-0.0002 (8)
C2	0.0427 (14)	0.0752 (17)	0.0370 (14)	0.0124 (13)	0.0124 (11)	-0.0053 (12)
C3	0.0429 (15)	0.093 (2)	0.0497 (16)	0.0200 (15)	0.0000 (13)	-0.0050 (15)
C4	0.070 (2)	0.0619 (16)	0.0316 (14)	0.0069 (15)	-0.0022 (13)	0.0015 (12)
C5	0.0713 (19)	0.0683 (16)	0.0274 (13)	-0.0002 (15)	0.0165 (13)	0.0006 (12)
C6	0.0444 (14)	0.0629 (14)	0.0303 (12)	0.0001 (12)	0.0140 (11)	-0.0003 (11)
C10	0.0556 (15)	0.0395 (12)	0.0403 (14)	-0.0070 (11)	0.0218 (12)	-0.0029 (10)
C11	0.0700 (18)	0.0553 (15)	0.0483 (16)	-0.0082 (14)	0.0309 (14)	0.0101 (13)
C12	0.0610 (18)	0.0813 (19)	0.0353 (14)	-0.0014 (15)	0.0235 (13)	0.0094 (14)
C13	0.0611 (17)	0.0721 (17)	0.0324 (13)	-0.0076 (14)	0.0142 (12)	-0.0139 (12)
C14	0.0498 (14)	0.0428 (12)	0.0333 (12)	-0.0065 (11)	0.0126 (11)	-0.0065 (10)
C15	0.0260 (10)	0.0380 (11)	0.0267 (11)	0.0014 (9)	0.0081 (9)	0.0000 (9)
C16	0.0355 (14)	0.087 (2)	0.0619 (18)	0.0025 (14)	0.0220 (13)	-0.0037 (15)
C17	0.085 (2)	0.0417 (14)	0.075 (2)	0.0230 (14)	0.0182 (17)	0.0126 (14)

Geometric parameters (Å, °)

Co1-012	2.0608 (13)	P2—O10	1.5607 (16)
Co1—O11	2.0729 (13)	P2—O9	1.5695 (15)
Co1—O3	2.0771 (14)	P2—N2	1.5897 (17)
Co1—O8	2.0942 (13)	O9—C17	1.448 (3)
Co1—O7	2.1143 (14)	O10—C16	1.450 (3)
Co1—O2	2.1282 (14)	O11—H11A	0.8808
S1—O1	1.4427 (14)	O11—H11B	0.9049
S1—O2	1.4604 (14)	O12—H12A	0.9239
S1—N1	1.5497 (18)	O12—H12B	0.8753
S1—C1	1.771 (2)	C1—C2	1.363 (3)
S2—O6	1.4452 (14)	C1—C6	1.376 (3)
S2—O7	1.4646 (14)	C2—C3	1.392 (3)
S2—N2	1.5454 (17)	С2—Н2	0.9300
S2—C15	1.766 (2)	C3—C4	1.353 (4)
O3—P1	1.4610 (16)	С3—Н3	0.9300
P1—O4A	1.442 (4)	C4—C5	1.367 (4)
P1—O5	1.508 (3)	C4—H4	0.9300
P1—N1	1.5903 (18)	C5—C6	1.380 (3)
P1—O4	1.677 (4)	С5—Н5	0.9300
P1—O5A	1.735 (4)	С6—Н6	0.9300
O4—C7	1.422 (7)	C10-C11	1.369 (3)
С7—Н7А	0.9600	C10—C15	1.383 (3)
С7—Н7В	0.9600	C10—H10	0.9300
С7—Н7С	0.9600	C11—C12	1.365 (4)
O5—C8	1.442 (8)	С11—Н11	0.9300
C8—H8A	0.9600	C12—C13	1.370 (4)
C8—H8B	0.9600	С12—Н12	0.9300
C8—H8C	0.9600	C13—C14	1.384 (3)
O4A—C7A	1.446 (9)	С13—Н13	0.9300
C7A—H7A1	0.9600	C14—C15	1.371 (3)
С7А—Н7А2	0.9600	C14—H14	0.9300

С7А—Н7А3	0.9600	C16—H16A	0.9600
O5A—C8A	1.432 (10)	C16—H16B	0.9600
C8A—H8A1	0.9600	C16—H16C	0.9600
C8A—H8A2	0.9600	C17—H17A	0.9600
C8A—H8A3	0.9600	С17—Н17В	0.9600
P2—O8	1.4899 (14)	С17—Н17С	0.9600
O12-Co1-O11	87.46 (6)	H8A1—C8A—H8A3	109.5
O12—Co1—O3	175.32 (6)	H8A2—C8A—H8A3	109.5
O11—Co1—O3	89.17 (6)	O8—P2—O10	107.45 (8)
O12—Co1—O8	90.37 (5)	O8—P2—O9	112.00 (9)
O11—Co1—O8	175.81 (6)	O10—P2—O9	105.32 (8)
O3—Co1—O8	93.20 (6)	O8—P2—N2	118.12 (8)
O12—Co1—O7	88.52 (6)	O10—P2—N2	108.42 (9)
O11—Co1—O7	89.44 (5)	O9—P2—N2	104.80 (9)
O3—Co1—O7	94.69 (6)	S1—O2—Co1	128.04 (8)
O8—Co1—O7	86.92 (5)	S2—O7—Co1	129.91 (9)
O12—Co1—O2	88.98 (5)	P2	126.80 (8)
O11—Co1—O2	91.24 (6)	C17—O9—P2	120.67 (16)
O3—Co1—O2	87.86 (6)	C16—O10—P2	121.54 (14)
O8—Co1—O2	92.30 (5)	Co1—O11—H11A	116.3
O7—Co1—O2	177.37 (5)	Co1—O11—H11B	122.1
01—S1—O2	113.80 (9)	H11A—O11—H11B	98.9
01—S1—N1	110.36 (10)	Co1—O12—H12A	124.1
02—S1—N1	113.78 (9)	Co1—O12—H12B	121.0
01—S1—C1	106.44 (9)	H12A—O12—H12B	107.1
02-S1-C1	105.01 (9)	S1—N1—P1	125.91 (11)
N1—S1—C1	106.78 (9)	S2—N2—P2	127.90 (11)
06—\$2—07	113.82 (9)	C2-C1-C6	120.5 (2)
06— <u>S2</u> —N2	110.57 (9)	C2-C1-S1	121.42 (17)
07— <u>\$2</u> —N2	113 34 (9)	C6-C1-S1	118 12 (17)
06 - 82 - C15	105 87 (9)	C1 - C2 - C3	119.0 (2)
07 - 82 - C15	105 32 (9)	C1—C2—H2	120.5
$N_2 = S_2 = C_{15}$	107 28 (9)	C3—C2—H2	120.5
P1	127 44 (9)	C4-C3-C2	120.6(3)
O4A = P1 = O3	1209(2)	C4—C3—H3	1197
O4A = P1 = O5	56 9 (2)	С?—С3—Н3	119.7
03 = P1 = 05	121 88 (14)	C_{3} C_{4} C_{5}	120 3 (2)
O4A - P1 - N1	115.9 (2)	C3—C4—H4	119.8
$O_3 = P_1 = N_1$	117.82 (9)	C5—C4—H4	119.8
05 - P1 - N1	108.73(12)	C4-C5-C6	119.8 (2)
O4A = P1 = O4	41 9 (2)	C4—C5—H5	120.1
03 - P1 - 04	99 20 (13)	Сб-С5-Н5	120.1
05—P1—04	98 84 (17)	C1 - C6 - C5	1197(2)
N1—P1—O4	106 62 (15)	C1—C6—H6	120.1
04A—P1—05A	98.0 (2)	C5—C6—H6	120.1
03—P1—05A	92.25 (16)	C11-C10-C15	118.9 (2)
O5—P1—O5A	42.78 (16)	C11—C10—H10	120.5
N1—P1—O5A	103.27 (16)	C15—C10—H10	120.5
04—P1—O5A	137.9 (2)	C12-C11-C10	121.0 (2)

C7—O4—P1	122.6 (6)	C12—C11—H11	119.5
O4—C7—H7A	109.5	C10-C11-H11	119.5
O4—C7—H7B	109.5	C11—C12—C13	120.1 (2)
H7A—C7—H7B	109.5	C11—C12—H12	119.9
O4—C7—H7C	109.5	С13—С12—Н12	119.9
H7A—C7—H7C	109.5	C12—C13—C14	119.9 (2)
H7B—C7—H7C	109.5	C12-C13-H13	120.1
C8—O5—P1	119.5 (5)	С14—С13—Н13	120.1
O5—C8—H8A	109.5	C15-C14-C13	119.4 (2)
O5—C8—H8B	109.5	C15-C14-H14	120.3
H8A—C8—H8B	109.5	C13-C14-H14	120.3
O5—C8—H8C	109.5	C14-C15-C10	120.66 (19)
H8A—C8—H8C	109.5	C14—C15—S2	119.84 (16)
H8B—C8—H8C	109.5	C10—C15—S2	119.49 (16)
P1—O4A—C7A	113.0 (7)	O10-C16-H16A	109.5
O4A—C7A—H7A1	109.5	O10-C16-H16B	109.5
O4A—C7A—H7A2	109.5	H16A—C16—H16B	109.5
H7A1—C7A—H7A2	109.5	O10—C16—H16C	109.5
O4A—C7A—H7A3	109.5	H16A—C16—H16C	109.5
H7A1—C7A—H7A3	109.5	H16B—C16—H16C	109.5
H7A2—C7A—H7A3	109.5	O9—C17—H17A	109.5
C8A—O5A—P1	119.7 (7)	O9—C17—H17B	109.5
O5A—C8A—H8A1	109.5	H17A—C17—H17B	109.5
O5A—C8A—H8A2	109.5	O9—C17—H17C	109.5
H8A1—C8A—H8A2	109.5	H17A—C17—H17C	109.5
O5A—C8A—H8A3	109.5	H17B—C17—H17C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A				
O11—H11A···O3 ⁱ	0.88	1.93	2.7898 (19)	167				
O11—H11B···O6 ⁱ	0.90	1.92	2.811 (2)	167				
O12—H12A···O1 ⁱⁱ	0.92	1.98	2.855 (2)	157				
O12—H12B···O8 ⁱⁱ	0.88	1.96	2.8035 (18)	163				
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y$, $-z+1$.								

Fig. 1

Fig. 2

