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Hyperphosphorylated and aggregated human protein tau constitutes a hallmark of a multitude of neurodegenerative diseases
called tauopathies, exemplified by Alzheimer’s disease. In spite of an enormous amount of research performed on tau biology,
several crucial questions concerning the mechanisms of tau toxicity remain unanswered. In this paper we will highlight some of
the processes involved in tau biology and pathology, focusing on tau phosphorylation and the interplay with oxidative stress. In
addition, we will introduce the development of a human tau-expressing yeast model, and discuss some crucial results obtained in
this model, highlighting its potential in the elucidation of cellular processes leading to tau toxicity.

1. Introduction

Alzheimer’s disease (AD) is the most common age-related
neurodegenerative disorder, clinically manifested by a pro-
gression from episodic memory problems to a slow global
decline of cognitive function that leaves patients with end-
stage AD bedridden and dependent on custodial care, with
death occurring on average 9 years after diagnosis [1].
The two distinctive key hallmarks of AD consist of senile
plaques (SP), composed of extracellular deposits of amyloid-
β peptides (Aβ), and intracellular neurofibrillary tangles
(NFT), formed by accumulation of abnormal filaments
of protein tau, in brain regions that serve memory and
cognition [2, 3]. Although numerous studies have been
performed on both Aβ and tau biology, the exact molecular
mechanisms behind the pathology are still not completely
elucidated. Current therapies used to treat AD patients are
aimed to ameliorate symptoms for a limited period. At this
point, there is no approved treatment with a proven disease-
modifying effect [1, 4].

Early studies mainly focused on the Aβ biology, in
part because several genetic mutations leading to early
onset familial AD were identified in the genes encoding
the β-amyloid precursor protein (APP) and presenilins,
components of the γ-secretase complex, which are involved
in the formation of Aβ peptides [5]. Over the past decade,

however, tau biology has received increasing attention. In
1998, for instance, it was demonstrated that mutations in
tau were responsible for another neurodegenerative disease,
frontotemporal dementia and Parkinsonism linked to chro-
mosome 17 (FTDP-17) [6–8]. These mutations unequivo-
cally proved that tau malfunctioning, in itself, can result
in neurodegeneration and cognitive decline. In addition,
tau is implicated in neurodegeneration in various other
diseases, such as Pick’s disease and progressive supranuclear
palsy (PSP), which, similar to AD and FTDP-17, are all
characterized by the appearance of intraneuronal inclusions
of aggregated tau proteins [9–11]. All the diseases marked
by an abnormal tau pathology are collectively annotated as
“tauopathies” and strongly suggest that tau malfunction is
a major factor underlying neurodegeneration in all these
diseases. In this respect, many studies concerning AD have
indicated an intimate link between Aβ and tau pathology,
whereby Aβ accumulation would constitute an upstream
event, triggering tau pathology and neurodegeneration [12,
13]. Indeed, amyloid deposition was demonstrated to pre-
cede tau tangle formation in a triple transgenic mouse model
of Alzheimer’s disease [14]. Furthermore, administration of
Aβ42, the most fibrillogenic form of Aβ peptide, has been
shown to induce the formation of tau-containing filaments,
both in tissue culture [15], as in P301L transgenic mice
[16]. Importantly, tau has also been shown to be essential
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for Aβ-induced toxicity. In cultured hippocampal neurons,
tau knockout resulted in the loss of neurodegeneration in
the presence of Aβ [17]. In addition, reducing endogenous
tau was shown to ameliorate Aβ-induced behavioral deficits
in an AD mouse model, without altering their high Aβ
levels [18]. Thus, all these data indicate that, while Aβ
accumulation may represent the prime trigger in the onset
of AD, tau pathology likely constitutes the crucial effector
of neurodegeneration in this disease. Key questions that
remain to be solved involve the molecular nature of the toxic
tau species as well as the molecular mechanisms leading to
neurodegeneration.

2. Tau: Physiological Functions

Tau, also known as microtubule associated protein tau
(MAPT), is predominantly expressed in neurons where its
main function seems to be the stabilization of microtubules
(MTs), particularly in axons. The MAPT gene is located
on chromosome 17 and consists of 16 exons [19, 20]. In
the central nervous system, alternative splicing of exons 2,
3, and 10 yields six tau isoforms (Figure 1). The isoforms
differ by the presence or absence of one or two acidic inserts
at the N-terminal domain, and whether they contain three
or four repeats of a conserved tubulin binding motif at
the C-terminal. The tubulin-binding repeat region is the
central part of the microtubule-binding domain (MTBD),
and tau isoforms with 4 repeats (4R-Tau) bind microtubules
with greater affinity than isoforms with three repeats (3R-
Tau). In normal adult human tissue, the ratio of 4R- to
3R-Tau is ∼1 [21, 22]. The MT-binding affinity of tau is
posttranslationally regulated primarily by serine/threonine
directed phosphorylation, which can effectively modulate
the binding affinity of tau for MTs [23]. Through its
ability to modulate MT dynamics, tau plays a vital role
in regulating the appropriate morphology of neurons. In
addition, as the MT network is key to the sophisticated
transport machinery allowing for transport of molecules and
organelles (e.g., mitochondria and vesicles) along the axons,
tau clearly can have profound effects on axonal transport
and, hence, on the function and viability of neurons and their
highly extended processes [24]. Under normal physiological
conditions, tau is in a constant dynamic equilibrium, on and
off the MTs. As MT-binding of tau is largely controlled by
its phosphorylation status, cellular morphology and axonal
transport are critically dependent on the balance of the
activities of tau kinases and phosphatases.

Interestingly, although the primary function of tau
appears to be the stabilization of microtubules, it has been
shown that tau can also interact, either directly or indirectly,
with actin and affect actin polymerization as well as the
interaction of actin filaments with microtubules [26–31].
Furthermore, tau interacts with the plasma membrane and
with several proteins involved in signal transduction, in
most part via its N-terminal projection domain [32–39]. The
binding of tau to signalling molecules implies that tau is
either a downstream substrate or a regulator of the activity
of the proteins it binds, or even both. For instance, tau is
not only phosphorylated by the Fyn kinase [40, 41], it also
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Figure 1: Schematic representation of the six isoforms of tau,
present in the central nervous system, and their amino acid lengths.
The isoforms are generated by alternative splicing of exons 2, 3, and
10. As shown for the longest isoforms (2N4R), tau can be divided
into the projection domain and the assembly domain, based on
the cleavage by chymotrypsin after Tyr197 [25]. While tau binds to
MT via the microtubule-binding domain (MTBD) in the assembly
domain, sequences in the projection domain regulate, among
others, the spacing between MT. In an alternative description, tau
is subdivided into 4 domains: an N-terminal acidic region, followed
by the proline-rich region, the MTBD, and the C-terminal tail.

modulates Fyn activity [42]. Interestingly, Fyn is shown to
play a crucial role in the recruitment of both Aβ and tau into
lipid rafts [43, 44]. The importance of these interactions of
tau with proteins and structures other than the actin and
microtubule cytoskeleton is largely unknown, especially in
the context of tau-mediated neurodegeneration. Still, these
findings support the notion that tau is prone to a large
number of heterogeneous interactions, and irregularities of
some of these interactions may lead, or contribute, to protein
misfolding and aggregation, and even cell death through, as
yet, unknown mechanisms.

3. Tau Pathology

As mentioned above, the progressive accumulation of NFT,
composed of insoluble, hyperphosphorylated tau in a fila-
mentous form, is a common hallmark of all tauopathies,
including AD. As the severity of dementia in AD was shown
to correlate well with NFT load, in contrast to SP load [45–
47], these aggregated forms of tau were, at first, thought
to be the prime toxic component. However, this concept
is still under debate, as several lines of evidence indicate
that the tau aggregates are not major toxic components,
and may even represent a protective mechanism, by which
the neuronal cell attempts to detoxify other harmful species
of tau by sequestering them into relatively inert aggregates
[10, 48]. Indeed, tau-mediated neuronal death, in the
absence of tau filaments, is observed in Drosophila and some
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transgenic mouse models overexpressing human tau [49–
51]. In addition, mouse models of tauopathies exist, in which
a dissociation was found between tangle formation in some
areas distinct from neuronal loss in others [52, 53]. Finally,
in the transgenic mouse model rTg4510, conditionally
expressing the human tau P301L mutant, age-related NFT
develop, along with neuronal loss and memory impairment.
Yet, subsequent suppression of the mutant tau was shown
to stabilize neuronal loss and improve memory function,
even though NFT continue to accumulate [54]. Further
detailed analysis of tau pathology in this mouse model
suggested that the accumulation of early-stage aggregated
tau species, including hyperphosphorylated multimers of
tau, and not the end-stage NFT, are correlated with the
development of cognitive deficits during the pathogenic
progression of tauopathy [55]. Thus, these studies suggest
that tau-mediated neuronal death does not require the
formation of NFT. Rather, nonfilamentous tau, in a more
soluble, hyperphosphorylated, and possibly oligomeric state,
may represent the prime neurotoxic tau component.

Apart from the exact nature of the toxic tau species,
additional controversy surrounds the question of the molec-
ular mechanisms mediating cell death. Regarding this
issue, it is becoming increasingly evident that tau-mediated
neurodegeneration may encompass multiple mechanisms,
including both loss of normal functions and toxic gains-of-
functions acquired by the aggregates and their precursors
(Figure 2).

Tau pathology might arise from several cytoskeleton-
mediated defects. Since the major physiological function
ascribed to tau is the regulation of MT dynamics, tau mal-
function has been reported to induce a loss of MT stability
[56–58] and hamper proper axonal transport [59–63].
Impairment of these cellular functions initiates synaptic
damage, an early event observed in multiple tauopathies [64–
68], ultimately leading to neurodegeneration. In addition,
tau may also mediate neurotoxicity, at least in part, by alter-
ing the organization and dynamics of the actin cytoskeleton
[27].

Through its ability to interact with the plasma membrane
and to bind a variety of proteins, tau is proposed to
participate in cell signalling [32–38]. Therefore, abnormal
alterations in the phosphorylation of tau, and possibly
other abnormal tau modifications, may aberrantly affect its
association with the plasma membrane and with various
signaling molecules, possibly leading to a toxic outcome. In
this respect, a model for the molecular events leading to
neurodegeneration in AD was recently proposed, connecting
amyloid and tau dysfunction to a Fyn-dependent, NMDA
receptor-mediated excitotoxicity [69–72]. Although several
aspects of this model need further confirmation, it accounts
for the tau-dependency of Aβ-induced toxicity [17, 18], as
well as the observed requirement of activation of NMDA
receptors to induce cell death by tau overexpression in
cultured neurons [69].

Aside from phosphorylation, proteolytic processing of
tau constitutes another intensely studied posttranslational
modification [25]. Truncation of tau may generate amy-
loidogenic tau fragments that initiate the aggregation of tau

and/or result in tau fragments which induce neurodegener-
ation through unknown mechanisms, independently of tau
aggregation. Caspase-mediated tau cleavage is an early event
in the AD progression [73]. Although caspases are known
to play essential roles in apoptosis, the involvement of the
latter process in the mediation of tau-induced cell death is
still obscure, as both proapoptotic and antiapoptotic features
of tau are described in the literature [74–76]. Recently, in
vivo imaging techniques in the transgenic rTg4510 mouse
model revealed a dissociation between caspase activation
and acute neuronal death in tangle-bearing neurons [77].
Therefore, these authors suggested that neurons undergo a
slow, nonapoptotic but caspase-associated form of cell death
in tauopathy, in which caspase cleavage of tau seeds an
aggregate that actually sequesters toxic tau species. Although
this process delays cell death, it results in a sick neuron
that loses connections and eventually dies. Aside from the
well-known involvement of caspases in tau processing, the
proteasome is also shown to degrade tau [78, 79], though
hyperphosphorylated tau seems resistant to this proteasome-
mediated clearance [13, 80]. Interestingly, tau aggregates
have been reported to inhibit proteasome activity [81],
correlating with the decreased activity of the proteasome in
AD-affected brain [82, 83].

As illustrated by all the studies mentioned above, tau
dysfunction likely contributes to neurodegeneration via mul-
tiple mechanisms, acting at different stages of disease. Still,
the exact nature of toxic tau species remains unknown, as
is the sequence of events leading to tau-mediated cell death.
Indeed, although correlations are quite easy to observe, it
is more difficult to discern which is cause, and which is
consequence. In addition, it is still unclear which aspects of
aging, the greatest risk factor of all for disease development,
are involved in the onset of tau pathology, and to what
extent. Aging is known to affect a plethora of processes, such
as glucose and insulin metabolism, inflammation, oxidative
stress management, and the protein quality control system.
For most of them, the molecular mechanisms connecting
these processes to tau pathology are still largely elusive
[25, 88–91]. The general trend, however, is that there seems
to be a bidirectional relation between these processes and
tau pathology, because defects in these processes seem to
induce tau hyperphosphorylation and aggregation and, on
the other hand, tau pathology results, for instance, in
increased oxidative stress and inflammation. Thus, a picture
emerges in which, when cellular stress surpasses a certain
threshold level, tau toxicity is induced and a seemingly
unstoppable self-sustaining cycle is created, propagating
the disease throughout the brain. Further elucidating the
causes of tau malfunction may provide new insights into
the initiating factors of tau pathology and first toxic tau
intermediates. This information will be of great value in
the development of new therapeutic strategies combating
tau pathologies. We will now briefly review cellular aspects
involved in tau phosphorylation and oxidative stress, two
important determinants of tau pathology, since, as we will
discuss further below, we recapitulated elements of these
features in our humanized yeast system.
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Figure 2: Chain-of-events involved in the onset and propagation of tau pathology. Several upstream events have been shown to lead
to tau malfunctioning, such as Aβ-mediated effects in Alzheimer’s disease. Tau hyperphosphorylation and truncations are thought to
constitute early and crucial modifications involved in tau pathology, and may mediate conformational changes leading to oligomerization
and aggregation into higher-order aggregates, such as paired-helical filaments (PHF) and end-stage neurofibrillary tangles (NFT). Different
forms or tau, especially hyperphosphorylated, oligomeric species, are thought to mediate toxicity via multiple mechanisms, including both
loss of normal functions and gain of toxic functions. Note that some consequences of tau toxicity, such as stimulation of oxidative stress
and neuroinflammation, reinforce further tau malfunctioning, creating a detrimental, self-sustaining cycle that propagates tau pathology
throughout the brain. See text for details.

3.1. Regulation of the Phosphorylation Status of Tau. The
phosphorylation of tau plays a physiological role in regu-
lating the affinity of tau for MT. In addition, tau in AD,
and other tauopathies, is characterized by an abnormally
hyperphosphorylated state. As the phosphorylation state of
tau is controlled by the activities of various tau kinases

and phosphatases, these enzymes, and their regulators, have
received much attention for their role in tauopathies.

Two groups of kinases have been implicated in tau
phosphorylation: proline-directed protein kinases (PDPKs)
and non-PDPKs. The PDPKs include glycogen synthase
kinase 3β (Gsk-3β), cyclin-dependent protein kinase 5
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(Cdk5), mitogen-activated protein kinase, and several stress-
activated protein kinases (SAPK). Gsk-3β and Cdk5 are the
two best characterized in vivo tau kinases [92]. Both kinases
copurify with MT [93–95], and phosphorylate tau within
a cellular environment [96–98]. Data from in vitro studies
indicate that phosphorylation of tau by Gsk-3β inhibits its
ability to promote MT assembly [99, 100]. Intriguingly, Gsk-
3β pseudophosphorylated mutants of tau not only displayed
a decreased affinity for MT, but also reduced inducer-
initiated rates of nucleation and polymerization in vitro,
indicating that phosphorylation of tau by Gsk-3β might not
per se lead to increased tau aggregation [101]. Multiple lines
of evidence indicate that Gsk-3β is a key player affecting
tau toxicity in vivo. For instance, the cotransfection of
tau with Gsk-3β in a cell culture model results in more
cell death compared to the expression of tau and mutant
(inactive) Gsk-3β, suggesting that tau phosphorylation by
Gsk-3β is toxic [102]. In addition, inhibition of Gsk3 by
lithium not only reduced tau phosphorylation in vivo, but
also lowered the level of aggregated tau, compared with
controls [103]. Like Gsk-3β, Cdk5 is intensively investigated
for its role in the development of tau pathology. Tau is a
proven Cdk5 target in vivo [92] and in vitro, it was shown
that phosphorylation by Cdk5 promotes tau dimerization
[104]. Activation of Cdk5, by overexpressing its activator
p25, accelerates tau phosphorylation and aggregation in mice
overexpressing mutant P301L tau [105], and has even been
shown to contribute to tau pathology in mice expressing
only endogenous tau [106, 107]. Of interest, Cdk5 activity
is elevated in the prefrontal cortex of AD brain, where
NFT are found, but not in the cerebellar cortex, suggesting
a relationship between deregulated Cdk5 activity and tau
pathology in humans [108, 109]. Although Cdk5 is shown to
phosphorylate tau directly [92], there are reports that Cdk5
activity also affects the tau phosphorylation status indirectly
[110, 111], which, under certain conditions, may occur via a
Cdk5-mediated inhibition of Gsk-3β activity [112]. Among
the tau non-PDPKs are cyclic AMP-dependent protein kinase
(PKA), calcium- and calmodulin-dependent protein kinase
II (CaMKII), and microtubule affinity regulating kinase
(MARK). MARK phosphorylates tau at KXGS motifs within
the MTBD of tau, thereby inducing the release of tau
from MT [113, 114]. Interestingly, in an in vitro study,
it was shown that phosphorylation of tau by MARK and
PKA led to a strongly reduced affinity of tau for MT,
along with a decrease of tau’s ability to assemble into
paired helical filaments [114]. Although at first glance this
may contradict the correlation of hyperphosphorylated tau
with the occurrence of NFT in tauopathies, this result is
in agreement with the hypothesis that not the NFT, but
soluble hyperphosphorylated forms of tau represent the
toxic species as discussed above. Unbound tau, generated by
MARK and/or PKA phosphorylation, may subsequently be
phosphorylated by other kinases, generating the notorious
“hyperphosphorylated” tau. In fact, the phosphorylation
of tau by MARK may be a prerequisite for the action of
downstream kinases, including Gsk-3β and Cdk5 [115].

Obviously, the phosphorylation state of tau is dictated
not only by kinase activity, but also by the activities of tau

phosphatases. Tau is dephosphorylated by protein phos-
phatases 2A (PP2A) and, to a lesser extent, by PP1, PP2B,
and PP5 [37, 116–118]. In AD brain, it is found that
the mRNA and protein expression levels of some of these
phosphatases, as well as their activities, are decreased [118–
124]. Therefore, downregulation of phosphatase activity,
especially that of PP2A, can contribute to increased levels
of hyperphosphorylated tau. In addition, Pin1, a member
of the peptidyl-prolyl cis-trans isomerases, is involved in
the regulation of the phosphorylation state of tau, as
Pin1 binds tau when it is phosphorylated at Thr231 and
facilitates its dephosphorylation by PP2A [39, 125–127].
Notably, Pin1 is significantly downregulated and oxidized in
the AD hippocampus [128]. Furthermore, in AD neurons,
Pin1 binds hyperphosphorylated tau in filaments, potentially
depleting soluble Pin1 levels [39, 129].

As hyperphosphorylation of tau constitutes an early
modification, inducing further conformational changes and
aggregation of tau, modulation of the activities of tau kinases
and phosphatases represents an appealing strategy to combat
tau pathologies. Major focus has been on modulation of
important tau kinases, especially Gsk-3β [103, 130], though
no successful outcome has yet been reported for clinical trials
using Gsk-3β inhibitors, such as lithium and valproic acid
[4].

3.2. Oxidative Stress and Tau Pathology. Accumulating evi-
dence suggests that, besides the accumulation of protein
aggregates, oxidative stress and mitochondrial dysfunction,
which are intimately linked, also play an important role in
the etiology of neurodegenerative diseases, including AD
[89, 90]. As mitochondria are a major source of reactive
oxygen species (ROS), malfunctions of these organelles are
thought to be a prime contributor to cellular oxidative
stress. Additionally, mitochondrial dysfunction will lead to
decreased energy production, which puts an extra burden
on neurons, which are heavily dependent on high ATP levels
to sustain many biochemical processes, especially involving
neurotransmission at their synapses. Numerous reports are
available demonstrating direct Aβ-mediated impairment of
mitochondrial function [91]. In contrast, the link between
tau and mitochondrial function is still more elusive. Still, a
proteomic and functional analysis showed a mitochondrial
dysfunction in P301L mice, together with reduced NADH-
ubiquinone oxidoreductase activity, and, with age, impaired
mitochondrial respiration and ATP synthesis [131]. In
the aged transgenic mice, mitochondrial dysfunction was
associated with higher levels of ROS, and increased tau
pathology revealed modified lipid peroxidation levels and
the upregulation of antioxidant enzymes in response to
oxidative stress. Interestingly, as the P301L mice displayed an
increased vulnerability towards Aβ insult, this suggests that
Aβ and tau pathology work synergistically on mitochondria,
through distinct mechanisms [132]. Although a direct
impact of tau on some mitochondrial proteins/enzymes is
hypothesized, this remains to be confirmed. In another
study, the addition of annonacin, a natural mitochondrial
complex I inhibitor, caused a redistribution of tau from the



6 International Journal of Alzheimer’s Disease

axons to the cell body, along with a retrograde transport
of mitochondria and cell death [133]. Retrograde transport
of dysfunctional mitochondria is a general feature, priming
them for elimination by autophagy [134–136]. Interestingly,
although annonacin addition caused an increase in oxidative
stress, ATP depletion was shown to be the primary trigger
for tau relocalization, mitochondrial retrograde transport,
and cell death [133]. Thus, although tau pathology seems to
induce mitochondrial dysfunction, leading to increased ROS,
the concurrent decreased ATP levels must not be overlooked,
as both these signals can play vital roles in neuronal survival.

Oxidative stress in AD and other neurodegenerative dis-
eases has also been linked to increased brain levels of certain
metals, especially iron (Fe), copper (Cu), and zinc (Zn) [137–
139]. Both Fe and Cu are capable of inducing oxidative stress
by stimulating free radical formation (e.g., hydroxyl radicals
via Fenton reaction). In AD, Fe- and Cu-induced oxidative
reactions are accelerated by Aβ, and Aβ oligomerization is
stimulated in the presence of these metals. Interestingly, it
was recently shown that the APP protein functions as an
iron-export ferroxidase, whose activity is inhibited by Zn
[140]. As Zn is locally concentrated in Aβ-plaques [141],
this will lead to excessive Fe retention in APP expressing
neurons, creating a self-sustaining cycle, wherein increased
Fe retention induces further Aβ-oligomerization and plaque
formation, further inhibiting Fe export. In regards to tau
biology, metals may influence the self-assembly of tau, as low
micromolar concentrations of Zn have been shown to accel-
erate the fibrillization of human tau via the bridging of two
cysteine residues under physiological reducing conditions
[142]. Under oxidizing conditions, however, intermolecular
disulfide cross-linking of tau can occur, facilitating its
oligomerization [143]. Furthermore, similar to Aβ plaques,
NFT were found to be capable of adventitious binding of Cu
and Fe in a redox-competent manner, indicating that NFT
may exert prooxidant or antioxidant activities, depending on
the balance among cellular reductants and oxidants in the
local environment [144, 145].

Finally, oxidative stress not only results in directly dam-
aging modifications of cell constituents, ROS also function as
signalling molecules, affecting the activity of several kinases
and phosphatases. Surprisingly, oxidative stress by addition
of hydrogen peroxide resulted in a dephosphorylation of
tau [146]. Subsequent studies indicated that, on one hand,
oxidative stress induces a Pin1-mediated activation of pro-
tein phosphatase 2A [125]. On the other hand, an increased
activity of protein phosphatase 1 (PP1) was observed, due to
a Cdk5-mediated inhibition of inhibitor-2, a negative regu-
lator of PP1 [111]. Thus, although Cdk5 is generally consid-
ered as a bona fide in vivo tau kinase, these and other results
indicate that this kinase can influence the phosphorylation
state of tau in multiple, antagonizing ways [92, 110–112].
Intriguingly, in AD brain, oxidative stress is observed, though
tau is found in a hyperphosphorylated state, in contrast
to the observed oxidative stress-induced dephosphorylation
of tau described above. In this respect, it was found that
oxidative stress combined with okadaic acid, which inhibits
both PP1 and PP2A, results in a hyperphosphorylated tau
species which was significantly resistant to degradation [80].

These data suggest that, in tauopathies, a combination of
oxidative stress and hyperphosphorylation may be directly
responsible for the accumulation of tau aggregates.

Considering the fact that oxidative stress constitutes a
hallmark of numerous neurodegenerative diseases, strategies
that ameliorate this stress are studied intensively as possible
therapeutic treatments. Several approaches have been pos-
tulated, targeting different aspects of oxidative stress. These
include the supplementation with antioxidants or a mixture
of antioxidants (e.g., vitamin C and E) [138], the use of
specific mitochondria-targeted antioxidants [90], and the
modulation of metal bioavailability [139, 147]. Promising
initial results of some of these strategies have been described,
and outcomes of clinical trials are heavily anticipated.

4. A Humanized Yeast Model to
Study Tau Biology

The basic cellular machinery and molecular processes
between the budding yeast Saccharomyces cerevisiae and
other eukaryotic species, including humans, appears to be
highly conserved. Consequently, as many yeast genes have
functional orthologues in mammalian organisms, yeast has
been an effective model system for the study of diverse
cellular processes, including mechanisms involved in glucose
response [148], apoptosis [149], and cancer [150]. In
addition, so-called “humanized” yeast systems have been
constructed to study disease-related proteins that have no,
or no apparent, functional yeast orthologue, such as the
human tau protein. These humanized yeast systems have
also proven to be valuable tools to unravel disease-related
molecular processes and to identify novel medicinal com-
pounds [151]. Examples of this type of studies in the field
of neurodegenerative disorders include protein-misfolding
disorders such as Alzheimer’s, Parkinson’s, and Huntington’s
disease [152, 153].

In our laboratory, we expressed different isoforms and
clinical FTDP-17 mutant forms of tau in yeast, and found
that tau exhibits many of the same features as it does
in neurons of patients with AD, that is, hyperphosphory-
lation, conformational changes, and partial accumulation
into aggregates [84–86]. We will now go over our most
important findings on the impact of phosphorylation as well
as oxidative stress on tau properties in our yeast model.

4.1. Phosphorylation of Tau in Yeast and Its Consequences.
Phosphorylation of tau in mammalian cells controls its
interactions with MT while its hyperphosphorylation is
thought to cause, or contribute to, the aggregation and
toxicity of this protein. In order to assess tau phosphorylation
in yeast, we employed a series of phosphospecific tau
antibodies to scan phosphorylated residues on tau. We
found that tau, when expressed in yeast, became reactive
to a multitude of these antibodies, proving the existence
of yeast kinases and/or phosphatases able to recognize
and (de)phosphorylate human protein tau (Figure 3) [84].
In addition, we could detect tau with the conformation-
dependent antibody MC1, a marker for pathological tau
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Figure 3: Phosphoepitope mapping of human protein tau (2N4R isoform) in yeast. Western blotting with indicated monoclonal antibodies
of total protein extracts from wild-type (lanes 1), mds1Δ (lanes 2), and pho85Δ (lanes 3) yeast strains. The arrowhead on the right denotes a
slow-mobility, hyperphosphorylated tau species. Adapted from [84] with permission from the publisher and the authors.

filaments and their precursors [154–156], and demonstrate a
reproducible amount of tau present in the sarkosyl-insoluble
fraction (SinT, sarkosyl-insoluble tau), pointing to tau
aggregation in yeast [84].

To study the role of yeast kinases in the phosphorylation
and aggregation of tau, we set out to test the involvement
in tau phosphorylation of Mds1 and Pho85, functional yeast
orthologues of mammalian Gsk-3β and Cdk5, respectively.
Deletion of MDS1 led to a significant decrease in tau’s
immunoreactivity to both AD2 and PG5. For the AD2
epitope (P-S396/P-S404), this was expected, as it constitutes
a typical Gsk-3β target [50, 157, 158]. Phosphorylation
of tau at S409 (PG5 epitope), however, is not a typical
substrate of Gsk-3β, but of PKA, indicating that Mds1 might
affect phosphorylation at this site indirectly [159, 160].
Interestingly, deletion of PHO85 resulted in a hyperphos-
phorylation of tau, mainly at the AD2 and PG5 epitopes
[84]. This hyperphosphorylation was accompanied by an
increase in MC1-reactive tau species and increased SinT
levels, compared to control levels. It thus appears that Pho85
does not phosphorylate tau directly in yeast. This may not
be so strange, as, also in mammalian cells, evidence exists
that Cdk5 has indirect effects on the phosphorylation status
in tau, exemplified by the study of Hallows et al., also
demonstrating an increase in tau phosphorylation upon
Cdk5 inactivation, by knockout of its activating partner p35
[110]. Since deletion of MDS1 and PHO85 both affect the
AD2 and PG5 epitopes in opposite ways [84], it is tempting
to speculate that Pho85 exerts its effects on tau by inhibiting
Mds1. Although this has not yet been proven in yeast, we
demonstrated, by means of yeast epistasis analysis combined
with complementation studies using the human Gsk-3β
and Cdk5 kinases, that Mds1/Gsk-3β genetically operates
downstream of Pho85/Cdk5 in the phosphorylation of tau in
our yeast system [86]. Intriguingly, studies in a mouse model
also imply that Cdk5 might inhibit Gsk-3β activity under
certain conditions [112].

Additional data on the physiological consequences of
tau phosphorylation in a yeast environment were obtained
via two separate in vitro tests, for which tau was purified
from wild-type (WT), mds1Δ, and pho85Δ yeast strains
using an anion exchange chromatography method [84, 85].

We could confirm that, after purification, tau retained
its phosphorylation status, characteristic for each strain.
In a first assay, we observed that the in vitro tau fila-
ment formation was much faster when using tau isolated
from the pho85Δ strain, compared to tau extracted from
either a WT and mds1Δ yeast strain, consistent with the
hyperphosphorylated state of tau in a pho85Δ strain [84].
In addition, further fractionation of tau extracts yielded
a hyperphosphorylated, MC1-reactive subfraction, and we
demonstrated that this species could vastly accelerate the
in vitro aggregation of tau extracted from a WT strain,
implicating a seeding capacity of this hyperphosphorylated
tau species. In a second series experiments, we investigated
the in vitro MT binding capacity of purified tau, using taxol-
stabilized MT formed with pig tubulin [85]. In this assay, we
could demonstrate an inverse relation between MT binding
and tau phosphorylation status, as hyperphosphorylated tau,
isolated from pho85Δ cells, showed the poorest MT binding,
followed by tau extracted from a WT strain, and finally tau
extracted from the mds1Δ strain, which showed impaired
phosphorylation.

To gain further insight into the relation between tau
phosphorylation and aggregation in our yeast system, several
clinical FTDP-17 mutants were expressed in WT, mds1Δ, and
pho85Δ yeast strains, and their phosphorylation patterns and
SinT levels were analyzed [86]. Most notably, compared to
wild-type tau, both the P301L and R406W mutants displayed
a clear reduction in the phosphorylation of S409 (PG5
epitope) and decreased SinT levels, particularly in a pho85Δ
strain. These findings suggested that phosphorylation of
tau at S409 might be an important determinant for tau
aggregation. To confirm this hypothesis, we mutagenized the
PG5 epitope and expressed the synthetic tau-S409A mutant
and its pseudophosphorylated counterpart tau-S409E in WT
and pho85Δ strains. Analysis of these synthetic mutants
indeed revealed a marked decrease of tau-S409A aggregation
while the tau-S409E mutant displayed SinT levels higher
than, or comparable to, wild-type tau (Figure 4). Interest-
ingly, we demonstrated that phosphorylation of S409 is
also detrimental for tau-MT interaction [85], revealing a
close, antagonistic link between the ability of tau to bind
MT and its ability to aggregate. Intriguingly, the tau-S409A
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Figure 4: Determination of soluble (SolT) and sarkosyl-insoluble (SinT) fractions from wild-type tau or the synthetic mutants tau-S409A
and tau-S409E, as obtained in WT cells (a) or pho85Δ cells. (b) Western blot with tau5 of a representative experiment is shown on the left,
and quantifications of SinT levels for each experiment are shown on the right. Adapted from [86] with permission from the publisher and
the authors.

mutant was characterized with a lower AD2 reactivity while
the pseudophosphorylated tau-S409E exhibited an increased
immunodetection with the AD2 antibody, especially in the
WT strain [86]. Thus, phosphorylation of tau at the PG5 and
AD2 epitopes seems interdependent, and phosphorylation
of tau at S409 might prime subsequent phosphorylation of
S396/S404. These observations are in line with data from the
brain of AD patients, demonstrating that the formation of
the PG5 epitope on tau is an early event in the pretangle
stage, and precedes the phosphorylation at S396, which is
characteristic for NFT [161].

In conclusion of this part, we can say that we have
demonstrated that, when expressed in yeast, tau is phos-
phorylated at multiple pathologically relevant sites. Inter-
estingly, Mds1 and Pho85, the yeast orthologues of human
Gsk-3β and Cdk5, respectively, play crucial roles in the
phosphorylation of several of these epitopes. Furthermore,
our data substantiate the notion that hyperphosphorylation
of tau leads to a loss of MT-binding capacity, along with
the induction of conformational changes, detectable by the

MC1 antibody, which ultimately lead to tau aggregation
[155, 156]. Finally, we show that phosphorylation of S409 is
a crucial mediator in both tau aggregation and MT binding.
It is important to emphasize that the tau-MT binding assays
described here were performed in vitro using MT built from
pig tubulin. We are, as yet, unable to demonstrate binding
of tau to yeast MT, likely due to differences in yeast and
mammalian tubulins [162, 163].

4.2. In Yeast, Oxidative Stress and Mitochondrial Dysfunction
Enhance Tau Aggregation Independently of Phosphorylation.
As discussed previously, evidence exists suggesting a link
between oxidative stress and tau pathology. We investigated
the effects of oxidative stress and mitochondrial dysfunction
on tau aggregation by adding Fe2+, a known inducer of
oxidative stress, to yeast cells, or by examining SinT lev-
els in specific mitochondrial mutants, respectively [86].
Interestingly, in both conditions, markedly increased tau
insolubility was observed through mechanisms that are not
strictly dependent on phosphorylation of tau, but rather
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Table 1: Cellular processes involved in tau biology and/or pathology, and their amenability for study in the humanized yeast system. Readers
should be aware that this table is not a complete overview of all cellular processes involved in tau biology/pathology and is meant to illustrate
some opportunities and limitations of the humanized yeast system. Note the multitude of processes and orthologues, not yet studied in yeast
at present.

Processes involved in tau
biology/pathology

Opportunity for humanized yeast system?

Kinases/phosphatases determining the
phosphorylation status of tau

(i) Multitude of phosphotau species demonstrated in yeast (see Figure 3 and [84])
(ii) Yeast orthologues of important tau kinases

(1) Gsk-3β (Mds1) (studied in [84–86])
(2) Cdk5 (Pho85) (studied in [84–86])
(3) PKA (Tpk1-3)
(4) CaMKII (Cmk1/Cmk2)

(iii) Yeast orthologues of important tau phosphatases
(1) PP1 (Glc7)
(2) PP2A (Pph21/Pph22, Sit4)

(iv) Yeast orthologue of Pin1 (Ess1)

Tau mutations
Several clinical FTDP-17 tau mutants have been expressed in yeast, and the effects of their
mutation on tau phosphorylation and aggregation have been investigated [86]

Effect of oxidative stress and/or
mitochondrial dysfunction on tau
pathology

Both oxidative stress and mitochondrial dysfunction are amenable to yeast studies
(i) Fe2+-induced oxidative stress increases tau aggregation (SinT) in yeast [86]
(ii) Tau aggregation (SinT) is increased in mitochondrial mutants sod2Δ and rim1Δ [86]

Tau binding to
(i) MT
(ii) Actin
(iii) (plasma) membrane

(i) Binding of tau to yeast MT not (yet) demonstrated, although tau purified from yeast
binds to mammalian (pig) MT in vitro [85, 86]

(ii) Binding of tau to yeast actin cytoskeleton is not yet investigated
(iii) Binding of tau to yeast plasma membrane or other intracellular membranes is not yet

studied

Processes involved in tau clearance
(i) apoptosis/caspase-cleavage of tau
(ii) ubiquitin-proteasome system
(iii) autophagic-lysosomal system

All these processes are present in yeast and can thus be studied for their effects on tau biology
in the humanized yeast system
Note: yeast does not contain true orthologues of mammalian caspases, though it contains a
caspase-related protease Yca1 (termed “meta”caspase), involved in yeast apoptosis [87]. The
cleavage-specificity of caspases (cleave after aspartic acid) is different from that of
metacaspases (cleave after arginine or lysine)

Aging
Stationary-phase yeast can serve as a model for aging effects. Not yet studied for effects on tau
biology/pathology in the humanized yeast system

Aberrant cellular signalling
As tau has no apparent yeast orthologue, yeast cellular signalling pathways are intrinsically
independent on normal tau functioning. Neuron-specific, tau-dependent signalling pathways
are therefore not amenable for studies in yeast

Inflammation
Not applicable for studies in yeast. Though we note that one of the major consequences of
inflammation is the generation of oxidative stress, which can be studied in a yeast
environment

act mainly in parallel. Close examination of Western blot
profiles indicated that oxidative stress led to a reduction in
the level of tau dimers, concomitant with an increase in
higher-order oligomers. Furthermore, a 35 kDa degradation
product appeared after the addition of Fe2+, indicative
of altered processing and/or diminished clearance of tau
fragments under this condition. Strikingly, application of
oxidative stress led to decreased phosphorylation of tau at
specific epitopes, especially AD2 and PG5 (Figure 5). This
is consistent with several studies in neuronal cells showing
a dephosphorylation of tau upon exposure to oxidative
stress [111, 125, 146]. Two mechanisms accounting for this
oxidative stress-induced tau dephosphorylation have been
described, both of which seem to be conserved in yeast. In the
first, increased activity of protein phosphatase 1 (PP1) was
observed, due to a Cdk5-mediated inhibition of inhibitor-2,
a negative regulator of PP1 [111]. Interestingly, the Cdk5/p35
complex is functionally equivalent to the yeast Pho85/Pcl6,7

complex, which phosphorylates Glc8, the orthologue of
mammalian inhibitor-2, thereby controlling the activity of
the Glc7 phosphatase, the orthologue of mammalian PP1
[164]. In the second mechanism, oxidative stress induced a
Pin1-mediated activation of protein phosphatase 2A [125].
Pin1 function is represented by the yeast orthologue Ess1
[165], and our unpublished results indicate that disruption
of Ess1 activity leads to increased hyperphosphorylation of
tau. Hence, it appears that similar mechanisms may govern
oxidative stress-induced tau dephosphorylation in yeast and
mammalian cells, highlighting the value of studying tau
biology in yeast.

4.3. Future Perspectives for the Humanized Yeast Model. One
important aspect of our research in tau-expressing yeast
cells, is that we did not observe strong tau-related growth
phenotypes in any of the strains, even under conditions
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Figure 5: Western blot analysis with the indicated antibodies, of
total protein extracts isolated from tau-expressing WT and pho85Δ
cells grown in a medium without (−) or with supplementation of
20 mM FeSO4 (+). See Figure 3 for antibody specificity. Adapted
from [86] with permission from the publisher and the authors.

which displayed a strong induction of tau aggregation. This
implies that tau aggregation is not per se correlated with
toxicity, a conclusion that correlates directly with findings
in mammalian systems, in which NFT were found not
to be essential for tau-induced toxicity and may even
play a protective function [48, 55]. In addition, all the
results discussed here concerning tau phosphorylation and
aggregation, were obtained from exponentially growing yeast
cells. Since, for instance, mitochondrial activity, a factor
believed to be involved in the etiology of tauopathies, is more
important during the yeast’s stationary phase than during
fermentation, investigating the impact of tau on cellular
fitness during yeast aging may present us with new clues on
tau toxicity.

It is needless to say that we have just started to scratch the
surface on studying possible mediators of tau biology and
pathology in yeast (see Table 1). In our studies, we focused
mainly on the role of Mds1 and Pho85, functional yeast
orthologues of mammalian Gsk-3β and Cdk5, respectively,
in the phosphorylation of tau in yeast. Obvious candidates
for further research include the yeast orthologues of protein
phosphatases involved in tau dephosphorylation, such as
PP2A and PP1, and of Pin1. As mentioned, our unpublished
results already indicate a hyperphosphorylated tau status
upon decreased activity of Ess1, the yeast orthologue of
Pin1. Interestingly, in contrast to a pho85Δ strain, we did
observe a toxic effect of tau on growth of yeast cells with
impaired Ess1 activity. This implies that the toxicity of
“hyperphosphorylated” tau is not a general feature, but likely
applies to a specific combination of phosphorylated epitopes.
Detailed investigation of Ess1-dependent tau modifications
is currently in progress. In this regard, it would be of
great interest to extend this type of analysis by employing

a genome-wide screen for yeast mutants displaying tau-
dependent toxicity. Analysis of the phosphorylation pattern
and SinT levels in such mutants can provide crucial new
information regarding toxic tau species and molecular
players involved in their generation.

As a final note, we mention that, although we did not see
a tau-induced toxicity in yeast, we observed synthetic toxicity
upon the coexpression of tau with α-synuclein [166]. Thus,
it seems that tau can exert hazardous effects in yeast, but in
the absence of other stressors, this does not reveal itself by
a growth defect. Increase of cellular stress, by coexpression
of α-synuclein, however, apparently results in the exceeding
of a certain threshold, thereby revealing a tau-dependent
toxicity. Detailed analysis of impaired cellular processes upon
coexpression of tau with α-synuclein, in conjunction with the
above-mentioned genome-wide screening, may thus reveal
which cellular machineries are affected by tau overexpression
in yeast.

5. Concluding Remarks

As the group of seniors in the world’s population continues
to grow, age-related neurodegenerative disorders, including
tauopathies such as Alzheimer’s disease, are becoming more
prevalent, and pose a serious threat to an already over-
whelmed health care system. Despite the vast amount of
research already performed, several aspects of tauopathies
still await molecular elucidation. Among these are the nature
of toxic tau species and the way they influence cell viability.
We developed a yeast model expressing human protein tau
variants, and demonstrated that this model recapitulates
many important aspects implicated in tau pathology, includ-
ing hyperphosphorylation, conformation, and aggregation.
Combined with the ease of genetic manipulations, rapid
genome-wide screening methods, and other advantages
characteristic of yeast systems, this model may prove its value
in the clarification of fundamental cellular processes involved
in tau biology and pathology.

Abbreviations

Aβ: Amyloid-β peptide
AD: Alzheimer’s disease
APP: β-amyloid precursor protein
FTDP-17: Frontotemporal dementia with

Parkinsonism linked to chromosome 17
MT: Microtubule
MTBD: Microtubule-binding domain
NFT: Neurofibrillary tangles
PDPK: Proline-directed protein kinase
PSP: Progressive supranuclear palsy
ROS: Reactive oxygen species
rTg4510: Transgenic mouse model, conditionally

expressing the human tau P301L mutant
SAPK: Stress-activated protein kinase
SinT: Sarkosyl-insoluble tau
SP: Senile plaques
WT: Wild-type.
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