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Abstract: Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small
non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of
ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that
they are involved in mechanisms that go well beyond this function. Here, we present these pieces
of evidence in light of the current comprehension of the molecular mechanisms that control C/D
snoRNA expression and function. From this inventory emerges that an accurate description of these
activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.

Keywords: box C/D small nucleolar RNA; C/D snoRNA; small nucleolar ribonucleoprotein;
snoRNP; C/D snoRNP biogenesis; nucleolus; molecular biology

1. Introduction

On several occasions, the fortuitous identification of RNAs with odd features turned
out to be at the origin of a new family of non-coding RNAs (ncRNAs). A perfect example is
the characterization of development timing mutants in C. elegans, leading to the identifica-
tion of tiny ncRNAs originally named small temporary RNAs (stRNAs) lin-4 and let-7 [1,2].
These two RNAs were, in fact, part of the microRNAs class, which now has more than 1000
members. The discovery of the box C/D small nucleolar RNAs (C/D snoRNAs) is another
striking case. Abundant low molecular weight RNAs were first identified in nuclear [3]
and nucleolar fractions [4,5]. Nucleolar U3 RNA was later demonstrated contributing at an
early stage of the ribosomal RNA (rRNA) processing pathway by acting as a chaperone
folding the nascent primary transcript for the first endonucleolytic cleavages [6–9]. Next,
U3 conserved sequences and common associated proteins were subsequently identified for
other nucleolar ncRNAs leading to classify hundreds of snoRNAs with U3 in the family
of the box C/D snoRNAs [10–14]. A large number of the box C/D snoRNAs were shown
forming small nucleolar ribonucleoproteins (snoRNPs) to participate in ribosome biogene-
sis (for recent reviews, see [15–19]). However, U3 snoRNP appeared singular since most
of the box C/D snoRNAs are components of RNP enzymes catalyzing the site-specific
2′-O-methylation of functionally important regions in rRNA. Concomitantly, a second large
family of snoRNAs with conserved sequences boxes H and ACA were discovered [20–22]
(for reviews, see [15,23]). The box H/ACA snoRNAs form snoRNPs that are RNA-guided
modification enzymes targeting uridines for their isomerization into pseudouridines. As
for box C/D snoRNPs, a few H/ACA snoRNAs are also involved in pre-rRNA process-
ing machinery [24,25] (for reviews, see [15,16,18,19]). Subsequently, small Cajal Bodies
RNAs (scaRNAs) with similar features as snoRNAs and forming equivalent catalytic RNPs
were found enriched in Cajal bodies (CBs, for a review, see [26]). In these nuclear bod-
ies, some are the catalysts for ribose 2′-O-methylation and for pseudouridylation inside
functionally important sequences of spliceosomal small nuclear RNAs (snRNAs) (for a
review, see [27]). Hence, RNA-guided modification is not the prerogative of snoRNPs, and
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scaRNPs illustrated a potential of diversity towards substrate specialization depending on
their nuclear localization.

Data accumulated this last decade added diversity to the pattern of expression, the
place, the partners, and the functions of snoRNAs that could not still be perceived as
confined to ribosome-associated functions. On the other hand, several of these RNAs
still have no identified function, while some of them have been identified as key actors in
human pathologies. Here, we compare novel features recently discovered for box C/D
snoRNPs with the conventional ones that are firmly established. We focus on the box
C/D sno/scaRNAs and their associated RNPs as more structure, and function diversity
is up to now identified among this subclass compared with box H/ACA sno/scaRNPs.
Importantly, complementary and detailed information on the (patho)physiology of both
C/D and H/ACA snoRNAs, including in vivo knockout models, are available in recent
reviews [15,28–33].

2. Molecular Features for the Canonical Paradigm of RNA-Guided Activity: The Box
C/D RNP Methyltransferases

It is probable that eukaryotic snoRNAs originate from an ancestor present before the
separation between Eukarya and Archaea (for a review, see [34]). Indeed, small RNAs with
box C/D or box H/ACA snoRNA features, named sRNAs, are also acting for RNA-guided
modification in archaeons [35–41] (for a review, see [42,43]). This phylogenetic feature
highlights the essentiality of the cellular activity of these systems that could have expanded
in eukaryotic cells with other functions and mechanisms of action.

The box C/D snoRNAs have an average length of 60–90 nucleotides and are folded as
a single irregular hairpin structure. They possess conserved sequence patterns forming a
box C (consensus sequence 5′-RUGAUGA-3′ where R = purine) and a box D (consensus
sequence 5′-CUGA-3′), which are located at the 5′- and 3′-ends of snoRNAs, respectively.
In most cases, additional boxes designated C′ and D′ are present in the internal region
of the transcript; however, these sequences are less well conserved and sometimes de-
generated [11,44]. In the secondary structure of the snoRNA transcripts, the conserved
boxes are brought together and form the C/D and C′/D′ motifs (Figure 1A). The C/D
motif corresponds to a structural element organized as a kink-turn (K-turn), which is
characterized by a 3-nucleotide asymmetric internal bulge surrounded by two stems I and
II and comprising at the edge of stem II tandem G:A and A:G sheared base pairs. In the
3D structure, a sharp bend of the ribose-phosphate backbone is formed that is stabilized
by stacking interactions and featuring a protruded uridine invariably present in the in-
ternal budge [14,45–47] (for a review, see [48]). This type of motif is also present in U4
snRNA [14,49,50] and in both box C/D and box H/ACA archaeal sRNAs [38,51,52]. The
motif C′/D′ in archaeal sRNAs is organized as a K-loop lacking stem I and closed by a
terminal loop [53]. The box C/D snoRNAs K-turn motif constitutes a specific binding
site for Snu13p/SNU13 (in Yeast and Human, respectively) that nucleates RNP formation
through the subsequent recruitment of Nop58p/NOP58 and the SAM-dependent 2′-O-
methylase Nop1p/FBL [14,54,55]. The C′/D′ motif constitutes a secondary Snu13p/SNU13
binding site leading to the assembly of a second half-particle through recruitment of the
Nop56p/NOP56–Nop1p/FBL module [50,56,57] (Figure 1B). Based on structural studies
performed on the archaeal components [58,59] (for a review, see [15]), it has been proposed
that the sub-RNPs assembled on each RNA motif are connected through the coiled-coil
dimer of paralogous Nop56p/NOP56 and Nop58p/NOP58. Recent reconstitution of C/D
snoRNP particle from the thermophilic yeast Chaetomium thermophilum indicates that an
in vivo assembly machinery allows the specific assembly of Nop58 and Nop56 on the C/D
and C′/D′ motifs, respectively [60].
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Figure 1. Schematic overview of guide box C/D small nucleolar ribonucleoproteins (C/D snoRNPs) and their target RNAs. 
(A) Box C/D small nucleolar RNAs (C/D snoRNAs) contain conserved sequences called C/D and C′/D′ boxes that fold into 
a kink-turn (K-turn) containing Watson–Crick pairings (solid blue lines) and non-canonical pairings U:U, G:A, and A:G 
(dotted blue lines). (B) Conventional C/D box snoRNPs associate a C/D snoRNA with the core proteins Nop1p/Fibrillarin 
(FBL), Nop58p/NOP58, Nop56p/NOP56 and Snu13p/SNU13 in Saccharomyces cerevisiae and Human, respectively. FBL is 
the methyltranferase that catalyzes the 2′-O-methylation of target RNAs. (C) Schematic representation of the bidimen-
sional human SNORD24 structure (adapted from [50]). This snoRNA guides the 2′-O-methylation of 28S rRNA at positions 
C2338 and C2352. Classically, the methylated nucleotide (red star) hybridizes with the nucleotide located at the fifth po-
sition upstream of the D and D′ box sequences. (D) Schematic representation of the bidimensional U3 snoRNA structure 
and its association with pre-18S rRNA in Saccharomyces cerevisiae (adapted from [61,62]). U3 contains two C/D-like motifs 
called C′/D and B/C boxes that fold into a K-turn recognized by the Snu13p core protein [14]. In addition, the B/C motif 
recruits Rrp9p (U3-55K in humans) that is essential for 18S rRNA processing. The A/A′ motifs and the 5′/3′ hinges, located 
in the 5′ terminal domain of U3, hybridize with the 18S rRNA (solid red lines) and the 5′ ETS (external transcribed spacer, 
dotted red lines) of the 35S pre-rRNA, respectively. The base-pairing is located near the A0 and A1 pre-rRNA cleavage 
sites and is essential for the processing of 18S rRNA. 

Guide activity of box C/D snoRNAs relies on the sequence located immediately up-
stream of boxes D and D′ that forms base pairs with the RNA substrate and specifies the 
site of ribose 2′-O-methylation. The modified residue is the fifth nucleotide upstream of 
the D or D′ sequences [11,63] (Figure 1C). Information on the molecular bases for the po-
sitioning of the active site of the catalytic subunit of the RNP was gained by structural 
studies performed with reconstituted archaeal box C/D RNPs [58,64]. The sequence po-
tentially available for substrate binding usually has a length of 10 to 21 nucleotides 
[11,65,66]. One study based on 3D structures of artificial yeast sRNPs hybridized to RNA 
substrates proposed that a maximum of 10 bp can be accommodated by such particles 
[67]. Conversely, a subset of Saccharomyces cerevisiae, human, and Arabidopsis thaliana box 

Figure 1. Schematic overview of guide box C/D small nucleolar ribonucleoproteins (C/D snoRNPs) and their target RNAs.
(A) Box C/D small nucleolar RNAs (C/D snoRNAs) contain conserved sequences called C/D and C′/D′ boxes that fold
into a kink-turn (K-turn) containing Watson–Crick pairings (solid blue lines) and non-canonical pairings U:U, G:A, and A:G
(dotted blue lines). (B) Conventional C/D box snoRNPs associate a C/D snoRNA with the core proteins Nop1p/Fibrillarin
(FBL), Nop58p/NOP58, Nop56p/NOP56 and Snu13p/SNU13 in Saccharomyces cerevisiae and Human, respectively. FBL is
the methyltranferase that catalyzes the 2′-O-methylation of target RNAs. (C) Schematic representation of the bidimensional
human SNORD24 structure (adapted from [50]). This snoRNA guides the 2′-O-methylation of 28S rRNA at positions C2338
and C2352. Classically, the methylated nucleotide (red star) hybridizes with the nucleotide located at the fifth position
upstream of the D and D′ box sequences. (D) Schematic representation of the bidimensional U3 snoRNA structure and its
association with pre-18S rRNA in Saccharomyces cerevisiae (adapted from [61,62]). U3 contains two C/D-like motifs called
C′/D and B/C boxes that fold into a K-turn recognized by the Snu13p core protein [14]. In addition, the B/C motif recruits
Rrp9p (U3-55K in humans) that is essential for 18S rRNA processing. The A/A′ motifs and the 5′/3′ hinges, located in the
5′ terminal domain of U3, hybridize with the 18S rRNA (solid red lines) and the 5′ ETS (external transcribed spacer, dotted
red lines) of the 35S pre-rRNA, respectively. The base-pairing is located near the A0 and A1 pre-rRNA cleavage sites and is
essential for the processing of 18S rRNA.

Guide activity of box C/D snoRNAs relies on the sequence located immediately up-
stream of boxes D and D′ that forms base pairs with the RNA substrate and specifies the
site of ribose 2′-O-methylation. The modified residue is the fifth nucleotide upstream of the
D or D′ sequences [11,63] (Figure 1C). Information on the molecular bases for the position-
ing of the active site of the catalytic subunit of the RNP was gained by structural studies
performed with reconstituted archaeal box C/D RNPs [58,64]. The sequence potentially
available for substrate binding usually has a length of 10 to 21 nucleotides [11,65,66]. One
study based on 3D structures of artificial yeast sRNPs hybridized to RNA substrates pro-
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posed that a maximum of 10 bp can be accommodated by such particles [67]. Conversely, a
subset of Saccharomyces cerevisiae, human, and Arabidopsis thaliana box C/D snoRNAs were
shown to have extra base-paired regions leading to enhanced methylation [44,68,69].

3. U3, the First Identified Atypical Box C/D RNP

As mentioned in the introduction, U3 has atypical features. First, although it contains
the 2′-O-methyltransferase Nop1p/FBL, the U3 snoRNP has never been shown to be a
catalyst for RNA 2′-O-methylation. Second, the U3 snoRNA contains four phylogenetically
conserved sequences that form two non-conventional box C/D-like motifs named C′/D and
B/C (Figure 1D). Each forms a K-turn structure recognized by Snu13p/SNU13 [14,70–72].
However, protein assembly on these two motifs is dissymmetric. A specific U3 core
protein Rrp9p in yeast and U3-55K in human [73–75] is recruited on the B/C motif
in a Snu13p/SNU13-dependent manner [72,76–78] together with Nop56p/NOP56 and
Nop1p/FBL [79,80]. In contrast, the classical set of C/D box proteins Snu13p/SNU13,
Nop58p/NOP58, and Nop1p/FBL is recruited on the C′/D motif [14,81]. Recent cryo-EM
structures from S. cerevisiae and Chaetomium thermophilum confirmed this pseudo-symmetric
organization of U3 snoRNP [61,82–84].

Compared with other C/D snoRNAs, U3 has a long 5′-terminal region needed for
the function of the particle during pre-rRNA processing [7,85–89]. Pre-rRNA maturation
begins in terminal knobs corresponding to the packaging of the nascent rRNA primary
transcript into a large structure, named small subunit (SSU) processome. The U3 snoRNP
contributes to the assembly of the SSU processome [9]. The U3 snoRNA plays a central
role by forming base-pair interactions with several sequences of the 5′ external transcribed
spacer (5′-ETS) and the 18S rRNA (Figure 1D). It is viewed as an organizing chaperone
to RNA folding into 5 distinct helices that potentiate early cleavage at sites A0 and A1
in the 5′-ETS. The occurrence of helices was investigated by biochemical and genetic
approaches [7,62,85–89]. The cryoEM structures confirmed that several of them are formed
within the processome [61,82–84].

4. Biogenesis of Box C/D RNP: Assembly and Nuclear Journey

Biogenesis of snoRNPs is a complex process involving trans-acting factors and start-
ing on nascent transcripts in a co-transcriptional fashion [15,33,90] (Figure 2). In most
organisms, snoRNAs are transcribed as long precursors by RNA pol II that are trimmed
by ribonucleases at 3′- or both 5′- and 3′-ends to generate mature snoRNAs (for a review,
see [30]). Early recognition of snoRNA elements by core RNP proteins protects RNA from
degradation during the processing. The specific mode of processing is determined by the
genomic organization. In vertebrates, a subset of snoRNAs is encoded by independent
transcriptional units, but the majority are embedded in introns of host protein-coding
genes. In contrast, to box H/ACA snoRNAs, most box C/D snoRNAs are present at a
conserved position upstream of the 3′ splicing acceptor site [91,92], and an optimal distance
of ~50 nucleotides upstream of the branch point contributes to efficient box C/D snoRNP
assembly [93] (for a review, see [94]). This situation favors splicing-dependent assembly
of intronic box C/D snoRNPs and the general splicing factor Aquarius AQR (alias Intron
Binding Protein IBP160 [95]) was shown to aid RNP assembly [96]. However, some intronic
C/D snoRNA genes are found at divergent locations, such as the human repeated snord116
genes that are each sited ~250 bp after the 5′-splice site of the host gene. Then, considering
independent snoRNA-encoded transcripts like the U3 snoRNA, the presence of the core
proteins was shown to be linked to 3′-end processing and transcription termination [97,98].
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sembly platform NUFIP1 and its stabilizing factor ZNHIT3 interact with SNU13 to form a trimer. The essential contribu-
tion of the assembly factor BCD1 is less clear; it is integrated in a network of interactions involving PIH1D1, NUFIP1, 
RUVBL1&2, NOP58, and SNU13, which suggests that these proteins form a protein-only pre-snoRNP complex that scaf-
folds SNU13 and NOP58 core protein assembly. The proteins are then loaded on nascent snoRNA molecules in a co-
transcriptional way upon the direct binding of SNU13 to the K-turn structures formed by the conserved C/D motifs. The 
efficient RNP assembly of intronic snoRNAs is favored by the association of the splicing and biogenesis machineries via 
the splicing factor AQR. The nucleation of the pre-snoRNP protects the snoRNA from extensive trimming by exonuclease 
activities. When released, the assembly factors might be recycled in a new biogenesis process (dotted line). Finally, the 
C/D snoRNPs are transported to CBs and nucleoli for functional purposes. This model is valid in both Saccharomyces cere-
visiae and Human. 

Figure 2. Model of eukaryotic C/D snoRNP biogenesis. The loading of the core proteins SNU13, NOP58, NOP56, and
FBL does not occur autonomously in eukaryotic cells but is mediated by several assembly factors. The R2TP complex
contains the proteins RUVBL1, RUVBL2, RPAP3, and PIH1D1 and the latter interacts directly with NOP58 to stabilize
it. The assembly platform NUFIP1 and its stabilizing factor ZNHIT3 interact with SNU13 to form a trimer. The essential
contribution of the assembly factor BCD1 is less clear; it is integrated in a network of interactions involving PIH1D1,
NUFIP1, RUVBL1&2, NOP58, and SNU13, which suggests that these proteins form a protein-only pre-snoRNP complex
that scaffolds SNU13 and NOP58 core protein assembly. The proteins are then loaded on nascent snoRNA molecules in a
co-transcriptional way upon the direct binding of SNU13 to the K-turn structures formed by the conserved C/D motifs. The
efficient RNP assembly of intronic snoRNAs is favored by the association of the splicing and biogenesis machineries via
the splicing factor AQR. The nucleation of the pre-snoRNP protects the snoRNA from extensive trimming by exonuclease
activities. When released, the assembly factors might be recycled in a new biogenesis process (dotted line). Finally, the C/D
snoRNPs are transported to CBs and nucleoli for functional purposes. This model is valid in both Saccharomyces cerevisiae
and Human.
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Contrary to archaeal sRNPs [37], the assembly of eukaryotic snoRNPs is not a mech-
anism that occurs autonomously in vitro. Independently of the coupling with splicing
machinery as described above, biogenesis requires trans-acting factors involved in RNP
assembly and in nuclear trafficking before the mature RNP reaches the nucleolus. Three
independent modules Rsa1p:Hit1p/NUFIP1:ZNHIT3 [98,99], the R2TP complex [100–102]
and Bcd1p/BCD1(ZNHIT6) [90,101,103,104] were identified contributing to snoRNP as-
sembly. Inactive pre-RNPs are first assembled on nascent transcripts before reaching the
CBs where they become mature and functional (for a review, see [33,105]). A model has
been proposed postulating that the formation of human box C/D snoRNPs requires the for-
mation of an RNA-free pre-complex composed of the two core proteins SNU13 and NOP58
as well as five assembly factors NUFIP1, ZNHIT3, BCD1, RUVBL1, and RUVBL2 [99].
Rsa1p/NUFIP1 is a platform protein stabilized by the factor Hit1p/ZNHIT3 that forms
a tertiary complex with Snu13p/SNU13 [71,99,101]. The two ATPases associated with
diverse cellular activities (AAA+) RUVBL1 and RUVBL2 (RUVBL1/2, alias TIP49, and
TIP48) are members of the complex R2TP, which also includes PIH1D1 (Pih1p or Nop17p
in yeast) and RPAP3 (Tah1p in yeast) [100,106–108]. This complex cooperates with the
chaperone HSP90 and participates in the stabilization and the recruitment of NOP58 on
the RNP by direct interaction with PIH1D1 [109]. NUFIP1 interacts with SNU13 during the
first stages of maturation and blocks the catalytic activity of the complex [99]. ZNHIT3 is
then released, and the C/D box snoRNA, as well as FBL, are recruited before binding of
the second molecule of FBL and NOP56. NUFIP1 dissociates from the complex, generating
a rotation of the catalytic module of FBL, leading to an active C/D box snoRNP complex.
Several proteins manage the nuclear trafficking of the pre-snoRNPs, such as CBC and
PHAX for the transfer to CBs (or WDR79 [110,111] and TDP-43 [112] for the scaRNPs)
and NOPP140 and CRM1 that control the nucleolar localization [33,113]. All categories of
snoRNA traffic through CBs [114]. The cap m7Gppp is a key determinant for U3 to reach
CBs, and after hypermethylation, CREM intervenes for reaching nucleoli [115,116] (for
reviews, see [113,117]).

5. The Diversity of C/D snoRNA Maturation Forms

Precursor snoRNA processing accepts different outcomes, at least in Mammals. First,
the pre-snoRNA could be only partially matured to generate long non-coding RNAs (lncR-
NAs) flanked by snoRNA sequences at one or both extremities (Figure 3). In humans, these
RNA species were first described as products of the tandemly repeated snord116 genes at
the imprinted PWS locus. This cluster is transcribed as one (or several) precursor RNA(s)
whose introns host the snord116 sequences. Intron processing generates conventional
snord116 snoRNPs [118] that reach the nucleolus, while the spliced host transcripts accu-
mulate near the transcription site [119]. However, some molecules may undergo unusual
processing when certain exons are not spliced, leaving two consecutive snoRNAs that
are then trimmed only at the 5′-end for the first and 3′-end for the second. Thus, these
so-called snolncRNAs are stabilized by two snoRNP structures at their extremities [120].
Subsequently, snord116 repeats were found to generate lncRNAs containing a 5′-end
snoRNP and a polyadenylated 3′-end, called SPA (5′ snoRNA capped and polyadenylated
lncRNA [121]). The works characterizing both lncRNAs also proposed that they act as
protein factor sponges to control mRNA splicing and gene expression (Figure 3). Since
then, several other lncRNAs harboring either C/D or H/ACA snoRNA sequences at their
extremities have been described in human cell lines [120]. The nucleolar-specific lncRNA
called LoNA is proposed to sequester the core protein FBL via its snoRNA-like 3′-end,
which in turn modulates rRNA methylation levels [122]. In addition, the splicing of the
human Nop56 pre-mRNA is controlled by an intron-hosted orphan snoRNA called snord86
whose structuration restricts the usage of a nearby splice site. Consequently, an excess
of NOP56 protein is expected to favor the production of a cytoplasmic RNA capped at
its 5′-end by the snoRNA snord86. This unusual lncRNA is generated at the expense of
Nop56 mRNA production, which may constitute a negative feedback mechanism reg-
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ulating NOP56 protein expression [123]. It is interesting to note that in every case the
production of a conventional snoRNA is detected, which opens the possibility that the
two maturation processes are in competition or that the snolncRNAs behave as stable
intermediate for snoRNA synthesis.
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Figure 3. The emerging diversity of C/D box snoRNA processing and of C/D snoRNP biogenesis and function. Precursor
C/D box snoRNAs are produced by both independent (1) and intronic (2 and 3) genes, then processed by the combined
action of intron lariat debranching in the case of intronic snoRNAs and exonucleotidic activities acting at both the 5′ and 3′

ends. Co-transcriptional recruitment of snoRNP core proteins on the snoRNA allows the correct processing and biogenesis
of the C/D snoRNP. Then, the particle reaches the Cajal body (CB) and the nucleolus to perform activities on snRNAs
and rRNAs (in blue). In addition to these conventional mechanisms, C/D snoRNPs perform new activities (in gold italics)
linked to the formation of lncRNAs flanked by snoRNA sequences at one or both ends generated from partially-processed,
snoRNA-hosting introns (3), to the recruitment of additional proteins conferring new properties and/or enzymatic activities
(4) or to the exchange of conventional core proteins by alternative proteins (5), to the trafficking to new subcellular locations
(6), and to the generation of snoRNA-derived fragments (sdRNAs) or regulatory ribonucleoproteins (regRNPs; 7).
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Conventional C/D snoRNAs are also suspected of exhibiting diversity in size. Two
distinct isoforms of human C/D snoRNAs differing in their terminal stem length were
reported in both normal and cancer cell lines [124]. Such variations involving ± 1–2 bp at
the extremities of the basal stem have been recurrently observed by us and others. More
surprisingly, the short forms were proposed to form non-canonical snoRNPs based on their
lower sensitivity towards NOP58 downregulation. Unfortunately, a precise characterization
of these alternative RNPs and the molecular mechanisms that direct their biogenesis has not
been reported yet. More surprisingly, the generalization of RNA seq analyses has unveiled
another category of snoRNA gene products in the form of short fragments ranging from ~ 20
to 100 nucleotides in size that are collectively called snoRNA-derived RNAs (sdRNAs) or
processed snoRNAs (psnoRNAs) (Figure 3). These sdRNAs have been reported in several
organisms such as Yeast [125], Protozoans [126], Angiosperms [127], Human [128,129],
and Viruses [130] and also include scaRNA derivatives [129,131]. In Human, sdRNAs
have been particularly associated with cancers [132,133], and, more largely, they seem
to characterize stress conditions such as evidenced in Saccharomyces cerevisiae [134] and
Wheat [127]. Theoretically, the origin of sdRNAs could derive from regular snoRNAs or
being produced directly from precursor RNAs. However, some observations favor the
first hypothesis as sdRNAs largely correspond to sequences present in mature snoRNAs
and not to surrounding regions. In addition, a study identifying a strong enrichment of
sdRNAs corresponding to both extremities of the snord44 gene in HeLa cells reported that
their expression was dependent on the core proteins FBL and NOP58 [135]. The relative
expression of snoRNAs and associated sdRNAs seems to vary quite independently in
Saccharomyces cerevisiae [134] and in Human [136], suggesting that they are not simply
produced by snoRNA turnover. Nevertheless, the mechanisms of sdRNA biogenesis and
regulation are poorly understood. Interestingly enough, FBL has been recently shown to
exhibit an RNase activity regulated by the presence of phosphatidic acid [137], which opens
the possibility that snoRNA processing is an intrinsic property of C/D snoRNPs upon
specific stimuli. The interaction of sdRNAs with proteins is largely unknown, except for a
small subset of sdRNAs that associate with proteins of the Argonaute family and harbor
microRNA-like [129,138] or piRNA-like [139] properties. The biogenesis of the formers,
also called sno-miRs, has been partially evaluated. Based on few studies, the generation
of the microRNA-like fragments (also called sno-miRs) requires [129,138] or not [140] the
RNase III activity of DICER and are dependent [141,142] or not [140] on the RNase III
activity of DROSHA. It could be expected that the study of additional sno-miRs—if they
exist [143]—could clarify the mode(s) of biogenesis. Conversely, it is not known whether
most of the sdRNAs reported under various cellular conditions are functional or part of
the degradome, which leads to a little-addressed question: How and when are snoRNAs
degraded, and how is this regulated? To date, we have no answers, although they are
crucial for understanding the fate of snoRNPs.

6. The Multiple Regulations of C/D snoRNP Biogenesis

In Mammals, the expression of intronic snoRNA genes could be uncoupled from
the expression of host genes, e.g., due to alternative splicing and nonsense-mediated
decay [144]. Originally, the fact that, in general, host genes exhibit a high transcription
rate has suggested that an important regulation step of snoRNA expression occurs at the
step of RNP biogenesis. The sophistication of eukaryotic C/D snoRNP assembly involving
dedicated factors may represent a site of opportunity for regulation. In agreement, N6-
methylation of adenine could interfere with K-turn formation and Snu13p/SNU13 binding,
thus preventing the first step of protein assembly on the nascent snoRNA in both Yeast and
Human [145,146]. Moreover, several post-translational modifications of core proteins have
been identified: NOP58 stability has been shown to depends on sumoylation [147,148],
and the stabilization of FBL, NOP58, and NOP56 by O-GlcNAcylation is essential for
snoRNP assembly [149]. However, the elucidation of the pathways controlling these
modifications is pending. The formation of the chaperone complex R2TP is dependent on
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nutriment availability that controls, via the mTOR pathway, the nuclear import of the R2TP
components Pih1p and Tah1p by Crm1p and Kap121p in Saccharomyces cerevisiae [150].
As the R2TP is necessary for Nop58p stability, this mechanism coordinates cell growth
with C/D snoRNP assembly. Other proteins could modulate biogenesis. This is the case
of the human H3K27 methyltransferase EZH2 that reinforces the FBL-NOP56 interaction
by directly interacting with both proteins [151,152], whereas the RNA-binding protein
NPM1 is suspected to modulate biogenesis with pathological consequences in dyskeratosis
congenita [153]. However, for the latter, the mechanistic evidence are not clear yet. EZH2
illustrates the emerging link between C/D snoRNP assembly and chromatin effectors
nicely. In Saccharomyces cerevisiae, the assembly factor Bcd1p interacts directly with the
histone chaperone Rtt106p to modulate its recruitment at active genes [154]. Rsa1p with its
partner Hit1p contribute to rDNA compaction by modulating Condensin accessibility [155].
In addition, the R2TP subunits RUVBL1 and RUVBL2 are components of several chromatin
modification complexes, including the NuA4 histone acetyltransferase complex [156]
and the chromatin remodeling complexes SWR1 [157] and INO80 [158]. C/D snoRNP
assembly factors are playing other cellular functions, e.g., the R2TP provides a platform for
the assembly and maturation of multiple protein complexes such as U4 snRNP-specific
proteins, PIKK or RNA polymerase complexes (for a review, see [159]), and the assembly
factor Rsa1p is required for the loading of Rpl10p onto the 60S subunit [160]. While these
interactions between snoRNP biogenesis and different regulatory systems theoretically
permit coordination, this possibility remains largely to be tested.

7. The Strange Case of Alternative C/D snoRNPs

An intriguing question regarding the regulation of C/D snoRNP biogenesis concerns
the possibility of generating RNPs with different protein compositions. Some studies using
fractionation and pull-down assays have proposed the presence of snoRNAs in complexes
with abundant nuclear proteins such as splicing factors but devoid of FBL [161,162]. How-
ever, the particles have not been clearly identified yet, and several caveats remain to be
evacuated. Co-fractionation does not mean association, and the absence of FBL detection
does not mean absence of the protein. In addition, whether the snoRNAs identified cor-
respond to precursors or degradation fragments has not been systematically analyzed.
The existence of alternative RNPs clearly deserves supplementary characterization, but
if confirmed, it would be particularly interesting to identify whether these complexes are
diverted from conventional snoRNP biogenesis or degradation paths. For what is known
currently, the first RNA determinant of snoRNP biogenesis is the K-turn formed by the C
and D boxes that are recognized by SNU13. Then, the possibility for a snoRNA to assemble
with an alternative set of proteins suggests either that (i) after recognition by SNU13 and
at any step of the biogenesis, the assembly process is diverted towards a different set of
proteins that ultimately competes with conventional core proteins or (ii) an RNA-binding
protein other than SNU13 interacts specifically with the K-turn or another snoRNA feature,
allowing the biogenesis of the alternative snoRNP. Alternatively, a remodeling process
leading to protein exchange may intervene on a mature C/D snoRNP, e.g., in substitution of
its recycling. Thus, in addition to fine biochemical characterization, it would be important
to test the dependence of these RNPs on conventional assembly factors and core proteins.

8. The Diversity of C/D snoRNA Expression

By virtue of their role in the highly coordinated process of ribosome production,
snoRNAs have long been considered housekeeping actors of cell function. In agreement,
their expression largely correlates with the expression of other players of ribosome syn-
thesis and translation. In Ascomycetes, the transcription of box C/D snoRNA genes is
controlled by a Homol-D box that also controls the transcription of ribosomal protein
genes [163], thus providing coordination [164]. Several genes coding for snoRNP compo-
nents or related regulators is under the control of the transcription factor MYC in Drosophila
and Human [165], which also controls numerous genes involved in ribosome biogenesis
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and protein synthesis [166]. In Metazoans, most snoRNA genes are located in introns
of coding genes that exhibit a bias towards nucleolar function, ribosome structure, and
protein synthesis [167]. In complement, several lncRNA genes that host snoRNA genes
belong to the 5′TOP (5′-terminal oligopyrimidine) gene family [168,169] characterized by
high-level transcription and growth-dependent regulation [170]. In Human, transcription
of the few independent snoRNA genes is linked to cell proliferation by the transcriptional
cofactors and RNA helicases DDX5 and DDX17 that recruit the histone deacetylase HDAC1
at promoter regions [171,172]. Yet, a more complex expression pattern is emerging from
the numerous transcriptomic analyses accumulated in recent years. This is especially
prominent in cancer as biopsies typically show altered expression of subsets of snoRNA
genes [173–175] (for a review, see [176]) and have suggested their potential as diagnostic or
prognostic markers [176]. Hence, several snoRNAs have been proposed as proto-oncogenes
or tumor suppressors based on in vitro analyses [177–181]. They are also actors of other
conditions, e.g., the Prader Willi syndrome (PWS) for the snord116 snoRNAs (for a review,
see [182]), or the leukoencephalopathy with brain calcifications and cysts (LCC) for the U8
snoRNA [183]. In addition, C/D snoRNA genes have been found in some viral genomes
where they are expected to play specific functions as suggested by the v-snoRNA1 pro-
duced by the Epstein-Barr virus, whose expression is drastically enhanced during the lytic
cycle [130]. If most viruses do not encode their own snoRNAs, C/D snoRNAs are recur-
rently deregulated upon viral infection, e.g., by the Chikungunya virus (CHIKV) [184], by
the Murine Cytomegalovirus (MCMV) [185], or the porcine reproductive and respiratory
syndrome virus (PRRSV) [186]. Moreover, gene-trap insertional mutagenesis testing 12
distinct viruses has also revealed that, among other host genes, several human snoRNA
genes participate in viral replication [187] (for an extensive review of the functional interac-
tions between viruses and C/D snoRNAs, see [188]). Apart from pathological conditions,
it appears that the expression of snoRNAs could be uncoupled from the level of ribosome
synthesis. In Nematode, some snoRNAs display developmentally variable expression [189],
while several snoRNAs from Arabidopsis and Human have been reported to be circadian
clock-regulated [190,191]. C/D snoRNAs could also exhibit tissue-specificity, e.g., a strong
tropism towards cerebral expression for several mammalian-specific snoRNAs [192–194].
The emerging versatility in the expression of many C/D snoRNAs questions their role.
Going back to the ribosome, a reflection of this variability may be seen in the variable methy-
lation levels observed at certain rRNA positions in different tissues or cellular conditions,
giving rise to the concept of the specialized ribosome [195]. Indeed, some recent reports
point to variations in rRNA methylation levels during mouse development [196], during
human tumorigenesis [197,198], or in cell line models [199]. It suggests that the expression
and/or catalytic activity of C/D snoRNPs could be finely regulated for adaptations that are
beginning to be described. In this line, modifications due to high levels of FBL in cancers
have been linked to impaired translation fidelity [198], fueling the notion of ribosomopathy
associated with elevated cancer risk (for a review, see [200]). Interestingly, a similar scheme
likely applies to snRNA methylation levels that modulate mRNA splicing [201].

9. The Diversity of C/D snoRNA Molecular Partners and Targets

Accumulating data support the notion that C/D snoRNAs perform molecular func-
tions beyond the conventional ones. First, snoRNAs can methylate a broader set of targets
than expected. It includes human tRNAs, affecting their nucleolytic cleavage [202], while
in Archaea, the methylation of tRNAs by sRNAs was already described two decades
ago [203–205]. In addition, human C/D snoRNAs could direct mRNA methylation and
hence modulate the translation level of their target [206]. Interestingly, these data suggest
that eukaryotic C/D snoRNPs could perform functions outside their main sites of accumu-
lation, i.e., the nucleolus and CBs, which was already suggested by the fact that scaRNAs
exhibit snRNA modification activity in the nucleoplasm in the absence of CBs [207]. Con-
versely, C/D snoRNPs target rRNAs in the nucleolus as expected but guide non-classical
enzymatic activities, such as the yeast orphan snR4 and snR45 that promote rRNA acety-
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lation catalyzed by Kre33p [208]. In addition, whether orphan or not, many snoRNAs
have the potential to hybridize with cellular RNAs, including mRNAs as suggested by the
in silico identification of energetically stable complementarities [209,210]. In agreement,
studies using human cell lines have confirmed that the downregulation of specific snoR-
NAs affects in various ways mRNA targets, e.g., the modulation of steady-state levels by
snord83b [211], of splicing by snord115 [212] and snord27 [162], or editing modulation by
snord115 [213,214]. However, there is still no clear demonstration of the physical inter-
action between endogenous snoRNAs and their mRNA targets. It has to be mentioned
that this could be a difficult task as the interaction may be limited in space and time, e.g.,
if occurring co-transcriptionally during pre-mRNA synthesis. Mechanistically, it could
be supposed that C/D snoRNP binding induces steric hindrance and/or perturbates co-
transcriptional pre-mRNA maturation processes. However, other mechanisms closer to
conventional functions, such as RNP chaperoning, could also be at work, which deserves
to be clarified.

A growing list of proteins has been identified to associate with C/D snoRNPs and
to modulate their activity. Several of these interactions concern nucleolar proteins. In the
nucleolus, C/D snoRNPs interaction with rRNA is controlled by factors modulating the
affinity and specificity of the interaction. The RNA helicases HAS1 [215], DHR1 [216],
and DHX37 [217] trigger the release of the U14 and U3 snoRNPs, respectively, from the
ribosomal particle. The yeast ATPases Dbp3p or Prp43p promote rRNA methylation likely
by favoring the recycling efficiency of C/D snoRNPs [218,219]. Concerning scaRNAs, the
RNA-binding protein LARP7 increases the efficiency of methylation-guided activity by
bridging scaRNAs with U6 snRNA, and its deficiency is associated with splicing alterations
in Alazami syndrome [220]. Very interestingly, many other interactions with functional out-
comes have been identified in the last years. The SNORD50A-SNORD50B locus produces
snoRNAs that interact with the FIP1 subunit of the cleavage and polyadenylation speci-
ficity factor (CPSF) to modulate mRNA 3′-end processing [221], with the proto-oncogene
KRAS to inhibit its activity [222,223] or with the E3 ubiquitin ligase TRIM21 and its sub-
strate Guanosine 5′-monophosphate synthase (GMPS) to increase their interaction [224].
Numerous C/D and H/ACA snoRNAs have been proposed to interact with the poly-ADP-
ribosyltransferase PARP1 independently of DNA damage and to stimulate its catalytic
activity in the nucleolus, leading to ADP-ribosylation of the RNA helicase DDX21 and
increased rDNA transcription [225]. The RNA-binding protein FMRP has been shown to
interact with a subset of C/D snoRNPs, and its downregulation affects rRNA methyla-
tion [226], which might also be due to its interaction with ribosomal proteins [227,228]. The
interaction of the RNA-binding protein TDP43 with a subset of C/D scaRNAs is necessary
for their localization to CBs instead of the nucleolus, and its downregulation induces
defects in methylation of U1 and U2 snRNAs and alters splicing [112].

It is very likely that other molecular partners are waiting to be identified. Indeed,
several functional analyses point to C/D snoRNAs, whereas the underlying mechanisms
are not identified yet. As examples, cellular cholesterol homeostasis is affected by snord60
expression, while the analysis of rRNA modifications did not identify changes in methyla-
tion levels [229]. The expression and cytoplasmic localization of three snoRNAs hosted
by the ribosomal Rpl13a gene is increased on cells exposed to fatty acids, and their knock-
down protects against lipotoxic and oxidative stress [230]. If the mechanism used by these
snoRNAs is unknown, it has been shown that their nuclear export involves the nuclear
export factor NXF3 [231]. More largely, the export to the cytoplasm of snoRNAs might be a
recurrent response to cell stress as it has also been observed in the Silkworm [232]. Even
more surprisingly, it has been proposed that snoRNAs could be secreted through exosomes
and absorbed by distant tissues where they could perform 2′-O-methylation of rRNA [233].
It is not known how this complex journey is achieved and regulated.

Despite this burst of data, numerous C/D snoRNAs have no identified role even if
molecular associations have been identified. This is the case for several C/D snoRNAs
that interact with splicing factors [234,235] or the spliceosome [236] in human cells or with
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the chromatin factor DF31 that localizes to euchromatic regions in Drosophila and tethers a
heterogeneous pool of short RNAs that is enriched in snoRNAs [237]. This is also true for
RNA partners, as the complex repertoire of snoRNA-C/D RNA interactions is beginning
to be revealed by large-scale approaches [238]. In addition, future works are required to
identify the functions of most orphan snoRNAs. This category concerns around 30–50%
of C/D snoRNAs in Mammals, whereas orphan H/ACA snoRNAs are much rarer (for a
review, see [239]). The leading example in this category is the repeated snord116 genes
whose loss of expression is suspected of promoting the Prader Willi syndrome [240–247].
To note, the existence of orphan snoRNAs is not restricted to Mammals, e.g., if only a few
snoRNAs are concerned in Saccharomyces cerevisiae, a quarter of snRNAs in the Archaea
Pyrobaculum are orphans [248]. In a minority of cases, a molecular function has been found,
such as eutherian snord115 that controls splicing and editing of a target mRNA [212–214] or
the yeast snR4 and snR45 that guide rRNA acetylation [208]. The latter are also interesting
as it shows that the role of orphan snoRNAs could rely to conventional target.

10. Conclusions

As it is true for other ncRNAs, the snoRNA category is currently subjected to numerous
and exciting developments despite its early discovery. This is especially true for C/D
snoRNAs that, in addition to be leading actors of rRNA and snRNA maturation, appear
now as regulators of other cellular RNAs, including mRNAs. In parallel, it emerges that
the biogenesis and function of C/D snoRNPs are controlled by regulatory systems that
are poorly described. In the face of the bloom of C/D snoRNA fates and functions, the
field is in need of molecular dissection as currently, too few mechanisms are in hands
to understand this overt variety. Importantly enough, it has to be stressed that the great
majority, not to say all, snoRNAs accumulate dramatically in the nucleolus at a steady-state
(or in the CBs for scaRNAs), e.g., including orphan ones. Consequently, a rigorous analysis
of C/D snoRNA functions should always question the existence of direct or indirect effects
in these compartments. As a corollary, it is arguable that new snoRNA roles remain to be
discovered in these compartments. Altogether, these important efforts are necessary to
build a renewed understanding of C/D snoRNA functions.
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