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University of Belgrade, Serbia

*Correspondence:

Vincent van Pesch

vincent.vanpesch@

saintluc.uclouvain.be

Specialty section:

This article was submitted to

Multiple Sclerosis and

Neuroimmunology,

a section of the journal

Frontiers in Neurology

Received: 08 November 2021

Accepted: 27 December 2021

Published: 25 February 2022

Citation:

Perdaens O and van Pesch V (2022)

Molecular Mechanisms of

Immunosenescene and Inflammaging:

Relevance to the

Immunopathogenesis and Treatment

of Multiple Sclerosis.

Front. Neurol. 12:811518.

doi: 10.3389/fneur.2021.811518

Molecular Mechanisms of
Immunosenescene and
Inflammaging: Relevance to the
Immunopathogenesis and Treatment
of Multiple Sclerosis
Océane Perdaens 1 and Vincent van Pesch 1,2*

1 Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium,
2Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain),

Brussels, Belgium

Aging is characterized, amongst other features, by a complex process of cellular

senescence involving both innate and adaptive immunity, called immunosenescence

and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel

each other and partially explain increasing incidence of cancers, infections, age-related

autoimmunity, and vascular disease as well as a reduced response to vaccination.

Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in

disease-modifying therapies (DMTs) and management has improved long-term survival.

However, disability progression, increasing with age and disease duration, remains.

Neurologists are now involved in caring for elderly MS patients, with increasing

comorbidities. Aging of the immune system therefore has relevant implications for MS

pathogenesis, response to DMTs and the risks mediated by these treatments. We

propose to review current evidence regarding markers and molecular mechanisms of

immunosenescence and their relevance to understanding MS pathogenesis. We will

focus on age-related changes in the innate and adaptive immune system in MS and other

auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis.

The consequences of these immune changes on MS pathology, in interaction with the

intrinsic aging process of central nervous system resident cells will be discussed. Finally,

the impact of immunosenescence on disease evolution and on the safety and efficacy of

current DMTs will be presented.

Keywords: multiple sclerosis, immunosenescence, inflammaging, T/B cells, oligodendrocytes, microglia,

astrocytes, disease modifying therapies

INTRODUCTION

With the aging of the world population, seniors aged over 65 years, that account for 9.3%
of the global population in 2020, are predicted to have doubled in absolute number by 2050,
representing 15.9% (1). This increase in life expectancy inevitably has an impact on disease
prevalence and incidence, especially of chronic diseases. Health care systems worldwide must
face this demographic evolution within the next decades. Biological aging is the decline in
homeostasis, with functional alterations of all organs and tissues, resulting in an increase
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of morbidity and mortality (2). On a cellular level, senescent
cells, accumulating with age, are arrested in their cell cycle,
but are still active, although functionally dysregulated and
affecting their microenvironment by secreting soluble signaling
factors (interleukins, chemokines, growth factors), proteases, or
insoluble proteins/extracellular components. These constitute
the so-called senescence-associated secretory phenotype (SASP)
exerting a paracrine pro-inflammatory effect (3, 4). The immune
system, which is continuously operating throughout life, is prone
to these age-related changes, referred to as immunosenescence
(5). Immunosenescence affects both the innate, and, to a
greater extent, the adaptive immunity. It is postulated to
explain increased prevalence of infections, cancers and auto-
immune diseases and reduced response to vaccination in the
elderly (6). On the contrary, the purpose of cell cycle arrest
in senescent cells is to prevent cellular escape into tumoral
processes (7). However, no single immune change associated
with senescence explains health-related consequences of aging.
Hence, a longitudinal study proposes an age-related ‘immune
risk phenotype’ associated with poorer survival, characterized by
an inversion in the CD4+/CD8+ T cell ratio, the expansion of
the terminally differentiated CD8+CD28− T cells, lower B cell
numbers and seroconversion for cytomegalovirus (CMV) (8–
10). Moreover, a chronic, sterile low-grade inflammation occurs
concurrently, named inflammaging, mutually interacting with
immunosenescence. Continuous antigenic load and stressors
stimulate the innate immune system, mainly macrophages,
to produce pro-inflammatory cytokines, such as interleukin
(IL) 1, IL6, or tumor necrosis factor (TNF), also part of
the SASP (11). However, centenarians aging healthily have an
inverted immune risk phenotype and a heightened inflammaging
profile properly counterbalanced by anti-inflammaging (12–14).
Hence, Franceschi et al. argument that diseases arise when this
equilibrium is broken (11, 15).

The multiple sclerosis (MS) population older than 65 years
is increasing worldwide due to improving life expectancy
with MS, although the latter remains 6–10 years shorter as
compared to the general population (16, 17). There is growing
awareness about the implications of aging with MS, due to
immunosenescence, the high burden of comorbidities and the
lack of knowledge on long-term effects of exposure to disease
modifying therapies (DMTs). The safety, efficacy and benefit

Abbreviations: ABC, age-associated B; AID, autoimmune disease; BBB, blood
brain barrier; BCR, B cell receptor; CMV, cytomegalovirus; CNS, central nervous
system; CSF, cerebrospinal fluid; DC, dendritic cell; DMT, disease-modifying
therapy; EAE, experimental autoimmune encephalomyelitis; EBV, Epstein Barr
Virus; FLS, fibroblast-like synoviocyte; HLA-DR, Human Leukocyte Antigen-
DR isotype; HSC, hematopoietic stem cell; Ig, immunoglobulin; IFN-I, type I
interferon; KREC, K-deleting recombination excision circles; MHC-I/II, major
histocompatibility complex of class I or II; miRNA, microRNA; MS, multiple
sclerosis; mtDNA, mitochondrial DNA; NET, neutrophil extracellular trap; NK,
natural killer; NPC, neural progenitor cell; OPC, oligocendrocyte progenitor
cell; PBMC, peripheral blood mononuclear cell; PML, progressive multifocal
leukoencephalopathy; PPMS, primary progressive MS; RA, rheumatoid arthritis;
RNS, reactive nitrogen species; ROS, reactive oxygen species; RRMS, remitting-
relapsing MS; SASP, senescence-associated secretory phenotype; SLE, systemic
lupus erythematosus; SPMS, secondary progressive MS; TCR, T cell receptor; Th,
T helper cell; TREC, T cell receptor excision circles; Treg, regulatory T cell.

of DMTs in this population are unknown, since patients over
55-to-60-years-old are generally excluded from clinical trials
(17). Furthermore, while remitting-relapsing MS (RRMS) is the
prominent phenotype in younger patients, older patients more
likely have primary or secondary progressive MS (PPMS/SPMS),
in which chronic inflammation and neurodegeneration, due to
failure in myelin repair and axonal loss, is considered to prevail
(18). However, the pathophysiology underlying the progression
of the disease with aging remains incompletely understood.

We aim to review and compare current knowledge on
immunosenescence and inflammaging, relative to MS and
other autoimmune diseases (AIDs), such as systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA), as these
AIDs are amongst the most studied in this context (19–21). In the
setting of MS, we will also focus on the concomitant senescence
of central nervous system (CNS) resident cells in order to answer
several questions. (a) What is the evidence or the lack thereof
to consider MS a disease of premature immunosenescence? (b)
What are the common or different immunosenescence features
found in MS and other autoimmune diseases? (c) Are epigenetic
changes involved in immunosenescence? (d) Is the age-related
evolution of MS toward a progressive phenotype linked to
immunosenescence? (e) Does immunosenescence expose aging
MS patients to increased risks of infection and cancer, especially
when taking DMTs?

GENERAL MECHANISMS OF
IMMUNOSENESCENCE

Immunosenescence is defined as the physiological aging of
the immune system (22). Immune cells are generated from
hematopoietic stem cells (HSCs) throughout life and differentiate
stepwise, undergoing selection and proliferation pressure upon
antigenic contact. They are thus especially prone to senescent
processes. Changes related to immunosenescence are more
preeminent within the adaptive than the innate immune system
[reviewed by (23, 24)].

Cell cycle arrest of aging cells is initially a protective
phenomenon against increasing cellular damage and
tumorigenesis (7). The pro-inflammatory SASP (IL6, IL8,
matrix metalloproteinase (MMP) 1/3, monocyte chemotactic
protein (MCP) 2/3, insulin growth factor binding proteins) of
senescent cells constitutes a removal-signal directed toward
immune cells (4). However, due to age-related dysfunctions
in the immune system, this clearance partly fails (25). The
pro-inflammatory and oxidative context occurring during the
aging process, enhances the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) pathway, a key regulator of
inflammation (26). This compensatory mechanism may become
self-deleterious, since cumulative cell debris, self-antigens and
the inflammatory SASP contribute together to inflammaging,
altering cell, tissue, organ and organism homeostasis [reviewed
by (23)].

Immunosenescence has been implicated in reduced defenses
against infections and reduced response to vaccination (due to a
reduced antigenic response by T and B cells), an increased risk of
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cancer (due to an imbalance between the function of regulatory
cells and cytotoxic CD8+ T cells) and auto-immune diseases (due
to reduced clearance of apoptotic cells and reduced antibody
diversity, with however an increased susceptibility to molecular
mimicry) (27–30). These risks might be counterbalanced by
the subject’s intrinsic (e.g., genetic polymorphisms, epigenetics)
and extrinsic factors (e.g., the individual’s history of past
immune reactions, referred to as immunobiography, as well as
environmental factors) (11, 15).

T Cells
With aging, the pool of naïve T cells is reduced due to thymic
involution and reduced bone marrow proliferative capacity. Both
the thymus and the bone marrow lose their epithelial/stromal cell
frame, which is replaced by adipocytes, resulting in a reduction
in HSC proliferation (31, 32). Moreover, a general shift of
HSCs from the lymphoid to the myeloid lineage is observed.
Thymic T cell output, measurable by T cell receptor (TCR)
excision circles (TRECs), is reduced with age. TRECs are stable
extrachromosomal DNA byproducts resulting from thymic TCR
rearrangements. TRECs are not replicated and are therefore
diluted with cell division (33).

Homeostatic proliferation, driven by dendritic and B cells
upon exposure to IL7 and IL15, occurs initially to compensate
for the reduced peripheral input of naïve T cells, but results
in the clonal expansion of memory T cells and a depleted
TCR repertoire (34–37). The proportion of T helper (Th)
cells decreases due to defective antigen presentation and an
impaired TCR response, resulting in a reduction of TCR-
mediated proliferation (38). The reduced expression of CD40
ligand (CD40L) on CD4+ T cells impairs their binding to B cells
and thus their ability to function as T helper cells (39).

With aging, a shift from Th1 to Th2 cells is observed, due
to decreased IL2 production, although this is disputed (40, 41),
while the percentage of Th17 cells is increased in subjects
aged over 65 as compared to younger subjects (42). Moreover,
memory T cells are resistant to apoptosis, hence reenforcing their
numerical increase (43).

Overall, during senescence, the number of CD4+ T cells
decreases and CD8+ T cells increases resulting in an inverted
CD4+/CD8+ ratio (<1) (10). Antigen-experienced T cells
proliferate and differentiate into terminally differentiated
memory cells with shortened telomeres that eventually lose CD28
expression, a costimulatory signal involved in T cell activation
and survival (44). This loss, mainly observed in memory CD8+

T cells, has been linked to aging and immunosenescence, and
is partly enhanced by chronic antigenic stimulation, especially
by CMV, with a ten-fold factor for CD4+ and 2-fold for CD8+

T cells (45, 46). These CD28− cells express the natural killer
(NK) receptor NKG2D which provides an antigen-independent
activation signal (along with the NK adaptor molecule DAP12),
bypassing the missing costimulatory signal CD28, and enhancing
their autoreactivity (47, 48). Moreover, these cells express
cytokines [interferon (IFN)g, TNFa] and cytotoxic molecules
(granzyme A/B, perforin) upon expression of the eomesodermin
factor, and are resistant to apoptosis [by expressing B cell
lymphoma 2 (BCL2) and Fas-associated death domain-like

IL-1-converting enzyme inhibitory protein (FLIP)] (49–51).
Finally, they express chemokine receptors [e.g., C-X3-C Motif
Chemokine Receptor 1 (CX3CR1)], which might favor their
migration to inflammation sites (51, 52).

In summary, immunosenescence in T cells is characterized by
a physiologically reduced pool of naïve T cells and an increase
in memory, particularly CD8+, T cells, that have lost CD28
and express NKG2D, the first increasing T cell self-reactivity in
secondary lymphoid organs, the second reducing their threshold
for antigen-specific activation hence enabling an antigen-
independent activation. The autoreactivity of senescent T cells
is enhanced by the clonal expansion of memory T cells and the
reduced TCR repertoire. These changes can also partly explain
the reduced immune defenses against new pathogens observed
during aging, as senescent cells are considered functionally
deficient, contrary to exhausted T cells, which are considered
dormant and can still respond to a previously encountered
antigen (15).

B Cells
B cell numbers, phenotypes and functions change with age
[reviewed by (53, 54)]. Reduced B cell output is attributed to
global changes in hematopoiesis, as described above. Moreover,
peripheral B cell survival factor levels, such as B cell activating
factor (BAFF) and A proliferation-inducing ligand (APRIL) are
reduced in the elderly (55). In addition, stromal cell-derived IL7
production is reduced, whereas the increased pro-inflammatory
cytokine levels [TNFa, IL1b, and transforming growth factor
(TGF)b] withhold the B progenitor cells from the IL7-rich
niches, hence impairing B lymphopoiesis and reducing the pro-
B cell immunoglobulin (Ig) heavy chain V-DJ rearrangement
and thus the pre-B cell receptor (BCR) repertoire (56–59). As a
consequence, absolute and relative numbers of peripheral CD19+

B cells are reduced, while the proportions of B subsets remain
stable with age in humans (53).

With aging, naïve mature (IgD+CD27−) B cells decrease
while exhausted double negative memory (IgD−CD27−) B
cells increase. IgM unswitched (IgD+CD27+) and switched
(IgD−CD27+) memory B cells remain generally stable
(53, 54). The immature transitional immunoregulatory
CD24highCD38high B cell subset decreases with age, so does
its IL10 production (60).

The humoral immune response is altered during senescence,
since antibodies are reduced not in quantity but in their
diversity and affinity and show cross-reactivity to self- and
foreign antigens. This is due to a decrease in antibody class
switch and affinity maturation in clonally expanding B cells,
related to the downregulation of the E47 transcription factor
and activation-induced deaminase (61, 62). This alters the ability
to mount a rapid secondary antibody response. Furthermore, a
progressive decline in germinal center formation during aging
decreases somatic hypermutation, i.a. in IgD−CD27+ B cells
and even more in double negative B cells (63). Moreover,
immunosenescent B cells lack the support of the Th cells,
since Th cells are reduced in number, express less CD40L, and
are less exposed to antigen presentation by antigen presenting
cells (APCs), due to a reduced expression of the major
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histocompatibility complex of class II (MHC-II) on the latter
(39, 64).

Interestingly, double negative memory B cells express
chemokine receptors, C-X-C Motif Chemokine Receptor 3
(CXCR3), although reduced with age, C-C Motif Chemokine
Receptor (CCR)6 and CCR7, and are thus prone to migrate to the
inflammation sites (65). Moreover, these cells are pre-activated
and can produce pro-inflammatory cytokines, and granzyme
(66, 67). They undergo an antigen-driven BCR hypermutation.

Finally, low but steadily expanding CD11b+CD11c+CD21−

age-associated B cells (ABCs) have been identified in the elderly,
in response to antigenic stimulation, and linked to autoreactivity.
This functionally exhausted memory subset is driven by the T-
box transcription factor (TBET) and is activated synergically
upon stimulation of the BCR and Toll-like receptors (TLR)7
and 9. ABCs produce pro-inflammatory cytokines (e.g., TNFa),
inhibit B lymphopoiesis and favor Th17 polarization (68–
70). They possibly derive from follicular B cells and exhibit
downregulation of Epstein Barr Virus (EBV) receptor CD21 due
to chronic EBV stimulation.

In summary, the changes in B cell phenotypes, and
recirculation, along with their altered humoral response
contribute to immunosenescence and can explain the reduced
response to vaccination and increased susceptibility to infections,
while the clonal expansion of B cells cross-reactive to self-
antigens can favor autoimmunity.

Immunosuppressive/Regulatory Cells
Natural, thymic-derived CD4+CD25+FOXP3+ regulatory T
cells [(n)Tregs], mainly with an effector memory phenotype
(CD45RO+/CD45RA−), increase with age in human in relative
and absolute numbers, so does the expression of their
transcription factor, forkhead box P3 (FOXP3), possibly due
to their better survival in the periphery, since they reduce the
expression of the pro-apoptic BCL2 interacting mediator of cell
death (BIM) (71–74). Functionally, CD4+ Tregs of aged humans
and mice can suppress CD4+ and CD8+ T cell proliferation and
IFNg production, but in aged mice they could not suppress IL17
production (75, 76).

Likewise, natural CD8+FOXP3+ nTregs increase with age,
while their peripheral inducible capacity is reduced (77, 78).
Functionally CD8+ nTregs retain the same suppressive ability
independently of aging. Interestingly, a CD8+CD28−FOXP3+

cell subset has been described, in agreement with the overall
increase of CD8+CD28− T cells (79). Finally regulatory B cells
and myeloid-derived suppressor cells also appear increased with
age but have been less studied (80).

In summary, Tregs participate to the immunosenescent
process by their increased number and their safeguarded
suppressive activity, except against Th17 cells [reviewed by (79,
81)]. This correlates with increased cancer incidence, since Tregs
suppress the CD8+ T cell anti-tumor response, and with an
increased risk of infection and viral reactivation, since they
suppress the anti-pathogen response (72, 82, 83). They have
also been linked to neurodegeneration due to their differential
interaction with microglia both in the presence and absence of
effector T cells (84).

Innate Immunity
Although less affected by immunosenescence, partly because
HSCs are redirected toward the myeloid lineage, innate
immunity still displays mainly functional changes [reviewed
by (85)].

With aging, dendritic cells show less migration abilities,
less responsiveness to TLR stimulation, reduced pathogen
processing (phagocytosis, endocytosis) and antigen presentation.
This is attributed to mitochondrial dysfunction, resulting in the
production of reactive oxygen species (ROS) (86, 87). These
alterations affect T cell stimulation and consequently the CD8+ T
cell cytotoxic response. Type I (IFN-I, i.e., IFNa/b) and III (IFN-
lambda) IFN production is decreased, but they still produce IL6
and TNFa (87, 88).

Several important functions of neutrophils are reduced
with aging: chemotaxis, phagocytosis, production of ROS and
neutrophil extracellular traps (NET). Opsonization of antibody-
bound pathogens is dwindled (89, 90).

Monocytes shift from the classical (CD14++CD16−) to the
pro-inflammatory non-classical (CD14+CD16++) phenotype,
however with some discrepancies on their expression of Human
Leukocyte Antigen-DR isotype (HLA-DR) and CX3CR1 (91–93).

Macrophages also produce less ROS, IL6, and TNFa. They
display impaired phagocytosis resulting in reduced antiviral
response and impaired auto-/mitophagy, resulting in the
accumulation of altered organelles and molecules (25, 94).
Moreover, they express less TLRs and MHC-II on their surfaces,
thus impairing their ability to present antigens to CD4+ T cells
(95, 96).

The slight net increase in the total number of NK cells is
in fact due to a decrease of the immunoregulatory CD56bright

and an increase of the cytotoxic CD56dim NK cell subsets.
These show however impaired degranulation and thus decreased
cytotoxic abilities on a per cell basis. IL2/12-mediated secretion
of immunomodulatory cytokines (e.g., IFNg) and chemokines is
reduced, while production of IL1/4/6/8 and TNFa is increased
(97, 98). Furthermore, the central maturation of NK cells is
incomplete (99).

Epigenetics and Telomeres
Insight into the function of microRNAs (miRNAs) has rapidly
grown over the past two decades. miRNAs are small non-
coding RNAs regulating gene expression post-transcriptionally
by binding to their target messenger RNA (mRNA) and mostly
inhibiting its translation (100). Overall, miRNA transcription
decreases with age [e.g., miR-17/92a/181a in peripheral blood
mononuclear cells (PBMCs)] (101, 102), and they have been
linked to several mechanisms underlying cellular senescence
[reviewed by (103)]. Oxidative stress can affect positively or
negatively miRNA expression (104–107). On the opposite, the
downregulation of miR-146a enhances NADPH oxidase (NOX)
as it targets its subunit NOX4 (108). The downregulation of
the miR-17-92 cluster and the upregulation of miR-210 enhance
ROS production (109, 110). Furthermore, miR-210 induces
senescence-associated heterochromatin loci and double-strand
DNA breaks and is involved in mitochondrial dysfunction by
targeting a subunit of the electron transport chain (110, 111).
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miR-34a and -101 inhibit autophagy (112, 113). By targeting
the pro-proliferative cyclin A2, an antagonist of p21, miR-29a
and -124, both induced by p53, enhance p21 expression, and
thus senescence by cell cycle arrest (114). miR-20a is also an
indirect p53-senescence inducer (115). Furthermore, the miR-
17-92 cluster and miR-106b family target p21, while p53 inhibits
the miR-17-92 cluster (107, 116–119). Finally, miR-9/96/145
were upregulated concomitantly to the downregulation of insulin
growth factor 1 receptor (a miR-96/182-target) and forehead box
protein O1 (FOXO1, a miR-145/132-target) in the PBMCs of
elderly subjects, but miR-132 and -182 were not differentially
expressed in this study (120).

Telomeres [reviewed by (121)] are repetitive hexameric
sequences (TTAGGG) at the chromosome end of 10–15 kb
at birth that shorten by 40–200 bp with each cell division,
although length of shortening per mitosis might vary as it is
higher in memory than in naïve cells. Critically short telomeres
induce a signal for p53-dependent cell cycle arrest. Telomerase
is a ribonucleoprotein complex comprising a catalytic subunit,
telomerase reverse transcriptase (TERT), which can elongate the
hexameric sequences. Telomere length depends on the balance
between telomere shortening and telomerase activity, but overall
decreases with age. Telomerase activity is increased in stem
cells, but also in lymphocytes, where it is the highest in the
germinal center (122, 123). However, this activity in the latter is
not enough to slow down telomere shortening. Oxidative stress
and an increased replication rate upon repetitive stimulation
during inflammation, progressively reduce telomerase activity,
paralleling the loss of CD28, and hastens telomere attrition
and thus cellular senescence (121, 124, 125). Remarkably,
centenarians have longer telomeres with lower levels of basal
inflammation (14). Interestingly, miRNAs can induce telomere
dysfunction and cellular senescence, as miR-138 and -512-5p
inhibit TERT. miR-155 targets telomeric repeat-binding factor
(TRF)1, miR-23a targets TRF2, which both ensure telomere
maintenance (126–129).

Several miRNAs are considered as major immuno-
microRNAs, playing a role in immune cell homeostasis
and senescence, but also in inflammatory responses and
inflammaging [reviewed by (130, 131)]. Age-dependent changes
in miRNAs diverge between naïve, central and effector memory
CD8+ T cells, but miR-181a is commonly downregulated in
the aged cells of all 3 subsets. The most changes are uncovered
in the naïve T cell subset, where they are correlated with the
decline of FOXO1 signaling, evidenced by the downregulation of
IL7 receptor and CCR7, and the alteration of TNFa and NF-kB
signaling (132). The SASP in senescent cells induces the delayed
expression of miR-146a/b to target IL1 receptor associated
kinase (IRAK)1 and to compensate downstream NF-kB-
dependent inflammation mediated by IL6/IL8 (133). miR-223
downregulates the NF-kB pathway and the inflammasome
NLRP3 (134). Contrarily, NF-kB induces miR-155, which
inhibits suppressor of cytokine signaling (SOCS)1, allowing T
effector expansion and T memory formation and maintenance
(135). miR-17/19b/20a/106a were downregulated in CD28− vs.
CD28+ and in CD28+ T cells of old vs. young donors alongside
the upregulation of p21 (109). The miR-17-92 cluster and miR-21

support the differentiation into T effector cells (136, 137). On
the contrary, the T effector response upon viral infection is
delayed in miR-155- or miR-181a-deficient (CD8+) T cells,
and cells differentiate to central rather than effector memory
cells (138, 139). Moreover, with age, the decrease of Yin-Yang 1
and T cell factor 1 results in the downregulation of miR-181a,
which induces dual specific phosphatase (DUSP)6 expression.
The latter impairs extracellular signal-regulated kinase (ERK)-
dependent TCR sensitivity (140). Furthermore, miRNAs can
impair B cell differentiation in the elderly. miR-155, that targets
activation-induced deaminase, and miR-16, that targets E47, are
increased in memory B cells and even more in double negative B
cells (141, 142).

Epigenetics translate the effect of the environment on gene
expression [reviewed by (143)]. While methylation, catalyzed
by DNA methyltransferases (DNMT), can vary at a cell-base
level, the global methylation rate is reduced with age, possibly
by passive demethylation and reduced activity of DNMT1 (144).
Hypomethylation allows gene expression. Naïve CD4+ T cells
display age-associated hypomethylation sites in immune-related
pathways [TCR signaling, Fc gamma receptor (FCgR)-mediated
phagocytosis, mammalian target of rapamycin (mTOR) and
insulin signaling, antigen processing and presentation], while
hypermethylation was observed in cell proliferation pathways
[Wnt and mitogen-activated protein kinase (MAPK) signaling]
(145, 146). Interestingly, centenarians display a slower reduction
of DNA methylation level (147). Sirtuins (SIRT) encode NAD+-
dependent histone deacetylases (HDAC) and maintain the
genome’s integrity during cellular stress. Downregulation of
SIRT1 and SIRT3 in PBMCs of healthy elderly subjects was
accompanied by the upregulation of miR-9, which targets SIRT1,
andmiR-34a (148). Oxidative stress induces miR-195, that targets
SIRT1, which is associated with reduced telomerase activity (149).

In summary, telomeres shorten with age due to cell
replication and oxidative stress, despite sustained telomerase
activity. Epigenetically, global hypomethylation occurs with
aging. Interestingly, miRNAs are involved in cellular senescence
through different mechanisms [oxidative stress, mitochondrial
dysfunction, cell cycle arrest (p53 pathway), telomere attrition,
and inflammation].

IMMUNOSENESCENCE IN AUTO-IMMUNE
DISEASES

Immunosenescence is associated with an increase in the
incidence of several AIDs (150). Some diseases show a bimodal
age of onset (e.g., RRMS vs. PPMS, MOG-antibody diseases),
others almost exclusively occur in the elderly (e.g., polymyalgia
rheumatica, giant cell arteritis) (30, 151–153). A German study
showed an age-decreasing female incidence of SLE peaking at
the age of 20–25 and to a lesser extent at menopausal age, and
an age-increasing male incidence peaking at the age of 65–70
(154). RA-incidence and prevalence increase with age to peak
at age 50–54 and 60–64, respectively (155). Serum autoantibody
titers are generally higher in elderly subjects, even without overt
AID. Moreover, the binding of circulating antibodies to random
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peptides, especially with a di-serine motif, increases with age
(150, 156).

Interestingly, AIDs show inflammaging and features of
immunosenescence at an earlier age. Age-associated defects at the
cellular level, classified under the nine common denominators
of aging (2), and the resulting impaired immune function create
an unstable state, that may predispose for tolerance failure
and occurrence of autoimmunity (152, 157). Herein, we will
focus on the effect of stem cell exhaustion, altered intercellular
communication (e.g., by inflammaging), proteostasis (i.e., the
maintenance of a functional cellular protein pool) loss, telomere
attrition, genomic instability, mitochondrial dysfunction, and
epigenetic alterations in MS, SLE, and RA.

Lymphopenia-induced homeostatic proliferation leads
to clonal expansion and TCR repertoire contraction over
time. Furthermore, priming by cytokines produced during
inflammaging, can transiently reduce the TCR stimulation
threshold (by ERK phosphorylation), consequently interfering
with tolerance maintenance and promoting autoreactive T
cells [reviewed by (152)]. TNFa engages cellular senescence by
inducing interferon response genes, cytokine secretion, and
ROS production (158). Moreover, the Th17/Treg imbalance
contributes to trigger autoimmune diseases (42).

Three cell types are unique to immunosenescence, i.e., CD28−

T cells, linked to cytotoxicity, double negative B cells and ABCs,
linked to autoantibody production, and might play a role in
autoimmunity (48, 66, 68). The CD4+CD28− cell population is
enlarged in subjects with autoimmune diseases compared to age-
matched controls, with the highest percentage in RA, followed by
RRMS and SPMS and finally SLE, and is positively correlated with
age andCMV seropositivity. These cells are enriched in granzyme
A and B, and perforin and their TCR repertoire is contracted as
compared to CD28+ T cells. The latter appears even stronger in
MS/RA than in healthy controls (159).

Cells recycle long-lived proteins, damaged organelles, and
aggregates by autophagy via the lysosomes, for the synthesis of
new proteins or for energy production, thus ensuring cellular
homeostasis, especially under nutrient-/energy-poor conditions
(160, 161). Autophagy declines with age, as seen by the
downregulation of autophagy-related protein (ATG)5, ATG7
in the human aged brain (162, 163). Interestingly, autophagy
and inflammation can reciprocally induce and suppress each
other. Autophagy is induced by TLRs but inhibited by Th2
cytokines. Conversely, it blocks the inflammasome, and thus
the IL1b response. It prevents ROS production by degrading
dysfunctional mitochondria, but it also promotes the survival and
differentiation of immune cells [reviewed by (164)].

In AIDs, metabolic reprogramming for energy production
may fail leading to hyperreactive immune cells and an increase in
oxidative stress. Oxidative stress and mitochondrial dysfunction
contribute to (immuno-)senescence and inflammation
through decreased redox capacity (glutathione depletion),
activation/oxidation-induced cell apoptosis (with defective
clearance and release of the cell content inducing TLR),
mitochondrial DNA (mtDNA) damage, defective bioenergetics
(ATP depletion) and production of neoantigens (165, 166).
Moreover, oxidative stress, inflammation, and increased

leukocyte renewal accelerate telomere shortening [reviewed by
(166)].

Immunosenescence in Multiple Sclerosis
In MS, activated peripheral autoreactive CD4+ T cells, migrate
through a disrupted blood brain barrier (BBB) into the CNS.
They are reactivated upon antigenic contact, and interact with
other peripheral immune cells (CD8+ T and B lymphocytes,
monocytes, and macrophages). They activate microglial cells and
astrocytes to induce demyelination, oligodendrocyte apoptosis
and axonal damage (Figure 1A) (18). MS patients present at a
younger age with some features of immunosenescence seen in
aged healthy controls, suggesting that it is possibly involved in
MS pathogenesis [reviewed by (19, 167)].

Innate Immunity
Circulating neutrophils in RRMS patients produce more
inflammatory markers and NETosis, and are resistant to
apoptosis. The serum/plasma levels of neutrophil-activating
chemokines and neutrophil-derived enzymes [e.g., C-X-C motif
ligand (CXCL)1, CXCL8, elastase] are positively correlated with
new inflammatory lesions. Neutrophils are also found in the
cerebrospinal fluid (CSF) at onset and early in relapse, but
decrease with disease duration (168–170). Regarding monocytes,
discrepancies exist due to study population and staining strategy
differences. Some describe an increase in classical and non-
classical monocytes in inactive RRMS as compared to progressive
MS, while others state an increase in non-classical monocytes in
a mixed MS population (171, 172). The beneficial or detrimental
role of NK cells is still debated [reviewed by (173)]. The
peripheral blood of PP/SPMS counts more CD56dim NK cells,
while the CD56bright NK cells are expanded in the CSF of
untreated RRMS patients due to their higher migratory capacity,
which might counterbalance the CNS inflammation (174, 175).
However, their immunoregulatory and cytolytic functions appear
to be impaired (176, 177). Moreover, NK cells in the CNS could
delay remyelination, as they suppress the reparative properties
of neural stem cells in experimental autoimmune encephalitis
(EAE) (178).

T Cells
The bone marrow cellularity is reduced and the in vitro
proliferative capacity of mesenchymal stromal cells, supportive
of hematopoiesis, declines with age, even more in PP/SPMS,
while CD34+ HSC numbers remain stable in MS but the
frequency of colony forming cells is low (179, 180). Moreover,
thymic involution is accelerated in MS, given that TREC levels
are, at all ages lower than in age-matched healthy controls
and progressively decrease with age (159). Hence, the CD8+

naïve T cell pool is reduced, while data regarding the effect
of age on naïve CD4+ T cells in MS are more discrepant
(181–183). Interestingly, the TCR repertoire is more diversified
in MS (184). Moreover, Th17 cells are largely involved in
MS and increased in the periphery (185, 186). The inverted
CD4+/CD8+ ratio, the hallmark of the immune risk phenotype,
mostly does not apply in MS (187–189). This ratio was however
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FIGURE 1 | Pathophysiology of multiple sclerosis. (A) In the early inflammatory phase of MS, peripheral adaptive immune cells infiltrate the CNS through a disrupted

BBB. These activated cells interact with each other and the resident cells of the CNS. They secrete cytokines (e.g., IFNg by Th1, IL6/17 by Th17, GM-CSF, IL6, TNFa

by B cells) and cytotoxic molecules (e.g., granzyme B by CD8+ T cells). B cells can further evolve into autoantibody-producing plasma cells. As a consequence, T and

B cells activate macrophages and microglia, which produce cytokines, nitric oxide, and ROS. This cytotoxic pro-inflammatory environment breaks down the myelin

sheaths around axons and induces energy failure in the axon. Macrophages and microglia can still clear the myelin debris, allowing for the recruitment of OPCs that

will partially remyelinate the lesion. (B) In the progressive phase of MS, T and B cell infiltrates are reduced. Remarkably, plasmablasts and plasma B cells form tertiary

follicle-like structures in the meninges. The BBB is closed and the inflammation is sustained by innate CNS-resident cells, i.e., microglia and astrocytes. They produce

cytokines (TNFa, IL6) and release ROS, causing myelin damage. Although microglia are primed into a pro-inflammatory phenotype, their phagocytic capacities are

reduced. These features also characterize the senescence-associated phenotype of microglia and astrocytes. Myelin debris are improperly cleared, OPCs are less

recruited and fail to differentiate. TNFa-mediated glutamate release from astrocytes results in excitotoxicity causing axonal damage. The ferrous iron released from the

myelin, where it accumulates with age, is oxidized, which produces ROS, and incorporated by microglia, forming a phenotypical rim around the demyelinating lesions,

both in the white and gray matter. These successive events are self-sustained and enhanced by senescent processes, resulting in a major oxidative burst, causing

mitochondrial dysfunction, mitochondrial DNA damage, energy failure and axonal loss. BBB, blood brain barrier; B, B cell; CNS, central nervous system; GM-CSF,

granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; MS, multiple sclerosis; OPC, oligodendrocyte progenitor cell; ROS, reactive oxygen

species; T, T cell; Th, T helper cell; TNF, tumor necrosis factor. Created with BioRender.com.

decreased in the CSF of patients on natalizumab treatment (190,
191).

Both effector memory CD4+ and CD8+ T cells may enhance
the chronic inflammatory responses to neuroantigens in MS
and EAE (192, 193). Notably, inoculation with CD4+ memory
rather than effector T cells in EAE preferentially induced marked
CNS inflammation (194, 195). Herein, memory CD4+ T cells
are increased in the blood and the CSF during active disease
(196). Central and effector memory CD8+ T cells are increased,
independently of disease activity, in the blood, and the latter also
in the CSF, and the CNS tissue (192, 196–198).

The cytotoxic CD4+CD28− population is enriched with
advancing age in RR/SP/PPMS, while it remains stable in
healthy controls, and has been linked to disease severity in
EAE and MS (159, 199–201). They are partly autoreactive
to myelin basic protein (MBP) (199). Since these cells
express CX3CR1, they might infiltrate the CNS where the

CSF levels of its ligand fractalkine were found elevated in
MS (52).

B Cells
B cells play a central role in MS development and progression
[reviewed by (202)]. Antigen-driven clonally expanded B cells
produce pro-inflammatory cytokines [TNF, lymphotoxin (LT)a,
IL6, granulocyte-macrophage colony-stimulating factor (GM-
CSF)] and chemokines through the NF-kB pathway. Memory
B cells act as APCs, and hereby prompt the proliferation
and activation of T and myeloid cells. B cells, stimulated by
Th follicular cells, differentiate into immunoglobulin-producing
plasmablasts and plasma cells that accumulate to eventually
form tertiary follicle-like structures in the leptomeninges during
disease progression and are notably involved in inducing
subpial demyelination.
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Transitional B cells (CD24highCD38high) are reduced in the
blood and are functionally defective in RRMS (produce less IL10).
They have been found in the CSF while they were absent in CSF
samples of other inflammatory neurological diseases (203, 204).
The proportions of peripheral naïve B cells decrease and memory
B cells increase with age in controls (54), but remain stable
in MS, except during relapse. Interestingly, the proportion of
CSF class-switched memory B cells is increased in adult MS
whereas the relative numbers of unswitched memory B cells are
increased in pediatric MS (205). In B cells from MS patients, a
preferential naïve-to-memory transition possibly occurs as the
production of LTa and TNFa by memory CD27+ B cells was
high and comparable to that of healthy controls, whereas the
production of IL10, normally expressed by naïve CD27− B cells
was reduced (206).

Double negative (IgD−CD27−) B cells and ABCs
(CD11c+CD21− or CD21low) are increased in a proportion
of MS patients before the age of 60 years, whereas they are
mainly found above 60 in healthy controls. This increase is
positively correlated with age in healthy controls but not in MS
patients and with CD4+CD28− T cell numbers in all subjects
(63, 67). Remarkably, double negative B cells and ABCs are also
increased in the CSF of MS patients (67). Double negative B cells
from MS patients have a higher activation potential than those
from controls. They are involved in antigen presentation as well
as costimulation, and can produce proinflammatory cytokines
(TNFa, LTa), and granzyme B after stimulation (67).

Tregs
In RR/PPMS, Tregs (CD4+CD25+CD127−) levels were
stable as compared to controls, although resting Tregs
(CD45RA+CD25dim) were reduced, while activated Tregs
(CD45RA−CD25bright) were increased in active MS (207, 208).
There are some discrepancies whether Treg numbers and
expression of surface markers are different between MS and
control subjects (207–209). Overall, it is considered that the
suppressive activity of Tregs is reduced in (RR)MS, but it seems
to improve in SPMS (210–213). Several miRNAs have been
found to target the TGFb pathway limiting the differentiation of
CD4+ naïve T cells to Tregs. These miRNAs, however, did not
affect their suppressive function (214).

Inflammatory Mediators/Inflammaging
CSF levels of TNFa, CXCL10 and IL8 increased with age in
healthy controls, while IL10 level was the lowest in the middle
age group (40-to-59-years-old). This inflection point of IL10
production possibly occurs 10–20 years earlier in MS, due
to premature immunosenescence, which might correspond to
disease onset. On the contrary, in MS, TNFa, CXCL10, IL8,
and IL10 levels were higher than in controls, but only IL8 and
CXCL10 increased with age. Moreover, there is a shift from
Th1 to non-Th1 cytokine profiles in aging and MS, as the age-
related increase of CXCL10 was relatively lower than for the other
cytokines (41).

Circulating and CSF levels of a fewmarkers are overall in favor
of the presence of inflammaging in MS, although there are some
discrepancies between studies. IL6 and TNFa are increased in the

serum and the CSF in RRMS, mainly relapse, and SP/PPMS. IL6
correlates with disease duration, serum TNFa in PPMS correlates
with disease progression. Serum IL10 levels were increased with
remission, while CSF levels were high during relapse [reviewed
by (215)].

Proteostasis/Autophagy
Autophagy is increased in active RRMS, evidenced by
the upregulation of ATG5 in peripheral T cells and in
encephalitogenic T cells on brain autopsy samples (216). It
exhibits both detrimental and protective effects dependent on
the cell type. It enhances neuroinflammation by supporting
autoantigen presentation by DCs and the survival of autoreactive
B and T cells. Conversely it protects neuronal integrity,
oligodendrocyte survival and the fragile pro/anti-inflammatory
balance in astrocytes and microglia [reviewed by (217)].
However, sustained autophagy due to unresolved damage might
lead to its detrimental dysregulation, paradoxical inflammasome
activation and apoptosis (162, 218).

Telomeres/Telomerase
Telomeres in whole blood DNA (thus mainly PBMCs) were
shorter in all MS subtypes (219) as compared to controls,
and their length was negatively correlated with age. Telomere
shortening was associated with a higher relapse rate, disability,
and brain atrophy (220). It was predictive of transition to SPMS
(220, 221).

Oxidative Stress/Mitochondrial Dysfunction
Peripheral lymphocytes of MS patients exhibit an increased
glucose demand with impaired oxidative phosphorylation,
alongside mitochondrial dysfunction (marked by a reduced
enzymatic activity and a decoupling of the respiratory chain)
(222–224). Concurrently, oxidative stress can promote T cell
activation and Th17 differentiation (225–227). Interestingly
lymphocytic resistance to apoptosis might partly be due to an
impairedmitochondria-mediated apoptotic deletion, as observed
in CD4+CCR5+ T cells of PPMS (228).

Epigenetics
Contrary to aging, methylation appears to be globally increased
in MS [reviewed by (229)], with different methylation profiles
between MS phenotypes, higher in PPMS compared to RRMS
(230), but slightly higher in RRMS compared to SPMS (231).
Lymphocyte signaling, T cell activation and migration were
common pathways to RRMS and SPMS methylation profiles,
while myeloid cell function and neuronal and neurodegenerative
genes and pathways were SPMS-specific (231). Thirteen N6-
methyladenosine (m6) regulatory genes were overexpressed in
the CSF of MS patients as compared to healthy controls,
of which 9 were negatively correlated with age. Remarkably,
non-supervision consensus clustering separated RRMS and
progressive MS patients in 2 distinct clusters, with higher levels
of the m6 regulatory genes and m6 RNA methylation in RRMS
patients (232).

miRNAs are upregulated in the CSF of mainly relapsing
MS patients and associated to inflammatory (NF-kB, FOXO,
TNFa, TGFb), cell cycle and p53 signaling pathways (233).
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miR-155-5p targets SOCS1 and hence promotes Th17 and
Treg differentiation, and microglia-mediated immune response
through expression of IL6, TNFa and induced nitric oxide
synthase (iNOS) (234, 235). It also disrupts the BBB while
miR-146a-5p protects it by modulating leukocyte adhesion to
endothelial cells (236, 237). Moreover, miR-146a-5p inhibits
Th17 differentiation by repressing TNF receptor-associated
factor (TRAF)6 and IRAK1, transducers of NF-kB (238).
Remarkably, miR-150 that targets CMYB, promotes terminally
effector rather than precursor memory CD8+ T cells and is also
expressed in mature B cells (239, 240).

Relevance of Immunosenescence on MS
Disease Features
Resident Cells of the Central Nervous System
MS-related inflammatory processes influenced by
immunosenescence, potentially alter the function of CNS-
resident cells by promoting senescence and a pro-inflammatory
phenotype, which enhances the oxidative burden, resulting
in alteration of mitochondrial function and DNA integrity.
Moreover, cell cycle arrest and phenotypic changes in senescent
cells might affect their functions and their regenerative
capacity (241).

Oligodendrocytes
The adult brain encloses its remyelination potential into a pool
of oligodendrocyte progenitor cells (OPCs). OPCs represent 5–
10% of all CNS cells, can undergo asymmetric division and
migrate to the site of demyelination to differentiate into mature
oligodendrocytes thereby forming new myelin sheaths. This
remyelination potential naturally decreases and slows down with
age [reviewed by (241, 242)]. In addition, OPCs are improperly
recruited to chronically demyelinated MS lesions and fail to
differentiate with disease progression, due to intrinsic and
extrinsic factors (243, 244).

Intrinsic factors include age-related decline of histone
deacetylation andmethylation in OPCs and oligodendrocytes (by
reduced HDAC class I expression), enhancing the heterochronic
expression of transcriptional inhibitors [e.g., inhibitor of
DNA-binding (Id)4] as well as global hypomethylation by
downregulation of Dnmt1 in OPCs of aged mice (245–
247). Likewise, DNA methylation of ID2/ID4 allows OPC
differentiation, but their methylation levels were lower in
MS lesions on human brain samples than in controls (248).
Extrinsic factors from the OPC environment can also affect
their differentiation. Unlike induced pluripotent stem cell
(iPS)-derived neural progenitor cells (NPCs) from age-
matched healthy controls, NPCs from PPMS patients expressed
senescence markers (p16INK4, p53, increased senescence-
associated beta-galactosidase activity), and failed to induce OPC
differentiation. This was reversed by treating the NPCs (and not
the OPCs) with rapamycin or a blocking antibody against high-
mobility group box (HMGB)1, a mediator of neuroinflammation
in the SASP of NPCs (249, 250).

Moreover, immune reactive OPCs can contribute to
neuroinflammation and to their own functional impairment
in demyelinating conditions, as they express IL1b, MMP9,

MHC-I/II, and immunoproteasome genes, facilitating the early
disruption of the BBB, the recruitment of activated immune
and glial cells and their production of cytokines (e.g., IL6 by
astrocytes) (242, 251–254). They are also involved in neuronal
cytotoxicity, by enhancing glutamatergic transmission through
IL1b or dysregulation of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors through IFNg,
directly or indirectly by inducing lymphocytic cytokines (255–
257). Inversely, the SASP of the surrounding cells can interfere
with OPC differentiation (258).

Microglia
Microglia, maintained in a quiescent state by TGFb (259)
and inhibitory ligand-receptor interactions with neurons,
astrocytes, and oligodendrocytes, scan their environment
through their ramifications, for danger signal and can sense
extracellular ATP/UDP changes mirroring neuronal or astroglial
injury/activity. Activated microglia will transiently change into
pro-inflammatory subsets, particularly during myelin clearance,
which sustains inflammation and hinders remyelination, while
regulatory subsets support neuroprotection. However, their
physiological age-related functional changes decrease their
reparative ability toward CNS damage [reviewed by (260)].

Since microglia have a relatively long lifespan and a slow
turnover rate, they are more prone to accumulate DNA damage
and experience changes during aging [reviewed by (261)]. The
motility and ramifications of microglia are reduced, and their
sensome gene expression profile changes with age, delaying their
recruitment to site and reducing their ability to sense their
surroundings. Moreover, aged microglia are chronically activated
and exhibit an elevated immunoreactivity and an exaggerated
pro-inflammatory response, the so-called microglial priming.
TLRs and advanced glycan-end products are upregulated
while immune-suppressive factors (CD200R, CX3CR1) are
downregulated, enhancing the expression of MHC-II, pro-
inflammatory cytokines (IL1, IL6, TNFa), and the production
of ROS/reactive nitrogen species (RNS) (by overexpressing
NOS and NADPH oxidase) (262–265). Conversely, the age-
related increase in TGFb levels, with senescence promoting roles
[reviewed by (266)], induces changes in aging microglia that
interfere with their ability to acquire a regulatory phenotype
and to promote OPC differentiation (267). Moreover, activated
microglia initiate a TNFa-mediated synaptic degeneration, and
reciprocally influence astrocytes through TNFa and ATP to
prompt the astroglial release of glutamate (257, 268).

With age, the phagocytic activity of microglia declines,
impairing the clearance of myelin debris and delaying
remyelination [reviewed by (269)]. Furthermore, as lysosomal
degradation and cholesterol efflux are defective, lipofuscin
granules (insoluble aggregates of myelin) accumulate, which
increase inflammasome signaling and protein expression
(270, 271).

Although microglia and macrophages are phenotypically
related and complement one another in MS pathogenesis,
their age-related changes partially differ. Aging macrophages
are deficient in phagocytosis and chemotaxis, as microglia.
Contrarily to microglia, they lose their pro-inflammatory and
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regulatory functionality (i.e., reduced activation of NF-kB,
downregulation of TLR4, TNFa, IL6) [reviewed by (269)].
Interestingly, transferring young macrophages into an aging
demyelinating brain enhanced remyelination (272).

Astrocytes
Astrocytes are part of the CNS innate immune system and
participate to demyelination by impairing the BBB, by controlling
the passage of immune cells through the BBB (cellular adhesion
molecules), by attracting peripheral immune cells and resident
CNS cells to the lesion site (chemokines), by guiding T
cell phenotypes, by inducing B cells (BAFF), by modulating
microglial recruitment and function, and by acting as APCs.
Although astrocytes can prevent excitotoxicity by glutamate
uptake, they can worsen it by secreting several cytotoxic
factors (ROS, RNS, glutamate, ATP) in response to IFNg and
IL1b stimulation. Furthermore, TNFa downregulates glutamate
receptors in astrocytes, thus elevating the extracellular levels of
glutamate, which is directly toxic to oligodendrocytes, axons
and neurons. Astrocytes further secrete fibroblast growth factor
2 (FGF2) and produce glycosaminoglycan hyaluronan, which
promote OPC proliferation instead of their differentiation, and
produce chondroitin sulfate proteoglycans, ephrins, and myelin-
associated inhibitors, which inhibit axonal growth. The glial scars
formed by reactive astrogliosis try to contain the demyelination
by surrounding the damaged area, but their rigidity hinders
remyelination and axonal regeneration [reviewed by (273)].

In aging astrocytes, the overexpression of the intermediate
filaments, glial fibrillary acidic protein (GFAP) and vimentin,
parallels increased p16INK4 expression and cell cycle arrest.
Moreover, TGFb1 and HMGB1 induce pro-inflammatory
cytokines (IL6, TNFa, IL1b, prostaglandins) and chemokines
constituting the SASP of aging astrocytes (274, 275).
Interestingly, EAE improves by blocking HMGB1 in the
CNS (276). Furthermore, during EAE, oxidative stress sustains
excitotoxicity (273, 277).

Inflammatory Activity vs. Progression in Relationship

to Aging
While 80–85% of patients present with RRMS at a younger
age, the relapse rate is reduced with aging. Moreover, the
post-relapse recovery potential decreases with age. The decline
in white matter integrity and neuro-axonal reserve might
precipitate the onset of progression, and increase the risk
of accumulating disability (278–281). It is now established
that subclinical neurodegeneration starts long before clinical
progression becomes more evident, explaining the occurrence
of progression independent of relapse activity (PIRA) in earlier
phases of the disease (282). Therefore, according to natural
history studies, up to 50% of RRMS patients might transition
to SPMS, 15–20% present with disability progression from onset
(PPMS) (18). Remarkably, both PPMS and SPMS onset occurs
on average around the age of 45 years. Transition to SPMS
happens independently of the duration of the prior relapsing
course (283). Aging and underlying senescence might therefore,
at least partially, be involved in the evolution and pathogenesis of
the disease.

The CNS inflammatory infiltration and acute axonal injury are
negatively correlated with age, while in inactive progressive MS,
the CNS inflammation declines to the same level as in healthy
controls (284). While RRMS is characterized by a disrupted
BBB allowing the invasion of the CNS by peripheral immune
cells, progressive MS is characterized by a compartmentalized
CNS inflammation, behind a closed BBB [reviewed by (285,
286)]. Follicle-like structures, enriched in B and plasma cells,
form in the meninges and these cells have a higher relative
contribution within the infiltrates (287). Perivascular and
parenchymal T/B cell infiltrates are limited. New active lesions
are infrequent. Slowly expanding white matter lesions, also
called smoldering lesions, with low-grade myelin destruction
and axonal degeneration, are formed by a moderate lymphocytic
infiltration and a dense network of reactive astrogliosis in
their center (288, 289), surrounded by activated microglia and
macrophages forming a narrow rim (290). Cortical lesions are
frequent and are also mainly caused by activated microglia,
resulting in synaptic and neuronal loss (285, 286). In the normal
appearing white matter, the proinflammatory state induces
microglial and astrocytic activation resulting in diffuse axonal
injury (291).

During the progressive phase of the disease, the oxidative
burst by activated microglia is prominent (285). Iron
accumulates with age in the brain and is stored with
ferritin in oligodendrocytes. The oligodendrocytes, harmed
by inflammation/oxidation, release ferrous iron. Ferrous iron
(Fe2+) reacts withH2O2 to form ferric iron (Fe3+) and a hydroxyl
radical, which increases the oxidative stress (285). Ferric iron is
incorporated by microglia and macrophages at the active lesion
margins, forming the magnetic rim lesions detectable by MRI in
about 50% of the cases (290). This iron uptake causes dystrophy
of macrophages and microglia, leading to the secondary release
of iron and fueling the oxidative stress. Although autophagy is
increased in progressive MS in an attempt to ensure cellular
homeostasis, it is not enough to compensate the mechanisms at
play in the periplaque environment causing cellular senescence
(216, 285). Moreover, the oxidative stress results in and is
subsequently amplified by mtDNA damage and mitochondrial
dysfunction of the respiratory chain complexes. Furthermore,
synaptopathy, which happens also in normal aging brain, is
caused by reduced neurotrophic factors and excitotoxicity
resulting from a glutamatergic/gamma-aminobutyric acid
(GABA)-ergic imbalance, as well as by pro-inflammatory
cytokines (IL1b, IL6, TNF) of activated microglia, astroglia,
and infiltrating lymphocytes (257, 292, 293). IL1b can also alter
synaptic plasticity. Both are exacerbated by neuroinflammation
and accelerated with age during MS [reviewed by (293)]. These
features contribute to neurodegeneration and translate at the
macroscopic level into accelerated brain atrophy, which can be
viewed as premature aging of the MS brain, at a rate of 0.7–1%
per year, compared to 0.1–0.3% per year in healthy subjects
(285, 294, 295).

Exosome-associated miR-15b-5p/23a-3p/30b-5p/223-3p/342-
3p/374a-5p andmiR-432-5p/433-3p/485-5p are, respectively, up-
and downregulated in RRMS vs. PP/SPMS (296). Interestingly,
miR-15b-5p and -23a-3p are predicted to target FGF2, a promoter
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of OPC migration present in active and in the periphery of
chronic lesions and elevated in the CSF of RR/SPMS (297–
299). miR-342-3p is required for NF-kB induction in TNFa-
activated microglia (300). miRNAs dysregulated in cortical
lesions as compared to myelinated gray matter, are involved
in axonal guidance, TGFb, and FOXO signaling. Furthermore,
miR-20a/25/29c/149∗ are associated to graymatter atrophy (301).

In summary (Table 1, Figures 1B, 2), with disease
progression, the involvement of the peripheral immune
system becomes secondary, while increasing oxidative stress,
sustained by the pro-inflammatory phenotype of glial cells, is
the major mechanism causing mitochondrial dysfunction in all
CNS-resident cells, inducing their complete functional decline
(impaired clearance of myelin debris, impaired remyelination,
energy failure, loss of neurotrophic support, release of neurotoxic
factors), resulting in irreversible neurodegeneration.

Efficacy and Safety of Disease Modifying Therapies

in Aging MS Patients
Disease modifying therapies (DMTs) are efficient to reduce
clinical relapses and radiological disease activity in active MS.
However, due to the predominant CNS-restricted inflammation
concurrent to neurodegeneration, treatments for progressive
MS remain scarce, possibly more effective to patients with
superimposed active inflammation [reviewed by (302)].
Moreover, since clinical trials classically exclude patients over
the age of 55 years, the safety and efficacy of DMTs in older MS
patients is still debated, while these patients represent a growing
proportion of the MS population (17, 302). In patients younger
than 40.5 years, high-efficacy drugs (ocrelizumab, mitoxantrone,
alemtuzumab, and natalizumab) initiated without delay, were
more powerful than lower-efficacy drugs (fingolimod, dimethyl
fumarate, interferon-beta, teriflunomide, and glatiramer acetate),
but may already lose their benefits on disability progression after
that age. However, this model could not distinguish benign from
active MS courses. The same meta-analysis by Weideman et al.
found DMT efficacy to be negatively correlated with age and
predicted no efficacy of DMTs after the age of 53 years (303).
Moreover, the intrinsic effects of DMTs on immune cells in
addition to the age-related changes in the immune system might
become deleterious for remyelination and immunosurveillance
with age, since DMTs deplete, sequestrate or functionally impair
lymphocytes (191, 304–307). Discontinuing DMTs in the elderly
might be reasonable for these reasons, however, studies are
sparse. Herein, stable patients discontinuing DMTs experienced
the same time to relapse as patients still on DMTs but a shorter
time to disability progression. The latter was also correlated
with age. However, this study included MS patients from 18
years and older, and did not focus specifically on the elderly
MS patients (308). For patients older than 45 years, a 4-year
relapse-free disease course under DMTs was predictive of
absence of relapse following DMT discontinuation while longer
disease duration and higher EDSS were predictive of disability
progression (309).

Since DMTs directly act on the immune system, there has
always been a major concern about risk for cancer and infections
(191, 310). While some found initially a slightly increased risk

for cancer (e.g., urogenital, breast, CNS cancers, lymphomas,
melanomas) (311, 312), the overall risk considering all current
DMTs is not increased [reviewed by (313)], although a higher
incidence of neoplasm with depletive DMTs (alemtuzumab,
cladribine, ocrelizumab) was found by ameta-regression analysis,
especially after the age of 45 years (314). Switching from DMTs,
especially more than twice, was also a risk factor for cancer (311).
Furthermore, awareness is raised for the possible link between
natalizumab, fingolimod, cladribine, or alemtuzumab and several
types of immune malignancies, melanomas, carcinomas etc.
[reviewed by (313)].

Natalizumab, dimethyl fumarate, and fingolimod increase
the risk of progressive multifocal leukoencephalopathy (PML)
caused by JC-polyomavirus. The risk related to natalizumab
remains for several months after switching to another DMT,
which explains carry-over cases as seen with ocrelizumab,
fingolimod, or teriflunomide. Age, later age at DMT initiation
(>50 years), prior immunosuppressive treatment, and
lymphopenia, particularly inside the CNS, are important risk
factors for PML, although cases with normal blood lymphocyte
count have been reported (310, 315–317).

Other opportunistic infections increasing with age
can be cryptococcal meningitis and herpes encephalitis
(fingolimod, natalizumab) (318, 319), mucocutaneous herpes
infection [sphingosine-1-phosphate receptor modulators,
natalizumab, alemtuzumab], and varicella-zoster reactivation
[sphingosine-1-phosphate receptor modulators, dimethyl
fumarate (320), natalizumab, cladribine, alemtuzumab,
ocrelizumab], human papilloma virus (fingolimod),
and Listeria meningitis (alemtuzumab) [reviewed by
(310, 321)].

Most DMTs act through different mechanisms on the
subsets of the adaptive immune system that might undergo
immunosenescence in parallel. For example, DMTs have
been found to differentially affect the thymic and bone
marrow output after treatment initiation but also in an
age-related fashion. Both are, respectively, measured through
TRECs, which decrease with age in healthy control, and K-
deleting recombination excision circles (KRECs), which remain
stable. While TREC levels did not change between DMT-
naïve and DMT-discontinued patients, KREC levels were
significantly enhanced in the latter. Interestingly, fingolimod
that sequestrates lymphocytes in lymph nodes, showed a
reduction in thymic and bone marrow output at 6 and
12 months after treatment initiation while the opposite was
observed in natalizumab, that sequestrates lymphocytes in
blood vessels, apart from the inflammation site. With the
immunomodulatory IFNb both thymic and bone marrow output
were stable within the first months, while KREC levels did not
further decrease with age, contrary to what was observed in
patients with fingolimod or natalizumab. With alemtuzumab,
which temporarily depletes peripheral lymphocytes to induce
their repopulation, only KREC levels increased following
treatment and both parameters further remained stable with
age (322).

In summary, the MS population is growing older,
concurrently accumulating the comorbidities related
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FIGURE 2 | immunosenescence features in multiple sclerosis. Features of immunosenescence have been described in MS. The thymic involution (measurable by

reduced TREC levels) induces the homeostatic proliferation of T cells. However, naïve T cells rapidly differentiate into memory T cells due to antigenic stimulation.

While Th17 cells, and to a lesser extent, Tregs are expanded in the periphery, the latter fail to suppress Th17 cells. A subset of CD4+ T cells has lost the costimulatory

signal CD28, marking the T cell exhaustion mainly through sustained CMV stimulation. These cells express the CX3CR1 receptor, favoring their migration through the

BBB, as their ligand, fractalkine, has been found overexpressed in the cerebrospinal fluid (CSF). The B cell compartment is characterized by a reduction in

immunoregulatory transitional B cells, but an increase in double negative B cells (DNBs) and ABCs. These three subsets (CD4+CD28− T cells, DNBs, ABCs) have

been linked to immunosenescence and detected in the CNS of MS patients. CD4+CD28− T cells and double negative B cells produce TNFa, and granzyme B.

CD4+CD28− T cells produce also IL6, and double negative B cells produce LTa, hence corresponding to the senescence-associated secretory phenotype of these

cells. ABCs produce TNFa and autoantibodies and polarize Th17 cells. In the CNS, both microglia and macrophages have impaired phagocytic properties, but while

microglia are primed, macrophages lose their inflammatory reactiveness. Microglia further produce ROS and incorporate iron. Astrocytes produce also

proinflammatory cytokines and ROS and release glutamate, inducing excitotoxicity. The oxidative burst causes mitochondrial dysfunction, and (mitochondrial) DNA

damage. Autophagy is increased but impaired, which might induce the inflammasome. Moreover, telomeres shorten with age and disease progression. Interestingly,

hypermethylation is a common feature in PBMCs from MS patients, found in several subsets as well as in brain tissues, while hypomethylation has on the contrary

been linked to aging. Finally, miR-146a-5p and miR-155-5p are two major immuno-microRNAs with opposite effects on the integrity of the BBB, T cell migration and

the differentiation of Th17 cells. Herein, miR-155-5p displays pro-inflammatory characteristics, but also supports the differentiation of Tregs. Four miRNAs

(miR-20a/25/29c/149*) have been linked to brain atrophy. CMV, cytomegalovirus; CNS, central nervous system; CX3CR1, C-X3-C Motif Chemokine Receptor 1; B, B

cell; ABC, age-associated B cell; DNB, double negative B cell; IL, interleukin; LTa, lymphotoxin A; Me, methylation; mt, mitochondrial; MS, multiple sclerosis; PBMCs,

peripheral blood mononuclear cells; SASP, senescence-associated secretory phenotype; T, T cell; Th, T helper cell; TRECs, T cell receptor excision circles; Treg,

regulatory T cell; TNF, tumor necrosis factor. Created with BioRender.com.

to aging. The efficacy and safety of DMTs seem to
decrease with age, although robust data are still missing.
DMTs might increase the risk of opportunistic infections
and cancers in the elderly by changing immune cell
population distributions and by affecting the functions
of the immune system, hence possibly promoting certain
immunosenescence features, in combination with MS-related
premature immunosenescence.

Immunosenescence in Systemic Lupus
Erythematosus
SLE pathogenesis is characterized by Th17 polarization,
autoreactive B cells producing autoantibodies targeting nucleic
acid-bound antigens and the innate immune system providing
a strong IFN-I signature (323). The tissue damage in SLE,
resulting in organ dysfunction (e.g., kidney, brain, lungs,
cardiovascular system) corresponds to premature biological
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aging. The immune dysregulation in SLE presents some features
resembling immunosenescence, mainly in the adaptive immune
system, but underlying mechanisms might be different. In the
innate immune system, the effects of SLE and aging appear to be
more divergent [reviewed by (20)].

Innate Immunity
Unlike immunosenescence, SLE-derived neutrophils primed by
IFNa and autoantibodies produce more ROS and are engaged
in NETosis, which causes tissue damage and partly explains
the neutropenia observed in this disease (324–326). Moreover,
the non-classical monocytes (CD14+CD16++), present in a
decreased proportion in SLE contrarily to aging, display a
reduced phagocytosis capacity, but an increased expression of
TLR, TNFa and IL10 (20, 327).Macrophages contribute to SLE by
their defective phagocytosis of apoptotic cells, their polarization
toward a proinflammatory phenotype, and an aberrant activation
of their autophagy and inflammasome machinery (328).
The imbalance between the decreased immunoregulatory
(CD56bright) and the increased pro-inflammatory function
(CD56dim) of NK cells is correlated with disease activity, although
their relative frequencies are unchanged, while their absolute
numbers are decreased (329, 330). Moreover, increased serum
levels of IFNa in active SLE parallel the frequency of IFNg-
producing NK cells (330) [as seen in a TNFa/IL12-mediated viral
infection response (331, 332)].

T Cells
Thymic output and TCR repertoire are reduced in SLE (333,
334). SLE patients often exhibit the key features of the
immune risk phenotype, an inverted CD4+/CD8+ ratio, due
to CD8+ T cell expansion and a higher CD4+ T cell turnover
(335). Th17 and IL17-producing double negative T cells are
involved in SLE pathogenesis [reviewed by (336)]. A dominant
granzyme-producing CD8+ T cell population is found in patients
with severe nephritis, leucopenia, and clinically active disease
(337, 338). Expanding CD4+CD28− T cells produce IFNg
in moderately active SLE and are positively correlated with
the clinical disease score (339). Conversely, some autoreactive
CD8+CD28− clones secrete less IFNg and comparatively,
relatively more IL10 but with impaired suppressive capacities
(340). Remarkably, TCR signaling is driven by the FCgR chain
in SLE rather than the TCR-zeta chain, due to its altered
composition, resulting in a lower activation threshold, higher
calcium influx, increased excitability and baseline stimulation
[reviewed by (341)].

B Cells
Contrary to aging, there is a shift toward immature B cells in SLE,
due to a two-fold increase in transitional B cells with a defective
tolerance checkpoint resulting in autoreactive B cells producing
autoantibodies (342, 343). Frequent cycles of B cell activation and
differentiation shape peripheral B cells, marked by an expansion
in switched (IgD−CD27+) memory B cells and double negative
(IgD−CD27−) B cells, as well as a subset of activated memory
B cells (IgD−CD27−CD95+CD21−), the latter being increased
during disease flares (344–347). The CD11highTBET+ ABCs as

well as two ABC-like subtypes, found in African American
patients, have been linked to disease severity (348, 349). Double
negative type 2 CXCR5− cells with a unique cytokine, cytokine
receptor, transcription factor and signaling factor expression
profile, are increased in young patients, and do not further
expand with age (350).

Tregs
Data on the number and function of Tregs in SLE are very
disparate, mainly due to study population and staining strategy
differences. However, Tregs appear to be largely outpaced by
the T and B cell activation in SLE, possibly due to the decrease
in IL2 production, that mediates Treg homeostasis, and the
increase in IL6 production, that induces effector T cell activation.
Furthermore, the Th17/Treg ratio increases in SLE alongside the
decrease of TGFb. Finally, the effect of IL10 remains unclear as
it has both anti-inflammatory effects (when produced by Tregs
and type 1 T-regulatory cells) and it induces autoreactive B
cell proliferation (when produced by monocytes and B cells)
[reviewed by (351–353)].

Inflammatory Mediators Related to Inflammaging
The binding of immune complexes induces the production of
pro-inflammatory inflammaging-associated cytokines, such as
TNF, IL6, and IL18 by monocytes/macrophages, but also of
IFN-I by plasmacytoid DCs, and immunoregulatory cytokines
IL10, IL1, and BAFF. Interestingly, they have been linked
to disease activity, while CRP for instance is not [reviewed
by (354)].

Proteostasis/Autophagy
Contrary to aging, autophagy is increased in SLE, as highlighted
by the increased autophagy-associated markers in naïve CD4+

T cells (355). Moreover, the autophagosome density of B cells is
positively correlated with disease activity (356). However, while
autoantibodies from lupus patients can induce autophagy in T
cells of healthy controls in vitro, T cells from SLE patients are
resistant to it (355).

Telomeres/Telomerase
Overall, telomere length is shorter compared to aged-matched
healthy controls in SLE patients, with the reduction being
even more pronounced in younger subjects, and without
the typically progressive age-related decline seen during
physiological aging. On the contrary, telomerase activity is
increased in T and B cells. However, this fails to compensate
for the accelerated telomere attrition in T cells (357, 358).
Telomerase activity, but not telomere length, is positively
correlated with disease activity (357). Unlike what is observed
during aging, CD8+CD28− T cells in SLE have longer telomeres,
an increased telomerase activity and a preserved proliferative
potential (359).

Oxidative Stress/Mitochondrial Dysfunction
Activated SLE T cells produce an excess of ROS and
RNS and deplete the glutathione reserve, which leads to
mitochondrial dysfunction (166, 360, 361). Oxidated DNA
and mtDNA damage are correlated with the high serum
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levels of cytokines (IL10, IL23, IFNa, IFNg) and chemokines
(CXCL10 and MCP1) (362). Remarkably, only higher mtDNA
damage levels are related to disease duration (363, 364).
Moreover, peroxynitrite-modified histones, due to amino-
acid nitration by RNS, induce high titers of anti-histone
antibodies and UV-induced DNA damage potentially induces
IFN-I (365, 366).

Epigenetics
DNA methylation levels are globally decreased in T cells
from SLE patients. Herein, the hypomethylation of interferon
signature genes [i.a. interferon regulatory factor (IRF)5, IRF7]
is a hallmark of SLE pathogenesis and immune response genes
are associated with chromatin remodeling (e.g., trimethylation
of H3K4) (367–369). Moreover, nitration of the protein kinase C
(PKC/ERK pathway) inhibits its delta catalytic activity, resulting
in decreased activity of DNMT1 and thus low methylation
levels in CD4+ T cells allowing the transcription of CD70,
possibly CD11a, and perforin (370–372). Interestingly, miR-
21/29b/126/148, which are overexpressed in CD4+ T cells from
SLE patients, downregulate DNMT1 (373–375), while miR-199a-
5p increased splenic CD4+ T cell senescence by inhibiting
SIRT1 and thus increasing the acetylation and consequently
the activation of p53 (376). Upregulation of miR-7 and -30a
in B cells of SLE ensures B cell proliferation, differentiation
to plasma cells and antibody production (377, 378), while
miR-15a activates the apoptosis of Bregs by targeting BCL2
(379, 380). Furthermore, miR-142 downregulation by histone
and DNA methylation of its regulatory region, results in
the activation of T cells, hyperstimulation of B cells and
suppression of Treg function (381, 382). miR-146a inhibits
and miR-155 enhances IFN-I (383, 384). Finally, miR-125a
stabilizes Treg-mediated homeostasis but is downregulated in
SLE, and mir-31 and -34a, induced by the NF-kB pathway, target
FOXP3 (385–388).

Immunosenescence in Rheumatoid
Arthritis
RA is likely due to a systemic immune dysregulation, possibly
driven by DCs and macrophages that present citrullinated
antigens to autoreactive T cells, inducing the production of
pro-inflammatory and joint damaging mediators and causing
synovial inflammation, and articular and extra-articular tissue
damage (389, 390). A premature senescent phenotype of immune
cells has been evidenced in RA and partly linked to its
pathogenesis [reviewed by (21)].

Innate Immunity
Neutrophils are involved in generating citrullinated autoantigens
that are afterwards externalized by NETosis, while anti-
citrullinated protein antibodies promote NETosis. Neutrophils
in joints also produce cytokines and ROS and release proteases
by degranulation (391). Intermediate (non-classical) pro-
inflammatory CD14+CD16+ monocytes were similarly
increased in elderly subjects with atherosclerosis and middle-
aged RA patients as compared to young healthy controls
(392, 393). Young RA patients have also a higher frequency

of CD56+ monocytes, producing more TNFa, IL10, IL23, and
ROS, although this is normalized by TNFa blocking therapy.
Interestingly, in RA patients, the age-dependency of circulating
CD56+ monocytes is lost (394). Overall, macrophages drive joint
inflammation in RA by secreting cytokines, chemokines and
tissue degrading enzymes, activating fibroblast-like synoviocytes
(FLSs) and promoting T cell infiltration and osteoclastogenesis.
However, it is currently unknown how the heterogeneity between
infiltrating monocyte-derived and tissue-resident macrophages
might impact disease pathogenesis (395). Furthermore, in RA,
the NK cells are reduced in number and functionally impaired,
seen their increased production of ROS and proinflammatory
cytokines, hence hindering their immunoregulatory properties
(396, 397).

T Cells
The alteration in T cell homeostasis occurs early in RA and
is independent of disease duration (398, 399). The proliferative
capacity of CD34+ HSCs in the bone marrow is reduced due
to a decreased ERK signaling pathway. Both CD34+ HSCs and
naïve CD4+ T cells from RA patients are more susceptible
to apoptosis, hence reinforcing the burden on homeostatic
proliferation in the periphery (398, 400–402). RA patients
have a thymic output of healthy individuals aged 20–30 years
older. TREC levels are already lower than normal in young
RA patients (159, 399). The TCR repertoire is prematurely
contracted in both naïve and memory T cells (403). The
CD4+/CD8+ ratio is increased in the blood, and inverted in
the synovial fluid (404). Th17 cells are possibly increased in the
blood of RA patients and might be more important at early
stages of the disease [reviewed by (405)]. Memory T cells are
unchanged in the periphery as compared to controls. However,
effector memory CD8+ T cells are increased in the synovial
fluid (404).

Circulating CD4+CD28− T cells produce higher levels
of TNFa and IFNg than the CD28+ T cells. Their rate
is correlated with disease severity and the extent of extra-
articular manifestations (406, 407). These cells easily react to
neoantigens as they express de novo NK receptors (CD56,
NKG2D) in RA patients (408, 409). Interestingly, in vitro
generated CD56+CD28− T cells by repeated stimulation of
CD56−CD28+ T cells of young healthy donors, expressed BCL2,
p53, and p16INK4 that induce cell cycle arrest, a hallmark of
cellular senescence, and activated theNF-kB pathway (410). Since
they also express CX3CR1, they can migrate into the synovial
fluid where FLSs express the ligand fractalkine, induced by TNFa
and IFNg. This interaction activates the CD28− T cells, induces
the expression of pro-inflammatory cytokines and facilitates the
proliferation of FLSs and the secondary activation of T cells
(411). The expansion of CD4+CD28− T cells in RA patients
has been associated with the HLA-DR4 risk factor and a TNFa
polymorphism, alongside increased TNFa and IFNg production
(159, 412).

B Cells
The effect of senescent B cells is not well-described in RA
(21). However, transitional B cells are reduced and have
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impaired functions in PBMCs of active RA (413). Moreover,
double negative B cells were increased in the periphery
and ABCs have been detected in the synovial fluid of RA
patients (414, 415).

Tregs
Although discrepancies exist, Tregs appear to be reduced
among the PBMCs in active RA, and normalized during
remission as compared to controls (416, 417). In the synovial
fluid they are overall increased but functionally impaired
(417, 418). Interestingly, a novel subset of senescent CD28−

Treg-like cells, characterized as CD4+FOXP3+CD28−, was
discovered in the blood and synovial fluid of RA patients.
They express markers such as CD25, cytotoxic T-lymphocyte-
associated protein (CTLA)4 and FOXP3, and also exhibit
premature senescence, as shown by reduced TREC levels
and an accumulation of phosphorylated gamma-H2AX (upon
DNA double-strand break). Moreover, their SASP consists of
high levels of pro- (TNFa, IFNg, IL2, IL4, IL17) and anti-
inflammatory (IL10) cytokines. However, CD28− Treg-like cells
had also impaired suppressive capacities. They could be obtained
in vitro by stimulating CD28+ Tregs with TNFa. Although
CD28− Tregs numbers correlated with age, nor CD28− nor
CD28+ Tregs correlated with disease duration and clinical
features (419).

Inflammatory Mediators/Inflammaging
Similarly to inflammaging in the elderly, RA patients have
increased systemic levels of pro-inflammatory cytokines (IL6,
CRP, TNFa) (420). In the synovial fluid TNFa, MMP1, and
MMP3 levels were increased in early and established RA,
IL10 decreased during established RA only as compared to
osteoarthritis (421). Moreover, RA-derived FLSs produce more
IL6, IL8, vascular endothelial growth factor, and prostaglandin
E2 in response to IL1b during in vitro induced senescence (422).
Both TNFa and IL6 play a major role in activating effector
cells, inducing cytokine/chemokine/autoantibody production
and tissue damage [reviewed by (389)].

Proteostasis/Autophagy
While autophagy decreases with age, it is increased in RA
FLSs due to stress-induced endoplasmic reticulum hyperactivity
and an elevated protein turnover, but the ubiquitin-proteasome
system is impaired in RA (423, 424). This altered proteostasismay
enhance inflammation.

Telomeres/Telomerase
The increased telomerase activity of HSCs is insufficient
to compensate for telomere shortening (400, 401). Naïve
T cells fail to induce telomerase activity following antigen
priming. Telomere attrition was observed in granulocytes,
naïve and memory T cells (398, 399, 425). Interestingly,
telomerase activity of infiltrating cells correlated with synovial
lining hyperplasia, but was independent of disease duration
or severity (426). The HLA-DR4 risk factor in RA induces

premature immunosenescence by accelerating telomere
shortening (425).

Oxidative Stress/Mitochondrial Dysfunction
Naïve and memory T cells from RA patients have high
levels of DNA double-strand breaks due to impaired DNA
repair mechanisms [e.g., reduced DNA repair kinase ataxia
telangiectasia mutated (ATM)] (427). Moreover, T cells
isolated from RA patients enhance the activity of the DNA-
dependent protein kinase catalytic subunit (DNA-PKcs),
a DNA repair enzyme. The DNA-PKcs-Janus kinase-
axis causes chronically cellular stress and intensifies the
inflammatory activity of T cells (428). Cell-free mtDNA,
released by tissue damage, was found in plasma and
synovial fluid of RA patients. Interestingly, intra-articular
injection of oxidized mtDNA in mice caused arthritis
(429). MtDNA damage in RA (induced by TNFa and ROS)
is positively correlated with macroscopic synovitis, and
synovial TNFa and IFNg levels, but does not depend on
age (430). Furthermore, p16INK4 and p16 INK4-encoding
genes along with IL6 could be induced in FLSs by H2O2

or TNFa (431). Likewise, p53 was upregulated in synovial
tissues from early and late-stage RA as compared to
normal synovial tissue (432). Interestingly p53 mutations,
secondary to chronic oxidative stress, have been detected in RA
synovial tissue and promoted clonal FLSs expansion and IL6
expression (433).

Epigenetics
Epigenetic changes in RA promote the pro-inflammatory profile
involved in disease pathogenesis. Global hypomethylation, along
with a decrease in active DNMT1 in the FLSs was found
in RA (434). Hypomethylation in PBMCs is correlated with
the disease activity score (435). The promoter gene of IL6
and TNFa is hypomethylated in PBMCs and in peripheral
naïve CD4+ T cells, respectively (436, 437). The IFNg locus
is hypomethylated in CD4+CD28− T cells as compared
to CD28+ counterparts resulting in increased expression of
IFNg and TNF in the periphery and of IL17, CXCR3,
CCR6 in the synovial fluid (406). Histones are globally
hyperacetylated by decreased HDAC activity in RA, in particular
H3 acetylation in the IL6 promoter was increased in the
FLSs (438, 439). TNFa-mediated SIRT1 overexpression in FLSs
induced IL6 and IL8 expression and protected cells from
apoptosis (440). Moreover, miR-16 and -146a are elevated
in synovial fluid, plasma and PBMCs of RA patients and
are linked to disease activity (441, 442). Interestingly, HDAC
downregulation restored the expression of miR-16 (443).
miR-146a and -155 were upregulated in FLSs of RA, both
induced by TNFa and IL1b. While miR-155 appeared to be
compensatory to joint destruction by reducing MMP1/3, the
role of miR-146a in FLSs is unknown, but in PBMCs it
fails to properly repress IRAK1/TRAF6 and thus the NF-kB
pathway (444–446).
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TABLE 1 | Comparison between immunosenescence features in aging, SLE, RA, and MS.

Immunosenescence

features

Physiological aging MS SLE RA

Innate

immunity

NK cells ց CD56bright

ր CD56dim

Impaired functions

ր CD56bright in CSF (RRMS)

ր CD56dim in serum (PP/SPMS)

Impaired functions

ց absolute numbers

Impaired

immunoregulatory

function

ց numbers

Impaired immunoregulatory

function

Neutrophils ց

NETosis/phagocytosis

ր NETosis, ց apoptosis

ր in CSF (onset/early in relapse)

ր NETosis,

neutropenia

ր NETosis

Monocytes ց classical,

ր non-classical

ր ց non-classical ր non-classical, ր CD56+

Macrophages ց phagocytosis/APC

function

ց proinflammatory

Macrophages:

ց proinflammatory (PMS)

Microglia: ր proinflammatory

ր proinflammatory ր proinflammatory

Phagocytosis ց ց (microglia & macrophages,

PMS)

ց ց

Adaptive

immunity

Thymic output ց ց ց ց

TCR repertoire ց ր ց ց

T helper ց Th1,

ր Th2 cytokines

ր Th17

ր Th1

ր Th17

ց Th1, ր Th2 cytokines with

age

ց Th1 cytokines

ր Th17

ր IL17-producing DNT

ր Th1

ր Th17 (in early stages)

Memory T cells ր ր ր Unchanged TEM in blood

ր TEM (CD8+) in SF

Terminally differentiated

CD4+CD28−
ր related to CMV

infection

ր ր ր

CD4+/CD8+ ratio <1 >1, especially in CSF <1 >1 in blood

<1 in SF

Treg numbers suppressive

function

ր

≈ (vs. Th1),

ց (vs. Th17)

≈/ր

ց

ց

ց

ց in blood (active RA), ր in SF

ց

Immature B cells ց transitional B cells,

impaired function

ց transitional B cells, impaired

function

Present in CSF

ր transitional B cells ց transitional B cells impaired

function (active RA)

Memory B cells

class-switched

IgD−CD27+/unswitched

IgD+CD27+

Unchanged Unchanged in blood

ր class-switched in CSF (adult

MS)

ր unswitched in CSF (pediatric

MS)

ր class-switched

ց unswitched

ց class-switched

Double negative B cells ր ր in <60 years-old, in

blood/CSF

ր ր

ABCs ր ր in <60 years-old, in

blood/CSF

ր Detected in SF

SASP Inflammaging IL6/8, CRP, TNFa ր IL6 and TNFa in serum/CSF

(relapse, SP/PPMS)

ր IL10 in serum (remission), in

CSF (relapse)

ր TNF, IL6, IL18, IFN-I

ր IL10, IL15, BAFF

ր IL6, CRP, TNFa (serum)

ր TNFa, MMP1, MMP3,

ց IL10 (SF)

Other

senescence

features

Oxidative stress ր րր րր րր

Autophagy ց ր but impaired ր but impaired ր but impaired

Telomere length ց ց ց

Except in CD8+CD28−
ց

DNA methylation ց ր ց ց

APC, antigen presenting cells; BAFF, B cell activating factor; CMV, cytomegalovirus; CRP, C-reactive protein; CSF, cerebrospinal fluid; DC, dendritic cells; DNT, double negative T

cells; IFN, interferon; IFN-I, type I interferon; IL, interleukin; MMP, matrix metalloproteinase; MS, multiple sclerosis; NET, neutrophil extracellular traps; NK, natural killer cells; PP/SPMS,

primary/secondary progressive MS; RA, rheumatoid arthritis; RRMS, relapsing-remitting MS; SLE, systemic lupus erythematosus; SASP, senescence-associated secretory phenotype;

SF, synovial fluid; TCR, T cell receptor; TEM, effector memory T cell; Th, T helper; TNF, tumor necrosis factor; Treg, regulatory T cells.ր, increased;ց, decreased; and ≈, approximately

equal.
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A Premature Immunosenescence in
Autoimmune Diseases? A Comparison
Between Physiological Aging, MS, SLE,
and RA
We have compared key features of immunosenescence occurring
in physiological aging with changes of the immune system
evidenced in MS, SLE, and RA (Table 1). While some features
of immunosenescence are found in the 3 AIDs, others differ from
physiological aging but also between them. Hence, it seems still
unclear whether these findings are inherent to the disease course
or causative of its pathogenesis.

In MS (Figure 2), innate immunity does not seem affected
by senescence, at least in the early stages of the disease.
However, the role of NK cells remains debated, and neutrophilic
NETosis is increased contrarily to aging. Macrophages that
are strongly involved in the neuroinflammatory processes
in the early stages of the disease, lose their function with
aging, while microglia remain highly primed. T and B cells
display some immunosenescence features: CD4+CD28− T cells,
ABCs, and double negative B cells are expanded, and exhibit
properties supporting autoreactivity. However, the inversion of
the CD4+/CD8+ ratio is missing. Memory Tregs are increased,
but their functionality is presumably reduced. In SLE, the innate
immune function strikingly differs from what is observed during
aging (increased NETosis, decreased non-classical monocytes,
a proinflammatory macrophage shift). However, T and B cells
display immunosenescence features (CD4+/CD8+ inversion,
CD4+CD28− T cell, ABC, ABC-like and double negative
B cell expansion), contrarily Tregs are possibly reduced in
number and function. In RA, innate immunity shows features
of immunosenescence in monocytes as well as a reduced
immunosurveillance by NK cells. Macrophages have reduced
phagocytic properties despite actively contributing to the
inflammation as do neutrophils through increased NETosis. The
T cell compartment is marked by an expansion of CD4+CD28−

T cells, including functionally impaired CD28− Tregs, which are
possibly involved in RA pathogenesis. The CD4+/CD8+ ratio
is inversed in the synovial fluid but not in the blood. Double
negative B cells and ABCs have been detected in RA, but are
barely characterized.

The released inflammatory mediators (e.g., IL6, IL10,
TNFa) contribute to the disease pathogenesis of all 3 AIDs
and even mirror disease activity in MS. In all 3 AIDS,
telomeres are shortened, except in CD4+CD28− T cells in SLE,
which consequently have a preserved proliferative potential.
Mitochondrial dysfunction is increased as is observed in
physiological aging, and dysregulated miRNAs are largely
involved in inflammatory pathways. However, contrary to aging,
autophagy is increased; but impaired. Distinctively, MS appears

to feature a global hypermethylation, with distinct clusters
between the disease subtypes, rather than the hypomethylation
observed during physiological aging as well as in SLE and RA.

CONCLUSION

Immunosenescence encompasses functional and phenotypic
changes within the immune system occurring naturally during
aging. Among other features the resulting loss of self-tolerance,
alongside inflammaging might be involved in the pathogenesis
of AIDs. In this review, we have discussed and compared
the similarities and discrepancies between hallmarks of
immunosenescence in MS, SLE, and RA. Notably, cell types
that are characteristic of immunosenescence and prone to
autoreactivity, i.e., CD4+CD28− T cells, ABCs and double
negative B cells are expanded in MS. Although their functional
features support a possible involvement in MS pathogenesis, it
is currently not clear how and to which extent they contribute
to the inflammatory processes in the different stages of MS.
Hence, they might only reflect the consequences of chronic
inflammation rather than the cause of disease. Moreover,
the self-generated and self-sustained pro-inflammatory
and oxidative environment within the CNS under ongoing
recruitment of inflammatory and glial cells, possibly potentiates
or causes premature immunosenescence. However, with disease
progression the compartmentalized CNS inflammation is
also governed by a distinct cellular senescence mechanism.
Oxidative stress-induced mitochondrial dysfunction within
CNS-resident cells progressively and irreversibly contributes to
cellular and continued tissue damage, reduced remyelination
capacity, impaired brain plasticity and finally loss of neuro-
axonal reserves. Further research is needed to unravel the
clinical relevance of these mechanisms, in relationship to
immunosenescence, to improve treatments for MS at all ages and
disease stages, with an acceptable risk-benefit profile.
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