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Abstract: Despite the fact that imbalance between case and control groups is prevalent in genome-
wide association studies (GWAS), it is often overlooked. This imbalance is getting more significant
and urgent as the rapid growth of biobanks and electronic health records have enabled the collection
of thousands of phenotypes from large cohorts, in particular for diseases with low prevalence. The
unbalanced binary traits pose serious challenges to traditional statistical methods in terms of both
genomic selection and disease prediction. For example, the well-established linear mixed models
(LMM) yield inflated type I error rates in the presence of unbalanced case-control ratios. In this article,
we review multiple statistical approaches that have been developed to overcome the inaccuracy
caused by the unbalanced case-control ratio, with the advantages and limitations of each approach
commented. In addition, we also explore the potential for applying several powerful and popular
state-of-the-art machine-learning approaches, which have not been applied to the GWAS field yet.
This review paves the way for better analysis and understanding of the unbalanced case-control
disease data in GWAS.
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1. Introduction

Over the past ten years, genome-wide association studies (GWAS) have shown great
potential in investigating the biological and genetic etiology of disease, with the aims of
providing better understanding, prevention, and treatment of diseases. As the cost of
genotyping decreases, GWAS research moves to a new level, as phenome- wide association
studies (PheWAS) enable thousands of phenotypes constructed from electronic health
records (EHRs) and biobanks involving tens of millions of variants for hundreds of thou-
sands of participants in large cohorts [1–4]. The PheWAS and large biobanks create new
opportunities for detecting more scientific findings from the GWAS data [5,6]. However,
most binary phenotypes have substantially fewer cases than controls [7].

Here we first give a few examples, from slight, moderate, to extreme imbalance
ratios: The Wellcome Trust Case Control Consortium (WTCCC) provides a series of GWAS
datasets that include 2000 case samples from each of seven common diseases [8] (e.g., type
1 diabetes [9], type 2 diabetes [10], coronary heart disease [10,11], bipolar disorder [12],
rheumatoid arthritis [13,14], and so on). Their shared control has 3000 heathy samples
(case-control ratio of 0.66). Dai et al. [15] analyzed a polycystic ovary syndrome (PCOS)
affection status dataset consisting of 1043 cases and 3056 controls (with the case-control
ratio of 0.34) and 731,442 SNPs.

The UK Biobank [1,16] is a very large study with over 400,000 participants from
white British participants with European ancestry, which collected >1400 case-control
disease phenotypes: colorectal cancer, prostate cancer, lung cancer, and Alzheimer’s,
disease to name a few. Most of their binary phenotypes have a case-control ratio lower
than 1:100 [1,7,16]. The Michigan Genomics Initiative (MGI) is taking efforts to create a
biorepository of genomic data and has involved >25,000 samples with >500,000 SNPs. It
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has already been noticed that multiple phenotypes have an extremely small number of
cases, as small as 20 cases [3,4].

The imbalance of binary phenotypes poses serious challenges to traditional statistical
methods, in terms of both genomic selection [2–4,7,17–26] and phenotypic prediction such
as the prediction on disease status [24,27,28]. In this article, we review several statistical
methods that have been applied in the unbalanced case-control GWAS data. We commented
on the advantages and disadvantages of each method; in addition, we also introduced
some state-of-the-art machine-learning methods that have great potential to be applied
to solve the imbalance issues in the GWAS field. These methods have received a lot of
attention in many other fields but they have not been applied to analyze GWAS data yet.
Sun et al. [29] also wrote an overview of statistical learning methods that are suitable for
classification of unbalanced data; however, two major differences are: we mainly focused
on the GWAS application that was out of the scope of Sun et al.; the statistical learning
approaches introduced in this article represent the newer developments than those in [29].

This review article is organized as follows. We first discuss why the imbalance causes
an issue from a statistical aspect. Then we introduce the generalized linear mixed model
association test in Section 3, and the Scalable and Accurate Implementation of Generalized
mixed model in Section 4. They are both single-SNP methods related to logistic mixed
model. In Section 5, we comment the Bayesian multiple Logistic Regression method [24] as
a joint variable selection method for binary traits. In the remaining sections, we comment on
multiple state-of-the-art machine-learning algorithms, the Support Vector Machine [30] in
Section 6, AdaBoost in Section 7, and neural network in Section 8. In Section 9, we introduce
the permutation-based significance test skills to facilitate the usage of machine-learning
approaches into the GWAS field. Finally, we discuss other challenges of GWAS data
analysis and summarize the advantages and limitations of these approaches in Section 10.

2. Why Does the Imbalance Cause an Issue from a Statistic Aspect?

The problems caused by an imbalance in case-control data can be summarized from
four aspects [31]: (1) erroneously assuming that the accuracy metric (e.g., error rate) is
appropriate; (2) erroneously assuming that the distribution of test statistic is the same
between the case and control group; (3) erroneously assuming that the minority group
has an adequate sample size; (4) erroneously assuming that the underlying asymptotic
assumptions are still valid.

Firstly, the error rate has been widely used as an accuracy metric in the classification
literature. However, it averages all observations without treating them differently, under
the assumption that the samples in minority class have equal importance as those in
majority class. As a result, it always favors the majority class [32]. For example, if the
data contain 99% of the control (negative) and 1% of the case (positive), then predicting
everything as negative will give us 99% accuracy. Statistically speaking, the classifier works
correctly if the accuracy metric were appropriate. Drummond et al. [33] showed that it is
usually very hard to outperform this simple classifier if the data are unbalanced.

However, in the GWAS field with binary traits, people care more about the cases (the
disease status) than controls (healthy). Therefore, it is more serious to misclassify a case
compared to misclassifying a control. To overcome the problem of error rate, weighted loss
function or AUC (the area under the ROC curve) has been used [34]. The ROC curve is
a plot of true positive rate vs. false positive rate under various thresholds, and usually a
higher AUC stands for a better classifier. Liang et al. [35] showed that AUC is statistically
consistent and better than the error rate under many scenarios. Hanley et al. [36] showed
that AUC is actually equivalent to the Mann–Whitney statistic. Since the AUC is more
related with rank statistic, it is invariant to the prior probabilities, which makes it a desired
accuracy metric in evaluating the unbalanced data.

Secondly, ideally speaking, the training distribution should be the same as the test
distribution, but in the unbalanced case, it is relatively more likely to get different distribu-
tions between the training and test data when randomly splitting an unbalanced data set.
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For example, it is possible that the training data are highly unbalanced but that the test
data are balanced; or in some extreme cases we may end up with no samples from the case
group in training or test data. Under this circumstance, even when equipped with correct
accuracy metric a classifier will not work well. To tackle this problem, sampling strategies
such as over-sampling/under-sampling have been applied to make the data more balanced.
However, over-sampling may increase the model and computation complexity, which is
a burden for the GWAS data when millions of genetic variants are involved. Meanwhile,
under-sampling may yield less information than we should have. See Zhou (2013) [37] for
a detailed comparison on the performance of multiple sampling methods.

Thirdly, contamination may destroy the sample, and in particular for rare diseases it
is always difficult to get enough case samples. When the number of minority classes is too
small, we may have insufficient data for the classifier to learn, and thus yield bad results.
As pointed out by Sammut and Webb [31], a ratio as low as 1:35 can make some methods
inadequate for building a good model in some applications, while in some other situations,
1:10 may be tough to deal with. We should make different judgments based on different
applications, datasets, sample sizes, and methods applied, etc.

Lastly, a very low case-control ratio in GWAS data may violate asymptotic assumptions
of statistical inferences, such as that of the logistic regression models, which results in an
inflated type I error rate [7]. For example, Chen et al. [2] assumes that the test statistic of
genetic variants in a logistic mixed model asymptotically follows a Gaussian distribution
under the null hypothesis, while the actual distributions are substantially different from
Gaussian distribution when the case-control ratio is extremely unbalanced [7].

More specifically, unbalanced data may violate assumptions in statistical inferences. If
the number of cases is drastically smaller than the number of controls, these cases may be
viewed as outliers in most statistical models, and hence it leads to a higher variation for
the estimation of coefficients. As a result, it shrinks the absolute value of test statistics and
yields a larger p-value, which makes a truly influential variant insignificant.

Let us illustrate the idea using a simulation example. Suppose our sample size
is 100 and we only have one true predictor X. In a balanced setting, we generate 50
controls from Uniform (0, 0.3) distribution, and remaining 50 cases from Uniform (0.7, 1).
We then generate an intermediate variable W = X + ε where ε follows standard normal
distribution. Finally, we connect the response with the only true predictor through an
indicator function as

Y = I(W > 0.6) =
{

1, if W > 0.6,
0, otherwise.

In an unbalanced setting, we generate 90 controls from Uniform (0, 0.3), 10 cases from
Uniform (0.7, 1), and follow the same procedure to generate the binary response Y. After
the data are simulated, we use logistic regression to evaluate the significance of X in both
balanced and unbalanced settings. We repeat 100 times and obtain the standard error and
p-value of the coefficient of the true predictor X. From the results demonstrated in Table 1,
we can see that even for this simple situation (with only one predictor), the p-value for the
unbalanced data is almost ten times higher and it leads to a wrong conclusion that X is
not significant.

Table 1. The mean (standard error) of the simulation example across 100 replications.

Simulation Settings Standard Error p-Value

Balanced data 0.5956 (0.0275) 0.0275 (0.0689)
Unbalanced data 0.9731 (0.1410) 0.1916 (0.2664)

3. Generalized Linear Mixed Model Association Test

Linear mixed models (LMMs) has become popular in GWAS for various biomedical
traits because of its power in correcting for population structure and genetic related-
ness [38–45]. Some fast algorithms have been proposed to estimate the model parameters
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and the variance component of LMMs to meet the ultrahigh dimensional need of the GWAS
settings, such as the efficient mixed-model association (EMMA) [38], the efficient mixed
models expedited (EMMAX) [39], and the fast linear mixed models (FaST-LMM) [41], to
name a few. However, as a model with continuous response, LMMs are not designed for
binary traits.

Chen et al. [2] applied logistic mixed models to analyze binary traits for GWAS data
as follows

logit(πi) = Xiα + Giβ + bi,

where πi = P(yi = 1|Xi, Gi, bi); yi ∈ {1, 0} is the probability for a binary disease status
phenotype to be a case for subject i, conditional on their covariates Xi, genotype Gi, and
random effects bi. Xi is a 1 × p row vector of covariates for subject i, α is a p × 1 column
vector of fixed covariate effects, Gi is the genotype of a genetic variant for subject i, and
β is the fixed genetic effect. The random effects b = {b1, b2, . . . , bn}~Nn(0, τV), where τ is
a scale variance component parameter and V is usually the genetic relationship matrix
(GRM) estimated from a large number of genetic variants.

Chen et al. [2] also proposed a generalized linear mixed model association test (GM-
MAT) to select important genetic variants. The GMMAT score test is constructed based
on the null hypothesis H0:β = 0, which leads to the same null logistic mixed model for
all genetic variants: logit(πi) = Xiα + bi. They fit the null logistic mixed model using the
penalized quasi-likelihood (PQL) method [46] and the efficient AI- REML algorithm [47] to
estimate the variance components. The algorithm will iteratively estimate the fixed effects
α and random effects bi under the null hypothesis until the process reaches convergence.
The score of each genetic variant under the null hypothesis is defined as T = G(y− ŷ),
where G = (G1, G2,..., Gn)T is the n 1 column vector of genotypes, y = (y1, y2,..., yn)T is the n
1 column vector of observed outcomes, and ŷ = (ŷ1, ŷ2,..., ŷn)T is the estimated value of y
under H0. The asymptotic p-value of each genetic variant is obtained by assuming that the
test statistic T asymptotically follows a Gaussian distribution.

4. Scalable and Accurate Implementation of GEneralized Mixed Model

Zhou et al. [7] claimed that the type I error rate of GMMAT test can still be inflated
under the presence of unbalanced binary traits because a very low case-control ratio may
violate asymptotic assumptions of logistic regression models. They proposed a Scalable
and Accurate Implementation of Generalized mixed model (SAIGE) based on the saddle
point approximation (SPA) [48,49] to conduct the score test.

The SAIGE method still adopted the logistic mixed model structure from the GMMAT,
but it improved the variance component and the test statistic to better account for imbalance
of binary traits. Specifically, Zhou et al. [7] applied a state-of-the-art pre-conditioned
conjugate gradient (PCG) approach [50,51] to solve linear systems for a large cohort without
requiring the computation of GRM, which achieves faster iterations for large n. In addition,
the SAIGE improved the calculation of the test statistic T. Specifically, the GMMAT test
assumes that T asymptotically follows a Gaussian distribution under the null hypothesis,
which only considers the first two moments (mean and variance). However, the underlying
distribution of T can be substantially different from Gaussian distribution when the case-
control ratio is unbalanced. The saddle point approximation is used to approximate the
distribution of T using the entire cumulant generating function (CGF). Zhou et al. [7]
claimed that the approximated CGF can provide a more accurate p-value than the GMMAT
does under the presence of unbalanced binary phenotypes.

In simulation studies, Zhou et al. [7] showed that the GMMAT suffered from type I
error inflation, but the SAIGE controlled the type I error rates effectively even when case-
control ratios are extremely unbalanced (e.g., a case-control ratio of 1:99). Zhou et al. [7]
also applied the SAIGE to the UK Biobank data, where most binary phenotypes have a
case-control ratio around or lower than 1:100. For example, colorectal cancer has 4562 cases
and 382,756 controls (with the case-control ratio of 0.012), glaucoma has 4462 cases and
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397,761 controls (with the case-control ratio of 0.011), and thyroid cancer has 358 cases and
407,399 controls (with the case-control ratio of 0.0008). Although the analysis results of
GMMAT suffered greatly from type I error inflation with no clear peaks in its Manhattan
plot for the extremely unbalanced thyroid cancer phenotype (see Figure 1 of Zhou et al. [7]),
the SAIGE approach successfully detected loci on Chromosome 9 that is well known for
its association with thyroid cancer. Another data example with an extremely unbalanced
case-control ratio is the MGI biorepository that is mentioned in the Introduction section.
Dey et al. [3] analyzed four extremely unbalanced phenotypes from MGI by applying the
SPA to approximate the p-value based on a test statistic that was also used in the SAIGE,
and they reported a large number of significant markers whose nearby genes have been
verified as truly associated with the corresponding phenotypes by other studies. Compared
to SAIGE and GMMAT, the logistic regression model used by Dey et al. [3] did not exploit
the random effect term.

Figure 1. Overview of GEV-NN structure.

Both the GMMAT and SAIGE are single-SNP methods. The single-SNP method as-
sesses the potential association of each genetic variant in isolation from the others. As a
result, multiple limitations have been found for single-SNP methods: they inflate both
false-positive and false-negative results [52]; they have limited detection and prediction
ability because most complex diseases are actually polygenetic [24,53–56], where multiple
variants affect the disease simultaneously but each one may have weak individual associa-
tion [24,57]; they fail to differentiate potentially causative from non-causative variants if
there exists a strong linkage disequilibrium (LD) between the noise variants and the truly
influential ones.

In the remaining sections, we review several joint methods that have the advantages
of considering multiple SNPs simultaneously.

5. Bayesian Multiple Logistic Regression Method

Various Bayesian approaches have been applied to the GWAS field to make genomic
selections [57–63]. The benefits of Bayesian approaches lie in that they consider the poly-
genic effects of a large-scale of SNPs in GWAS using only one joint model and provide a
feasible solution to estimate a large amount of unknown parameters. For example, Zhou,
Carbonetto, and Stephens [57] proposed the Bayesian Sparse Linear Mixed Model (BSLMM)
to select truly influential genes from the high-dimensional GWAS data with p >> n, where
sparsity or regularization is expected. The selection is processed by putting sparsity-
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enforcing priors on the regression coefficients so that the coefficients of non-influential
genes can be forced to zero.

As an extension of BSLMM from the continuous to binary traits, a Bayesian multiple
Logistic Regression method (B-LORE) was developed by setting point-normal priors on
the regression coefficients:

p(βi|ϕi, σ) = (1 − ϕi)δ0 + ϕi N(βi|0, σ2),

where δ0 is a constant, the hyperparameter ϕi controls the sparsity of the model, and σ2

is the variance of the regression coefficients of influential genes. For binary traits, the
likelihood function for the logistic regression model is maximized as follows:

L(β) = ∏n
j=1 pj

yj
(
1− pj

)1−yj ,

where yj ∈ {1, 0} is the observed phenotype for the jth subject, and pj is the probability
for a subject to have the disease given his/her genotypes and estimated regression coeffi-
cients pj = p (yj = 1 |G, β̂). To estimate the hyperparameters ϕi and σ, Banerjee et al. [24]
calculated the marginal likelihood function instead of the full likelihood function so that
β can be integrated out in their posterior conditional distribution. This approach can
greatly reduce the number of parameters to be estimated and can eventually improve its
computational efficiency.

Unlike the p-values in single-SNP models, Bayesian approaches use a binary latent
vector, say c, to assess the importance of each SNP, with ci = 1 meaning the ith SNP
is influential and ci = 0 meaning the ith SNP is not influential. See Banerjee et al. [24]
for details about how the latent vector is incorporated and estimated through the joint
regression model and MCMC sampling. Furthermore, Banerjee et al. [24] demonstrated
that the B-LORE method outperforms other Bayesian variable selection methods through
simulated data with case-control ratios as low as 0.25. Banerjee et al. [24] applied the
B-LORE approach to the German Myocardial Infarction Family Study data with 6234
cases and 6848 controls of white European ancestry, which has a relatively balanced case-
control ratio. For extremely unbalanced GWAS data, the priors of the B-LORE may require
further adjustments.

However, it is also a legitimate concern that a Bayesian regression is much more
computationally inefficient than the single-SNP GWAS methods due to the large number
of parameters and the long iterative sampling process. There are many ways to improve
the efficiency of a Bayesian algorithm, among which the most standard approach is to
use conjugate priors and fast Gibbs sampling applied on the unknown parameters [64].
Some others tried to reduce the computational cost of a Bayesian regression from multiple
aspects, such as the fast estimation of covariance matrices [65] and the use of marginal
likelihood of predictors instead of a full model likelihood [66,67], to name a few.

6. Support Vector Machine

The Support Vector Machine (SVM) [30] is a well-known machine-learning algorithm
designed for classification of binary traits. It aims to locate an optimal hyperplane from
the high-dimensional predictor space to separate the two classes of binary traits. The
separation is achieved by maximizing the minimum of the distances of every data point to
the hyperplane (defined as rj, j = 1, . . . , n). The result of SVM is interpretable because it
tracks which genetic variants are used to construct the separating hyper-plane and classify
binary traits. However, SVM may suffer from overfitting and loss of generalizability for
high-dimensional data.

Marron et al. (2007) [68] proposed the Distance Weighted Discrimination (DWD)
for classifications on high-dimensional and low sample-sized data (p >> n), which facili-
tates the applicability of SVM algorithm to case-control disease data in the GWAS fields.
The DWD improves the standard SVM by locating the hyperplane that minimizes the
sum of the reciprocals of rj (i.e., min ∑n

j=1
1
rj

). The DWD approach overcomes the chal-
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lenges of high-dimensional classification by allowing all data points to have influences
on the separating hyperplane, rather than considering only the point that is closest to the
separating hyperplane.

However, as claimed by Qiao et al. [69], the DWD does not perform well on unbalanced
data if the proportions of the two classes are quite different from each other. Qiao et al. [69]
proposed a weighted sum of the reciprocals of rj (min ∑n

j=1
wj
rj

) as an improved objective
function to locate the separating hyperplane, where wj is the weight of the jth sample. They
demonstrated through simulations and real data examples that the weighted DWD yields
accurate and robust prediction results under nonstandard situations such as unbalanced
binary traits. Additionally, they also proved Fisher consistency for the weighted DWD
approach to provide statistical guarantee (see Qiao et al. [69] for more detailed theoretical
results). Since a naive classifier easily favors the majority class, a common strategy that
address the imbalance is to assign a higher misclassification cost to the underrepresented
minority class of the binary trait. Qiao and Liu [70] developed an optimal weighting
scheme using the Bayes decision rule with Mean Within Group Error (MWGE) criterion to
determine the weight, wj, of each sample.

7. AdaBoost

Ensemble learning based on decision trees has been effective in achieving a balance
between overfitting and under-fitting and also reducing variance of predictions through
aggregating prediction results of multiple classifiers [71]. Another advantage of decision
tree-based algorithms is that the hierarchical structures of decision trees naturally considers
epistasis among variants without requiring an explicitly model structure [72]. For example,
Bagging [73], Random forests [74], and AdaBoost [75,76] are some of the most well-known
decision tree-based ensemble learning algorithms. In particular, the AdaBoost algorithm
is known to be powerful for classifying unbalanced binary traits and capable of reducing
bias of single classifiers [77]. It puts more weights on the subjects that are most often
misclassified by the preceding decision trees. The AdaBoost algorithm is comprised of a
series of “weak” decision trees, but the final model can still yield promising prediction
performances as long as each tree can learn additional information from a subset of the
subjects that are not achieving good results in preceding decision trees.

Despite the fact that the AdaBoost method already put more weight on misclassified
subjects, it still treats subjects of the binary traits equally: weights of misclassified (correctly
classified) subjects are increased (decreased) by the same percentage no matter they come
from the majority class or from the minority class. In order to support the under-represented
minority class and truly address the unbalanced case-control issue, Sun et al. [77] adjusted
AdaBoost by assigning higher misclassification costs to the subjects coming from the
minority class than those of the majority class. See Sun et al. [77] for details about the
calculation of subject weights.

8. Neural Network

Frasca et al. [78] proposed a cost sensitive neural network (COSNet) method, which
can handle unbalanced responses by utilizing a suitable Hopfield Network and learning
parameter through a cost sensitive optimization procedure. They also introduced a regu-
larized cost sensitive neural network (RCOSNet) by adding a regularization term into the
energy function of the network that can deal with extremely unbalanced classification prob-
lems. These two characteristics make RCOSNet applicable to case-control disease GWAS
datasets. Zhang et al. [79] proposed a stacked de-noising Auto-encoder neural network
(SDAE) algorithm based on cost-sensitive oversampling. Cost- sensitive oversampling
exploited misclassification cost as the weight of the original data and duplicate samples
based on that weight to maintain balance between different classes [80]. They added noises
into the input features using a Gaussian distribution, or Salt and pepper distribution, and
hence improved the classification accuracy of the minority class compared to traditional
stacked Auto-encoder neural network.
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Munkhdalai et al. [81] proposed the Generalized Extreme Value distribution Neural
Network (GEV-NN) that consists of three components: “Weighting Layer”, “Auto-encoder
Layer”, and “Concatenation Layer”. The “Weighting Layer” gives weight to each predictor
by multiplying a factor in front to each predictor. The “Auto-encoder Layer” extracts
important features out from samples. The “Concatenation Layer” combined the previous
two components and feed the result to the final prediction function. In order to overcome
the imbalance issue, they used a Gumbel distribution as an activation function in the
network. Figure 1 illustrates the model structure proposed by Munkhdalai et al. [81].
By using the Auto-encoder, they generate efficient features (which in this case is the
distance between original inputs and reconstructed inputs) for minority classes (as shown
in the “Concatenation Layer” of Figure 1). See Munkhdalai et al. [81] for more technical
details. Actually, Kweon et al. [82] has already compared the GEV-NN to some baseline
methods such as logistic regression, random forest, AdaBoost, XGBoost, and Support
Vector Machine using a health-related dataset to predict hypertension. GEV-NN achieved
the best prediction performance in terms of a number of evaluation metrics including
G-mean, AUC, Accuracy, Brier score, and F score.

Another well-known variable selection mechanism for the neural network was the
so-called “dropout” proposed by Srivastava et al. [83], which is one of the most highly cited
machine-learning research methods. In order to avoid overfitting, Srivastava et al. [83]
proposed to randomly drop features (including original predictors and engineered features)
from the neural network during training process and evaluate their impacts on predictions
to select an optimal “thinned” network. The “dropout” strategy can be regarded as
regularization of neural networks including GEV-NN and can be used for variable selection
purposes. Therefore, the “dropout” strategy has great potential for selecting influential
variants from high-dimensional GWAS data.

9. Significance Test

Performing the hypothesis test and statistical significance for each variant has been
the core of the GWAS field, and, therefore, whether the p-value can be obtained is crucial to
select significant genetic variants. However, the statistical significance study for the state-
of-the-art machine-learning approaches is still under-developed. In order to facilitate wide
applications of machine-learning approaches into the GWAS field, we refer the readers
to the well-established permutation-based significance test skills, which have already
been applied to some classifiers to obtain p-values [84,85]. For example, Chen et al. [86]
performed the statistical significance test by permuting variable importance scores obtained
from the random forests approach to obtain p-values [74]. As a non-parametric approach,
the permutation-based statistical significance test can be applied to the SVM (Section 6),
AdaBoost (Section 7), and Neural Network (Section 8) to obtain a p-value for each variant.

The distribution of a test statistic is empirically established by permuting the original
data with a large amount of time. Then an empirical p-value of each variant is approximated
by counting the fraction of the test statistic scores of permuted data that are larger than
that of the original data [84,85]. The accuracy of p-values depends on the original data
(whether there exist any real associations between variants and binary response) as well
as the classifier itself (whether the classifier is able to discover these associations) [84].
Actually, prediction and significance studies are related. Specifically, a promising prediction
performance of a machine-learning method can be an indicator of a good understanding of
the dependency structure between the predictors and the response, which is very important
for constructing a reliable and powerful significance test [84]. See Ojala and Garriga [84]
for more details about the theoretical properties of permutation-based tests.

10. Conclusions

With the collection of a large-scale of diseases from participants in large cohorts such
as biobanks and EHRs, it raises rapidly increasing demands on statistical and machine-
learning methods driven by unbalanced case-control GWAS data analysis needs. In this
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article, we reviewed multiple methods that are designed to address the imbalance in
binary traits, including GMMAT and SAIGE that were based on logistic mixed models,
the Bayesian variable selection method B-LORE, and machine-learning approaches such
as SVM, AdaBoost, and the neural network. Each method has its own advantages as
well as limitations, as summarized in Table 2. It is impossible to find any method that
is uniformly the best. Therefore, methods should be chosen according to the needs of
different aims, backgrounds, and scientific questions for different datasets. For example, if
one wants to build a high-performance disease risk prediction tool along with a ranking of
the most influential genetic variants meanwhile taking care of the nonlinear and gene-gene
interactions, the AdaBoost algorithm along with its variable importance measure will be
an ideal option.

Table 2. A summarization of the methods evaluated from different aspects mentioned in the manuscript. Each method has
its own advantages and limitations.

Can the Method Be Applied to
Genomic Selections?

Can the Method Be Applied
to Genomic Predictions?

Can the Method Handle
Unbalanced Binary Response?

GMMAT

√
GMMAT is designed for

performing the significance test of
each variant.

8 GMMAT is a single-SNP
method and is not good for

prediction.

8 Its significance test assumes a
Gaussian distribution, which is

not the case for unbalanced data.

SAIGE
√

SAIGE is designed for performing
the significance test of each variant.

8 SAIGE is a single-SNP
method and is not good for

prediction.

√
SAIGE use the entire cumulant

generating function to
approximate p- values.

B-LORE

√
B-LORE is a joint Bayesian variable

selection regression method designed
for high-dimensional variants.

√
B-LORE is a joint Bayesian

regression and can be used for
prediction.

8 B-LORE cannot handle
extremely unbalanced binary

data.

SVM

√
SVM has not been widely used in
GWAS field yet, but it has the

potential to select important variants
or use permutation-based testing to

obtain significance.

√
SVM is a machine method

with the strength of producing
accurate prediction.

√
SVM with weighted DWD can

handle extremely unbalanced
binary data.

AdaBoost

√
AdaBoost has not been widely

used in GWAS field yet, but it has the
potential to select important variants
or use permutation-based testing to

obtain significance.

√
AdaBoost is a machine

method with the strength of
producing accurate

prediction.

√
AdaBoost can handle extremely
unbalanced binary data by

assigning higher misclassification
costs to the minority class.

Neural Network

√
Neural Network has not been

widely used in GWAS field yet, but it
has the potential to select important
variants or use permutation-based

testing to obtain significance.

√
Neural Network is a

machine method with the
strength of producing
accurate prediction.

√
The RCOSNet and GEV-NN

can handle extremely unbalanced
binary data.

In addition to the unbalanced classification issue, there are several other common
challenges and concerns in the GWAS literature, to name a few in the following: (1)
The GWAS data easily involves millions of SNPs for only thousands of participants, the
ultrahigh-dimensionality, “small n big p” or the curse of dimensionality issue, raise big
challenges [87]. (2) LD is one of the most important, extensive, and widespread features in
genomes, with 70–80% of genomes showing regions of high LD. As a result, it is difficult to
separate the individual variants that are truly causative from those confounding spurious
variants that are irrelevant to the phenotype but highly correlated with the causative loci
due to LD [52]. (3) Epistasis is defined as nonlinear interactions among loci or among
genes (GxG), has been gaining more and more attention for its substantial role in regulating
biological traits [88–96]. (4) The underlying population structure acting as confounders in
GWAS data [72]. (5) A method that is computationally efficient is desired in the GWAS
field due to the extremely high volume of computational needs.
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To overcome the ultrahigh dimensionality challenge, Carlsen et al. [52] proposed a
two-stage framework to extensively eliminate a large amount of noise SNPs using feature
screening skills (its theoretical sure screening consistency is guaranteed), and then applied
a sophisticated model to analyze the remaining variables in depth. They demonstrated
that the accuracy and speed of genomic selection from the whole-genome data using
this two-stage approach outperformed the approaches that applied only logistic ridge
regression model or only a single-SNP approach. This two-stage framework is flexible
enough to bridge any machine-learning approaches introduced in this article with the sure
independence screening (SIS) feature screening approaches so that the performance of
machine-learning approaches is not affected much by the ultrahigh dimensionality.

In addition to genomic selection, phenotypic prediction such as prediction of disease
status or population disease prevalence using GWAS data repositories have also attracted
a lot of research attention lately [24,27,28,97,98]. For example, Banerjee et al. [24] tried to
predict the risk of coronary artery disease (CAD) for participants with white European
ancestry. We want to emphasize that prediction has been the focus and strength of machine-
learning approaches. However, significance- and inference-related research is still under-
developed in machine-learning fields. We hope that this article highlights the importance of
incorporating machine-learning approaches into the GWAS field, so that significance- and
inference-related research could be improved in machine-learning approaches in the future.
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