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Interferons (IFNs) form a family of cytokines with pleiotropic effects that modulate the

immune response against multiple challenges like viral infections, autoimmune diseases,

and cancer. While numerous anti-tumor activities have been described for IFNs, IFNs

have also been associated with tumor growth and progression. The effect of IFNs

on apoptosis, angiogenesis, tumor cell immunogenicity, and modulation of immune

cells have been largely studied; however, less is known about their specific effects on

cancer stem cells (CSCs). CSCs constitute a subpopulation of tumor cells endowed with

stem-like properties including self-renewal, chemoresistance, tumorigenic capacity, and

quiescence. This rare and unique subpopulation of cells is believed to be responsible for

tumor maintenance, metastatic spread, and relapse. Thus, this review aims to summarize

and discuss the current knowledge of the anti- and pro-CSCs effects of IFNs and also

to highlight the need for further research on the interplay between IFNs and CSCs.

Importantly, understanding this interplay will surely help to exploit the anti-tumor effects

of IFNs, specifically those that target CSCs.
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INTRODUCTION

Interferons
Interferons (IFNs) constitute a family of cytokines first described in the late 1950s for their ability to
trigger a very potent anti-viral response in cells (1). All IFNs are class II α-helical cytokines that are
classified into three main types: IFN-I (mainly IFN-α and -β) (2), IFN-II (IFN-γ) (3), and IFN-III
(IFN-λ) (4) and their canonical signaling consists of activation of the JAK/STAT pathway (5).

IFNs are fundamental players in the modulation of both innate and adaptive immune responses.
Although they were first identified as molecules with a strong capability of inducing viral resistance
in cells, many other activities have been discovered for this family of cytokines over the years,
including their involvement in pathologies such as autoimmune diseases [e.g., systemic lupus
erythematosus (6–9) and rheumatoid arthritis (8, 10, 11)] and cancer (discussed below). IFNs,
regardless of the specific receptor they activate, are able to exert pleiotropic effects, suggesting a rich
signaling network coupled to IFN stimulation and undoubtedly adds complexity to understanding
its effects on cell function and its contributions to immune response regulation.
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FIGURE 1 | IFN-I and IFN-II signaling. Canonical IFN-I and IFN-II signaling pathway. Binding of IFN-I to IFNAR activates JAK1 and TYK2 to phosphorylate STAT1 and

STAT2, which associate with IRF9 to form the transcriptional complex ISGF3; ISGF3 translocates to the nucleus to bind the IRSE elements and activate the

transcription of a battery of ISGs. IFN-II biding to its receptor IFNGR activates kinases JAK1 and JAK2, which phosphorylate STAT1; p-STAT1 forms a homodimer

named GAF that translocates to the nucleus and activates the transcription of ISGs by binding GAS elements. IFN-I can also lead to the formation of GAF.

Type I Interferon (IFN-I)
IFN-I comprises multiple and diverse members; in mammals,
9 subtypes have been described: IFN-α (of which there are 13
known subtypes), IFN-β, -ε, -κ, -ω, -δ, -τ , -v, and -ζ; all of them
except -δ and -τ exist in humans (12). The level of homology
between these members can range from 20% to nearly 100% (2).
However, they all signal through the same receptor, the IFN-α
receptor (IFNAR). IFN-I binds a heterodimeric receptor formed
by IFNAR1 and IFNAR2 chains, causing their constitutively
associated Janus kinases TYK2 and JAK1, respectively, to
activate and phosphorylate signal transducer and activator of
transcription 1 (STAT1) and 2 (STAT2). pY-STAT1 and pY-
STAT2 then form a heterodimer that associates IRF9 to form
a transcriptional activator complex named IFN-stimulated gene
factor 3 (ISGF3). ISGF3 translocates to the nucleus, where it binds
interferon-stimulated response elements (IRSE) to activate the
transcription of a battery of interferon-stimulated genes (ISGs)
(Figure 1). However, IFN-I also activates other non-canonical

signaling pathways such as the MAPK (13, 14), PI3-Kinase (15–
17), and NF-κB pathways (18, 19), as well as unphosphorylated
STAT1 (U-STAT1) (5), that prolongs the expression of a subset of
interferon-induced immune regulatory genes (20).

Regarding their immunomodulatory nature, IFN-I fulfills
roles in both innate and adaptive immune responses, that include
inducing cell-autonomous antiviral activity (21), stimulating
immune cells, including natural killer (NK) (22–24) and T cells
(25–29), and increasing antigen presentation by macrophages
and dendritic cells (30), in order to help orchestrate an efficient
immune response (5).

Type II Interferon (IFN-II)
IFN-II has only one member, IFN-γ, which is remarkably
different from IFN-I in structure and has a different receptor,
but was originally grouped in the IFN family due to its ability
to trigger an antiviral response (31). Like other IFNs, IFN-
γ also activates the JAK/STAT signaling pathway, through
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IFNGR. This receptor is formed by two chains: IFNGR1
and IFNGR2. Binding of IFN-γ to its receptor activates the
associated Janus kinases JAK1 and JAK2, respectively to IFNGR-1
and−2, to phosphorylate STAT1. pY-STAT1 forms homodimers,
also known as interferon gamma-activated factor (GAF), that
translocate to the nucleus to activate the transcription of a
set of ISGs by binding the interferon-activated sites (GAS) (5)
(Figure 1). Nonetheless, like IFN-I, IFN-γ can also activate other
non-canonical signaling pathways such as MAPK (32, 33), PI3-
Kinase (32, 33), and NF-κB (34, 35) and U-STAT1 (5, 20).

Functionally, IFN-γ also importantly contributes to the
development of innate and adaptive immune responses, targeting
mainly macrophages (36–39) and T cells (40–42). IFN-γ
signaling induces the expression of many transcription factors,
that can amplify the IFN response (5). Importantly, IFN-γ has
a substantial role in modulating macrophage activation, as it
upregulates the expression of gene products with microbicidal
activity (43–46) and interacts with other cytokines and signaling
molecules to enhance or antagonize their effect (47–50). Also,
IFN-γ is capable of modulating helper T cell (Th) responses (51–
53) and promoting class switching in B cells (54, 55). In addition,
IFN-γ modulates the activity and recruitment of NK cells (56,
57). Interestingly, IFN-γ has been reported to either promote or
repress NK cell-mediated lysis of tumor cells derived from diverse
pediatric tumor cell lines (58). Treatment of the tumor cell lines
with IFN-γ induced differential upregulation of MHC-class I and
ICAM-I, which seemed to determine tumor cells’ resistance or
sensitivity, respectively, to NK cell-mediated lysis.

Type III Interferon (IFN-III)
Finally, interferon type III or IFN-λ is the latest class to be
described, and it also shares the same antiviral functions as that
of type I IFNs (2). The focus of this review will be on the effect
that type I and type II IFNs have on cancer stem cells (CSCs) in
different cancer entities.

Interferons in Cancer
Decades of research have demonstrated that IFNs are able to
display a wide range of anti-tumor activities, including induction
of apoptosis, inhibition of angiogenesis and proliferation, cell
terminal differentiation and immune regulation. At the level
of tumor cell survival, IFNs can induce tumor cell apoptosis
through various mechanisms, such as the TRAIL pathway
(59, 60), via CD95/Fas (61, 62) and the activation of pro-
apoptotic members of the Bcl-2 family [reviewed by Kotredes
and Gamero (63)]. Likewise, IFNs can impede tumor expansion
by inducing cell cycle arrest. IFNs can up- or down-regulate
CDK inhibitors and c-Myc expression, respectively, to inflict
an anti-proliferative effect on tumor cells, amongst other
mechanisms (64–67). However, IFNs have other indirect forms
of fighting tumors, such as inducing oxygen and nutrients
supply deprivation of tumor cells by suppressing angiogenesis,
thus creating a hypoxic and acidic microenvironment. IFNs are
also able to elicit inhibition of angiogenesis by downregulating
the expression of potent angiogenic factors in endothelial and
stromal cells, including IL-8, platelet-derived growth factor
(PDGF) and vascular endothelial growth factor (VEGF), and

in tumor cells, such as fibroblast growth factors (FGFs) (68–
72). Furthermore, angiogenesis inhibition can result from
IFN-mediated impairment of proliferation and migration of
endothelial cells (70, 71, 73, 74).

Importantly, as already mentioned, IFNs are key regulators
of the immune response against tumors. IFN-α, -β, and -
γ are able to directly upregulate the expression of surface
tumor-associated antigens (75, 76) via augmentation of MHC
I class and MHC II class molecules (77), thus increasing
the immunogenicity of tumor cells and making them more
vulnerable to identification and subsequent destruction by the
immune system. Indirect/unspecific immunoregulatory effects
of IFNs encompass activation of dendritic cells to cross-present
tumor antigens to T cells (78), promotion of full CD8+

maturation necessary for them to elicit their cytotoxic effects
(29, 79, 80), prevention of the proliferation of T regulatory cells,
as well as enhancement of T helper cell function (81, 82) and
promotion of macrophage polarization toward an M1-like pro-
inflammatory state instead of theM2 pro-tumoral state (83), thus
eluding their immunosuppressive effect (83, 84), amongst other
mechanisms (85).

Alternatively, pro-tumoral properties have also been described
for IFNs. While classically considered as pro-apoptotic agents,
it has been shown that IFN-α/β activate the NF-κB pathway,
inducing cell survival and protecting tumor cells against
apoptotic stimuli in a variety of cancer types (86, 87). Also,
IFNs can upregulate survival factors that protect cells against
apoptotic stimuli, including MCL1, increased in myeloma
presumably via STAT3 (88), and G1P3, which has been reported
to promote tumor cell survival and contribute to poor outcome
of patients in estrogen-receptor positive breast cancer (89).
IFNs can also act as proliferative stimuli (90). For example,
IFITM1 is an IFN-induced protein whose expression was shown
to enhance lung cancer cell proliferation in vitro and tumor
growth in vivo (91). In addition, IFITM1 expression was
reported to promote invasion in head and neck cancer (92).
Interestingly, IFN-α has been reported to induce endothelial
cell proliferation, thus fomenting angiogenesis (93). One of
the most recognized pro-tumoral activities of IFNs is the
induction or overexpression of a subset of ISGs in distinct
cancers, identified as an IFN-related DNA damage-resistant
signature (IRDS), that confers tumor cell resistance to therapy
(94, 95). Also, high expression of IRDS genes has been
shown to promote tumor growth and metastasis (92, 96).
Another major role of IFNs in cancer is immunomodulation
and, in this regard, IFNs have been shown to promote
immunoevasion via upregulation of the expression of MHC I
class molecules, thus decreasing sensitivity to NK cells (97),
downregulation of tumor-associated antigen presentation (98,
99), upregulation of the cytotoxic T cell inhibitor PDL-1 in
tumor cells (100, 101), and promotion of a tumorigenic TME
milieu (102).

Interferons as Anticancer Therapy
Intensive research focused on IFNs’ anti-tumor activities finally
led to the approval of IFN-α by the FDA as the first
cancer immunotherapy in 1986 (103). In spite of being
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discovered for their anti-viral activities, IFN-α2a and IFN-
α2b have been used as anticancer therapeutic agents across
multiple cancer types, including hairy cell leukemia, chronic
myelogenous leukemia (CML) (104), AIDS-related Kaposi’s
sarcoma, follicular lymphoma, multiple myeloma, melanoma,
condyloma acuminate, hepatocellular carcinoma (HCC), and
cervical intraepithelial neoplasms (105, 106). IFN-β use as an
anticancer drug is still under study, although ongoing phase
III trials for melanoma (107, 108) and for glioma (109) and
glioblastoma (110) are being conducted with promising results.
However, IFN-β treatment studies in metastatic breast cancer
have not been as successful (111). IFN-γ has also been explored
as a therapy for cancer, showing some contrasting results. While
IFN-γ treatment has proved to increase survival in ovarian
cancer (112) and prevent recurrence in bladder cancer (113),
it did not achieve the same results in other malignancies
such as melanoma (114), leukemia (115), colorectal (116),
and pancreatic cancers (117). Unfavorably, other preclinical
studies have shown how IFN-γ upregulation leads to increased
metastasis in melanoma (97) and breast cancer (118). It
is worth noting that IFN treatment presents adverse side-
effects ranging from a flu-like syndrome consisting of fever,
chills, headache, myalgia, arthralgia, anorexia and fatigue (119),
to neuropsychiatric symptoms, being depression a frequent
disorder with a prevalence of 30–70% (120). These adverse effects
are dose-limiting andmay lead to treatment cessation in severe or
longstanding treatment cases.

CSC Model
Cancer stem cells (CSCs) constitute a subpopulation of tumor
cells endowed with stem-like properties such as tumorigenesis,
metastatic dissemination potential, chemoresistance, and relapse
(121). Nowadays, themost accepted CSCmodel proposes that, on
the one hand, CSCs remain in a de-differentiated state, maintain
their pluripotency and have unlimited self-renewal capacity.
However, on the other hand, they can also differentiate into all
possible cancer cell states that form a continuum, thus building
the tumor hierarchy and giving rise to intratumoral heterogeneity
(122). These unique abilities define CSCs as the sole drivers of
tumorigenesis and tumor maintenance, and subsequently the cell
entity that drives metastatic spread.

CSCs are pluripotent due to the reactivation of embryonal
signaling pathways, such as Sonic Hedgehog (SHH), WNT,
NOTCH, and Bone Morphogenetic Protein (BMP) (123). Other
classical pluripotent genes expressed by these cells include KLF4
(124), NANOG (125), OCT3/4 (125, 126), SOX2 (125–127), and
the NODAL/ACTIVIN axis (128). CSCs are also characterized by
the expression of stem-like markers, some of which are associated
with a cancer type and some of which aremore broadly expressed.
Some of the most commonly used stem-like markers to identify
CSCs are CD24, CD44, CD133, ALDH1, and CXCR4 (129–131).
However, not every CSC express the same stem-like markers,
the latter being due to the heterogeneity that exists within the
CSC population. Genetically and/or epigenetically diverse CSC
subpopulations possess different characteristics, that allow them
to or preclude them from adapting to challenging situations
such as nutrient deprivation, hypoxia, chemotherapy, or immune

pressure. This unequal fitness of each CSC subpopulation drives
either their clonal expansion or retreat (121), thus driving
tumor evolution.

CSCs maintenance is supported by specific niches within the
tumor. Importantly, interaction with the TME is crucial for
CSC niche formation. A dynamic communication and influence
occur between CSCs and the TME, thus assembling a balanced
loop of reciprocal modeling. Of note, CSCs represent only a
small percentage of the total number of tumor cells, but they
are dispersedly located within different CSC niches and present
distinct phenotypes.While some niches are spatially distinct (e.g.,
hypoxic and perivascular regions), others are defined by cellular
interactions (e.g., immune niche). These tumor ecology dynamics
have been elegantly described and reviewed by Prager et al. (132).

Implicit in this model is the idea/concept of CSC
plasticity. Classically, the cellular populations with the
ability to differentiate or transition into different lineages
(e.g., hematopoietic stem cells) possess phenotypic plasticity.
However, we now know this is not a unidirectional process,
and that progenitor, transient and differentiated cells are able
to regain stem-like properties that drives them to a pluripotent
state (121). The latter is greatly influenced by stem cell niche
factors. In this same way, CSC niches provide the needed signals
for more differentiated cells to activate their plasticity and go
back to a stem-like state if necessary. From a clinical perspective,
not only CSC targeting but also CSC niche elimination would be
necessary for complete cancer eradication.

EMT is a crucial process for activating plasticity and stemness.
Between the pure epithelial (E) and pure mesenchymal (M)
states, there is a spectrum of intermediate conditions, being the
hybrid E/M state, with both epithelial and mesenchymal features,
the state that represents the population of cells with the highest
plasticity and stemness, increased therapy resistance, tumor-
initiating capacity and metastatic potential (133). Importantly,
these E/M hybrids with stem-like properties are able to form
clusters, with increased apoptosis-resistance, that enter into the
bloodstream where they collectively migrate to distant sites and
colonize them more successfully than pure mesenchymal-state
motile tumor cells (134, 135). As part of CSC plasticity, these
cells are also able to enter a state of reversible quiescence, that
is actively maintained. Quiescence protects CSCs from cell-
cycle targeted therapies and grants them long-term survival
through activation of environmental stress adaptive responses,
including metabolic reprogramming and mechanisms that favor
genomic integrity protection. In addition, these cells present high
tumorigenic potential (136). Quiescent CSCs can exist within the
tumor, as a subpopulation that does not contribute to tumor
growth but that is greatly resistant to adverse conditions and
can reactivate and re-enter the cell cycle when in the presence
of certain ques or when more favorable conditions are achieved
(137). They can also appear as disseminated dormant tumor cells,
that are maintained in a non-proliferating state for long periods
of time and can reactivate driving relapse and metastasis (136).

Chemoresistance is another hallmark of CSCs (138, 139).
CSCs are invulnerable to conventional anticancer therapies, as
they have an intrinsic chemo- and radio-resistant profile that
enables their survival and clonal expansion over those cells
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unable to resist therapeutic pressures. Expression of drug efflux
pumps, such as ABCG2 and MDR1, not only allows CSCs
to evade the lethal impact of chemotherapy (140), but these
pumps also seem to promote stem-like capacities via facilitating
the clearance of endogenous anti-tumorigenic molecules from
the cell while redirecting pro-tumorigenic molecules to the
cell’s surface receptors (141). Other common mechanisms of
chemoresistance are ALDH activity, expression of pro-survival
BCL-2 protein familymembers and activation of several signaling
pathways involved in chemo- and radio-resistance, including
MYC and AKT1 (142).

Without a doubt, CSCs represent a population of highly
complex tumor cells with unique properties that are responsible
for tumor progression, chemoresistance, dormancy, and
metastasis. At the same time, these cells are divided into unique
subpopulations whose nature is driven/influenced by CSC
niches, thus promoting different phenotypes (i.e., plasticity).
With this in mind, the only way to successfully eradicate cancer
would be to eliminate CSCs and simultaneously target the cues
that promote CSC maintenance/plasticity or the source of those
cues (i.e., CSCs niches).

It is well-known that IFNs can exertmany different anti-tumor
effects that negatively affect tumor viability, but less is known
about their specific impact on CSCs. In fact, the few studies that
have tested the relationship between IFNs and CSCs have yielded
opposite and contradictory conclusions, showing both pro and
anti-tumor activity. Thus, this review will try to set the story
straight by discussing this complex relationship and provided
data to support both sides.

STEMNESS AND TUMORIGENIC
POTENTIAL

Interferon Type I
A recent study by Castiello et al. (143) showed how IFNAR1
silencing had a significant impact on the CSC subset in an
HER2/neu transgenic mouse model (neuT) of breast cancer.
Loss of functional IFNAR1 not only resulted in earlier onset
and increased tumor multiplicity, but also in the presentation
of a gene expression profile associated with aggressive human
breast cancer. In line with these results, IFNAR−/− tumors
showed an enrichment in the ALDH1+ CSC compartment,
which demonstrated a greater self-renewal capacity in vitro
and tumorigenic potential in vivo. These results clearly propose
IFN-I as a negative regulator of stemness in breast cancer
tumor cells. Accordingly, Doherty et al. (144) obtained similar
conclusions when studying the role of IFN-β on triple-negative
breast cancer (TNBC) CSCs, using an in vitro model of
primary human mammary epithelial cells (HMEC) virally
transduced with transforming factors. Within transformed cells,
a subpopulation of mesenchymal-like cells with CSCs properties
emerged (Mes/CSC), while the remaining cells maintained
an epithelial phenotype and did not present such properties
(Ep/non-CSC). Regarding IFN signaling, Mes/CSCs presented
a basal repression of numerous ISGs, while Ep/non-CSCs had
an IFN gene expression signature. Inhibition of ISG expression

was attributed to upregulation of unphosphorylated ISG3F (U-
ISG3F) in Mes/CSCs, which is part of the alternative IFN-I
signaling pathway, although the origin of its activation remains
unclear. In order to test whether IFN-β was able to reactivate
the canonical IFN pathway, Mes/CSCs and Ep/non-CSCs were
treated with IFN-β and CSCs properties were tested in vitro,
showing a reversion of the CSC status of Mes/CSC cells.
Moreover, IFN-β reactivated the expression of ISGs in Mes/CSCs
by upregulating P-ISG3F. Therefore, activation of the canonical
IFN-I pathway by IFN-β inhibited the stem-like capacities of
Mes/CSCs in this model.

In support of this, Yuki et al. (145) had previously
reported IFN-β to reduce proliferation, self-renewal capacity,
and tumorigenesis in human glioma-initiating cells (GICs) by
inducing their terminal differentiation into oligodendrocytes via
STAT3 activation. Treatment of patient tumor-derived cells with
IFN-β induced the phosphorylation and subsequent activation
of STAT3, leading to a cell-cycle arrest in G0/G1, decreased
clonogenic capacity, reduction of the expression of stem markers
and, importantly, terminal differentiation of the GICs into
oligodendrocytes. Significantly, STAT3 had been previously
linked to gliogenesis by Bonni et al. (146) and Rajan and McKay
(147), who described how Ciliary Neurotrophic Factor (CNTF)-
mediated activation of STAT3 promoted the differentiation of
cortical precursor cells and multipotent stem cells of the central
nervous system, respectively, into astrocytes. More recently,
STAT3 activation has been linked to regulation of human
neural stem cell differentiation (148) and to promotion of the
differentiation of NG2 cells (oligodendrocytes progenitors) into
oligodendrocytes after a contusive spinal cord injury (149).
Likewise, STAT3 has been shown to mediate IL-6-induced
neuroendocrine differentiation in prostate cancer cells (150).
This pro-differentiating role for STAT3 contradicts previous
work describing its role in promoting CSCs traits among different
cancer types (151–155), thus highlighting the importance of
the tumor context. Illustrating this complex regulation, another
study underscored the role of IFN-I as a repressor of glioblastoma
stem-like cells (GSCs), as it appeared to inhibit the proliferation
and self-renewal capacity of GSCs. However, the authors claim
that IFN-I also inhibits the ability of GSCs to differentiate
into astrocytes, since it only induces a transient activation of
STAT3, while induction of astrocytic differentiation results from
sustained activation of STAT3 (156).

Another interesting study tested the effects of IFN-β produced
intracellularly on lung cancermurine cells (LL), avoiding external
treatment of cells with the recombinant cytokine (157). For
that purpose, LL cells were transduced with the mouse ifn-b
(rBV/IFN-β) gene using a baculovirus vector (BV) and subjected
to several tumor-specific assays. rBV/IFN-β cells showed a
lower proliferation rate and, importantly, decreased anchorage-
independent growth (i.e., CSC self-renewal), compared to control
cells. Consistent with these results, a reduction in the tumorigenic
and metastatic capacity of rBV/IFN-β cells was observed,
strengthening the link between IFN-β and inhibition of stem-
like capacities.

IFN-α has also been reported to specifically target the side
population (SP) of ovarian cancer cells, a subset of cells endowed
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with stem-like properties (i.e., CSCs) (158). In an attempt to
exploit the anti-tumor effects of IFN-α, ovarian PDXs were
subjected to gene therapy with IFN-α, and results showed a
marked increase in survival rate in those PDXs bearing a high
proportion of SP cells compared to those containing a low
proportion, indicating that IFN-α specifically and negatively
affects the CSC compartment. Accordingly, treatment of isolated
SP cells with IFN-α resulted in decreased proliferation and self-
renewal capacity of these cells and in a dramatic change in
their transcriptional profile, compared to non-SP cells. Moreover,
these findings were tested in CRC and Daoy medulloblastoma
cells with similar results, indicating that this negative regulation
of the CSC compartment could be extended to other cancer types.

In contrast to the CSC inhibitory role of IFN-I described
above, other studies have come to different conclusions. For
example, Ma et al. (159) revealed that IFN-α fostered stem-
like properties in oral squamous cell carcinoma (OSCC) cells.
Treatment of implanted tumor xenografts with IFN-α resulted
in increased expression of stemness markers and tumor growth.
Similar results at the level of stemness markers and increased
self-renewal capacity were also observed in vitro with OSCC cells
treated with IFN-α.

More recently, a robust link between death receptor
CD95/Fas, IFN-I-dependent activation of STAT1 and stemness
in different cancer types has been described by Qadir et al.
(160). CD95 is an apoptosis-inducing death receptor, although
it can also participate in a variety of tumor promoting activities.
In fact, chronic stimulation of CD95 in tumor cells has been
reported to increase the number of CSCs in breast cancer (161).
In this work, the authors observed that long-term stimulation of
CD95 in tumor cells led to type IFN-I production and secretion,
and subsequent activation of the IFN-I pathway. In MCF-7
breast cancer cells, activation of the IFN-I pathway resulted
in increased expression of stem-like markers. Moreover, cell
sorting of MCF-7 breast cancer cells using the stem marker
CD44 revealed that CD44+ cells had higher levels of STAT1
expression than CD44− cells. In addition, treatment with IFNα/β
induced/increased ALDH1 activity and self-renewal capacity. To
further confirm the role of IFN-I as a driver of stemness, IFN-
β pre-treated cells were used in a limiting dilution assay (LDA),
which revealed the ability of IFN-β to enhance tumorigenic
potential in vivo. These findings are not limited to one cancer
type, as the authors were able to show similar results for GBM
and squamous cell carcinoma (SSC). Interestingly, knocking-
down STAT1 resulted in abrogation of STAT2 and STAT3
phosphorylation, concomitant with a loss of IFN-I-induced stem-
like properties, suggesting the involvement of STAT2 and STAT3
activation in mediating the observed CSCs promoting effects
of IFN-I in a STAT1-dependent manner. Overall, this thorough
study strongly suggests IFN-I as a cancer stemness driver in
breast cancer, SCC and GBM, involving activation of STAT1,
STAT2, and STAT3.

In line with this, IFN-β has also been linked to tumor stemness
promotion in pancreatic ductal adenocarcinoma (PDAC). Sainz
et al. (162) described an intimate communication between
tumor-associated macrophages (TAMs) and pancreatic CSCs in
primary tumor tissues and derived cultures. Interestingly, PDAC
cells polarized resident TAMs toward an M2 phenotype, which

in turn actively secreted high levels of ISG15, an interferon-
stimulated gene. ISG15 can act as a free molecule—intracellularly
or in the tumor milieu—and it can also conjugate to proteins as
a ubiquitin-like modifier through a process known as ISGylation
(163). In this work, TAM-secreted ISG15 was found to enhance
the stem-like properties of PDAC CSCs in vivo and in vitro,
promoting their self-renewal, tumorigenic, chemoresistant and
migratory capacities, in addition to higher levels of intracellular
ISGylation, which have also been related to CSC promotion
in nasopharyngeal carcinoma (164). Strikingly, TAMs secreted
ISG15 in response to IFN-β secretion by pancreatic CSCs, thus
establishing an intricate communication between CSCs and
TAMs that resulted in reinforcement of stem-like properties
in pancreatic CSCs. The fact that tumor cells (or CSCs) can
secrete IFNs is not a novel concept. In 2011 Tsai et al. (165)
described that ZR-75-1 breast cancer cells secreted elevated levels
of IFN-β, which in turn contributed to Ras transformation. In
addition, sarcoma, melanoma and leukemia tumor cells have
been described to secrete IFN-α in response to doxorubicin
treatment (166). Moreover, inflammatory breast cancer (IBC)
cells have been reported to secrete high levels of IFN-α
to the TME milieu, which contributed to increase its pro-
tumorigenic character (102, 167). In addition to an IFN-α-
secreting phenotype, IBC cells showed an upregulation of
the IFN-α signaling pathway. Interestingly, Monsurrò et al.
(168) identified two molecular phenotypes of PDAC based on
differential expression of ISGs; the “anti-viral state” phenotype
was characterized by increased resistance to oncolytic viral
infection and was associated with activation of hypoxia pathways
and increase of HLA proteins expression.

Interferon Type II
Regarding IFN-II, a study by Ni et al. (169) investigated the
impact of IFN-γ on a specific subpopulation of quiescent colon
CSCs (i.e., Label-retaining cancer cells or LRCCs), isolated from
primary colon tumors based on PKH26/67 high staining. This
work revealed that IFN-γ selectively targeted LRCCs due to their
overexpression of IFNGR, compared to non-LRCCs. The authors
showed that IFN-γ treatment of LRCCs greatly inhibited their
self-renewal and tumorigenic capacities and induced apoptosis,
while non-LRCCs were less affected. Therefore, in this context
and in this model system, IFN-γ was proposed as a selective
anti-CSC agent.

Another relevant study by Song et al. (170) explored
the connection between endogenous IFN-γ levels and tumor
stemness in a cohort of non-small cell lung cancer (NSCLC),
esophageal squamous cell carcinoma (ESCC), CRC and HCC
patients. Strikingly, the study revealed that low-IFN-γ levels
in tumor interstitial fluid (TIF) strongly correlated with
poor prognosis, TNM tumor staging, brain metastasis and
chemoresistance. In line with this, NSCLC, ESCC, CRC, and
HCC patients with low TIF-IFN-γ levels showed higher CD133
and Vimentin expression, as well as increased tumor stemness-
related and EMT-related gene expression. In vitro treatment of
NSCLC cell lines with high and low doses of IFN-γ revealed
that low dose treatments increased the self-renewal capacity and
expression of stem-like makers. In line with this observation,
in vivo treatment of NSCLC-derived cell lines with a low IFN-γ
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dose resulted in higher frequency of CD133+ cells compared with
those treated with a high IFN-γ dose, indicating an enrichment in
the CSC compartment due to low IFN-γ stimulation. Dissection
of the signaling cascade behind these effects revealed that
low IFN-γ treatment of NSCLC cell lines induced I-CAM
expression, which activated the PI3K-Akt-Notch1 axis leading
to increased stemness. On the other hand, high IFN-γ doses
induced apoptosis via the JAK1/STAT1/caspases pathway. This
work not only illustrates the complex regulation of IFN signaling,
but it also describes the opposing effects that can be achieved
with the very same molecule using different dosing strategies.
In addition, the results of this study are likely applicable to
the immunoediting process, in which infiltrated effector T-cells
and NK cells initially produce high levels of IFN-γ in the
TME, resulting in tumor cell apoptosis. However, this initial
immune response wave can eventually lead to T-cell and NK cell
exhaustion and dysfunctional activity (171, 172), thus decreasing
IFN-γ production and generating an IFN-γ-low TMEwith tumor
stemness promoting capacity. Importantly, such a scenario could
also occur during the earlier stages of tumor development in so-
called “cold tumors” that are poorly infiltrated with immune cells.
Interestingly, however, this study may also help to resolve the
contradictory pro- and anti-tumor effects described above for
both IFN-I and IFN-II, which may be the result of the doses of
IFNs used across the different studies.

Very recently, Matteucci et al. (173) described and reviewed
the pivotal role of human endogenous retrovirus (HERVs)
activation in the promotion and maintenance of pluripotency
and stem-like properties in melanoma CSCs. The authors
also highlight the correlation between HERVs activation and
aggressiveness features across several types of cancer. In this line,
in the same year Cañadas et al. (174) described a very interesting
interplay between IFN-γ and a particular subtype of HERVs
named Stimulated 3 prime antisense retroviral coding sequences
(SPARCS), which are located in the 3′ untranslated region of
IFN-γ-inducible genes. Strikingly, IFN-γ induces the activation
of SPARCS-containing genes—many of which are involved in
innate immune regulation—resulting in the promotion of a
more aggressive mesenchymal-like state of SCLC cells and in
the production of cytosolic dsRNA through the bi-directional
transcription of target genes. In turn, dsRNA can be sensed via
the RIG-I/MAVS or the cGAS/STING pathways, which induce
the production of IFNs, thus creating a positive feedback loop.
Of note, IFN-γ induced the overexpression of PD-L1, which
correlated with high baseline expression of the stem-like marker
CD44. Moreover, deletion of MAVS significantly reduced the
tumorigenic capacity of SCLC tumor cells. In summary, this
work highlights the role of IFN-γ in activating the transcription
of SPARCS and its impact on SCLC cells phenotype and opens
the door to considering IFN-γ-induced SPARCS activation as a
regulator of stem-like features in SCLC tumor cells.

INVASION, MIGRATION, AND METASTASIS

Interferon Type I
In ovarian cancer, Li et al. observed that IFI27, an IFN-
α inducible protein, was upregulated in patient tumor

tissue samples, compared to their paired healthy controls,
and correlated with poor disease-free survival. The authors
subsequently found IFI27 to not only be a driver of stemness
(175), but this IFN-induced protein could also promote EMT,
resulting in increased migration and invasion. It is well-known
that EMT is one of the driving biological processes of stemness
in tumor cells (176, 177), and in this work the authors make a
very unique connection between EMT induction by an IFN-α
stimulated gene and acquisition of stem-like properties such
as increased self-renewal and drug resistance. In accordance
with this observation, Zhu et al. (178) also described IFN-α as a
promoter of stemness in PDAC. In an attempt to unveil possible
differences of the effects of IFN-α on CSCs and non-CSCs,
two PDAC cell lines with opposing stem markers levels were
used: MiaPaca (low levels) and Panc1 (high levels). The authors
showed in their study how IFN-α treatment of both PDAC
cell lines reduced cell viability and proliferation in vitro, while
simultaneously increasing the expression of CSCs cell surface
markers, suggesting IFN-α induces a CSC enrichment, likely via
killing off non-CSCs. In order to confirm these results in vivo, an
orthotopic PDAC mouse model was used. While administration
of IFN-α to mice reduced tumor volume in comparison to the
control group, CSCs markers were significantly upregulated,
suggesting again an enrichment in CSCs. Along these lines,
IFN-α-treated mice presented more colon metastases compared
to the non-IFN-treated control group. In summary, these results
suggest that IFN-α treatment of PDAC cells leads to elimination
of the tumor bulk cells resulting in an enrichment of the CSC
compartment, concomitant with a boost in metastatic spread.
However, based on the concept of plasticity, it is also feasible that
non-CSCs converted into CSCs, contributing to the enrichment
of the CSC population.

Interferon Type II
In head and neck squamous cell carcinomas (HNSCC), as in
many other cancer types, the CXCL12/CXCR4 axis is involved in
metastatic dissemination (179). As metastasis formation is one
of the hallmarks of CSCs, CXCR4 is often used as a stem-like
marker for the identification of CSCs with enhanced metastatic
capacity (180). In this respect, Katayama et al. (181) performed
a study to determine the effects of IFN-γ on CXCR4 expression
and function in several HNSCC cell lines. Histological analysis
of primary tumors and metastases from a cohort of 56 patients
revealed high levels of CXCR4 in tumor cells, but not in healthy
head and neck tissue, which correlated with poor prognosis.
In addition, CXCL12 expression was barely detectable in the
primary tumor stromal tissue, but was strongly expressed in
metastatic lymph node stroma, illustrating the CXCR4/CXCL12
axis as a highly plausible mechanism for metastatic spread in
this cancer. In this study, the authors aimed to regulate CXCR4
levels in HNSCC cell lines using IFN-γ as an inhibitor, since
IFN-γ had been previously shown to downregulate expression
of CXCR4 in immune cells like neutrophils (182). Interestingly,
they discovered that IFN-γ treatment induced a downregulation
of CXCR4, and this downregulation translated into an inhibition
in the migratory and invasive capacities of HNSCC cells, as well
as CXCR4/CXCL12 axis-mediated cell proliferation. Thus, these
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authors proposed IFN-γ as a modulator of CXCR4 functional
expression and as an inhibitor of HNSCC cell migration induced
by this receptor.

Interestingly, during the late 1980’s, multiple studies explored
the relationship between IFN-γ and metastasis in mice. Firstly,
Taniguchi et al. (97) observed that treatment of H-2-deficient
non-metastatic B16 melanoma cells with physiological doses of
IFN-γ (1–10 U/ml) was sufficient to decrease cell growth in
vitro and, surprisingly, to increase the lung-colonizing potential
of these cells in vivo. Treatment with IFN-β was also able to
induce the same metastatic phenotype, although a 1,000-fold
higher concentration was required to observe similar effects.
Investigating the mechanisms behind this IFN-γ-mediated or -
enhanced metastasis, it appeared that IFN-γ induced a higher
expression of surface H-2, that enabled tumor cells to resist
NK-mediated killing. Other studies published in the very same
year supported the main concept of Taniguchi et al.’s. work
but in melanoma and colon cancer (183–186). More recent
studies have also reported the capacity of IFN-γ to promote
invasion and metastasis (187), and to act as a double-edge
sword in cancer (188, 189). These results suggest that local
endogenous IFN-γ released in the TME may play a pivotal role
in modulating tumor cells’ sensitivity to innate and adaptive
immune cells and therefore in their capacity to colonize other
organs and metastasize. Again, as shown by Song et al. above,
the concentration of IFN-γ at a specific given time during the
evolution of the tumor may be critical for IFN-γ to act as a pro-
or anti-metastatic/invasive factor.

DORMANCY

Interferon Type I
It is generally recognized that tumor cell dormancy represents
a major obstacle when it comes to effectively treating cancer,
as dormant cells are more chemoresistant and upon treatment
cessation, these cells can drive tumor relapse. In a recent study,
Liu et al. (190) dissected the impact of IFN-β in melanoma CSCs,
establishing a previously unknown association with dormancy.
In this work, murine and human implanted tumors in mice were
treated in vivo with IFN-β. Subsequent analysis of isolated single
tumor cells revealed that IFN-β treated tumors had a higher
proportion of G0/G1 cells, which were not senescent. In fact,
sorting cells using the CSC cell surface marker CD133 revealed
that while IFN-β treatment did not reduced the CD133+ CSC
compartment, IFN-β did induce cell cycle arrest in CD133+ and
not in CD133− cells, suggesting a specific effect of IFN-β on
CSCs. Interestingly, both murine and human CD133+ “tumor
repopulating cell” (TRC)-derived tumors showed halted growth
when treated with IFN-β and a quick re-growth after IFN-β
withdrawal, indicating that IFN-β induces a reversible dormancy
in melanoma cells. Further studies in vitro supported these
findings. Specifically, IFN-β treatment of CD133+ murine and
human melanoma cells in soft 3D fibrin gels induced G0/G1 cell
cycle arrest, expression of dormancy markers, decreased glucose
consumption and higher resistance to chemotherapy, many of
these features being hallmarks of CSCs. Consistently, IFN-β was
not able to induce dormancy in 2D-cultured cells, which are

conditions that favor cell differentiation over CSC enrichment.
Moreover, knocking-down either STAT1 or STAT2 abolished
the IFN-β-mediated quiescence induction in melanoma cells,
confirming IFN-β as the driver of dormancy in these cells.
Finally, a thorough study of the signaling pathway responsible
for this effect underlined the IDO/Kyn/AhR cascade and serine-
phosphorylation of STAT3 as the effectors, providing new
insights into tumor dormancy mechanisms associated with IFNs.

Interferon Type II
A similar approach to the Liu et al. (190) study was conducted
by the same group using IFN-γ (191), and similar results at
the level of stemness promotion were obtained in murine TRCs
(i.e., stem cell-like cancer cells that can repopulate tumors).
Again, the authors showed that IFN-γ treatment resulted in
IDO1/AhR-dependent p27 induction, that prevented STAT1
signaling, suppressing cell death and inducing tumor cell-
dormancy in murine TRCs. Importantly, a similar effect with
IFN-γ was also shown in human melanoma, breast cancer and
HCC cell lines, again through the IDO/AhR/p27 pathway. While
Liu et al. dissected the molecular signaling pathway behind IFN-
γ-mediated tumor cell-dormancy, Farrar et al. (192) discovered
in 1999 that IFN-γ produced by CD8+ T cells played a major
role in inducing tumor cell dormancy in vivo; however, the
authors did not dissect the mechanism of action. In their study,
a model of tumor dormancy was used, in which a murine B
cell lymphoma (BCL1) implanted in immunocompetent mice
previously immunized with the BCL1-derived Ig to orchestrate
an anti-Id immune response could be induced into a dormant
state. Adoptive transfer of Id-immune CD8+ T cells into SCID
mice administered with α-BCL1-Ig, concomitant with α-IFN-
γ antibodies, resulted in complete abrogation of the induction
and maintenance of tumor dormancy. These results indicated
that endogenous production of IFN-γ by CD8+ T cells, in
collaboration with humoral immunity, induced and maintained
tumor cell dormancy in vivo. In line with this, Kmieciak et al.
(193) reported 4 years later that CD8+ T cell-produced IFN-
γ was able to induce apoptosis in those tumor cells expressing
high levels of IFNGR, while those expressing low levels entered
into a quiescent state. In addition, relapsed tumor-cells presented
increased expression of cell surface stem-like markers and
higher tumorigenic capacity in vivo, thus connecting IFN-γ
stimulation in a subset of tumor cells with a quiescent phenotype
and a subsequent enrichment in the CSC compartment after
tumor regrowth.

DISCUSSION

The regulation of IFN signaling has been extensively investigated,
and yet there are still many aspects that are not fully understood
and many questions remain unresolved. An example is the
question of how IFN-α and -β are able to exert different effects
on cells while signaling through the same receptor—IFNAR—
via the JAK/STAT pathway. We now know that IFN stimulation
and subsequent downstream effects are highly dependent on the
cell type, IFN dose and the cell surface-receptor density in the
stimulated cell. Likewise, factors behind the regulation of IFN
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FIGURE 2 | IFNs in the immunoediting process. Schematic representation of the immunoediting process, which is divided in the elimination, equilibrium and escape

phases, and how IFNs affects this process. During the elimination phase, both innate and adaptive immune systems identify and eliminate immunogenic tumor cells

with the help of the anti-tumor effects of IFN. The immune pressure gives rise to the selection of poorly-immunogenic tumor cells and to a static phase, the

equilibrium, in which the growth and elimination of tumor cells is balanced and the quiescence state is promoted, in part by IFNs. Finally, tumor evolution favors the

induction and selection of immunoevasive features on tumor cells, some of which are elicited by IFNs, thus driving tumor survival and growth.

TABLE 1 | Anti- and pro-CSC effects of IFN-I and IFN-II.

Anti-CSC effects Pro-CSC effects

IFN-I

Decreased expression of stem-like

markers and/or pluripotency genes

(1–3)

Increased expression of stem-like markers

and/or pluripotency genes (4–6)

Reduced self-renewal capacity

(1, 2, 7–10)

Increased self-renewal capacity (4–6)

Reduced tumorigenic potential

(1, 7, 9)

Increased tumorigenic potential (5, 6)

Reduced proliferation (7, 9, 10) Chemoresistance (6)

Reduced metastatic potential (9) Increased migratory/invasive and/or

metastatic capacities (3, 6)

Induction of dormancy (11)

IFN-II

Reduced self-renewal capacity (14) Increased self-renewal capacity (12, 15)

Reduced tumorigenic potential (14) Increased tumorigenic potential (13)

Reduced migratory/invasive

capacities (16)

Activation of EMT and/or

migration/invasion (12, 15)

Increased expression of stem-like markers

and/or pluripotency genes (12, 13)

Increased metastatic potential (15, 17–22)

Chemoresistance (15)

Induction of dormancy (23–25)

receptor presentation and IFN secretion levels are numerous
and vary (2). This scenario highlights the importance of the
cellular and environmental context in which a cell is stimulated

by IFNs, and CSCs are no exception. Thus, more research is
needed to fully characterize and dissect the factors that mediate

the different responses of distinct CSCs to IFNs, described in this

review. While we have put forth several possible explanations,
including IFN dosing, more studies are still needed. Nevertheless,

it is highly likely that what we will discover are cell-type specific

effects. For example, regarding IFNs and dormancy, it is known
that IFN-α is able to activate dormant hematopoietic stem cells
(HSCs), inducing them to proliferate and making them more

vulnerable to anti-cycling therapies such as 5-fluorouracil (194);

however, while CSCs share many common features with normal
stem cells, they also possess an aberrantmalignant behavior based
in part on a very different signaling circuitry. Thus, the very

same stimulus can have completely different effects on normal-

and cancer- stem cells. This is certainly the case with respect

to the dormancy-specific studies described in this manuscript,

which demonstrate that IFN-β and -γ are dormancy drivers

(190–193). To complicate the matter further, acute exposure

of HSCs to IFN-I has been shown to induce quiescence exit
and promote proliferation; however, far from leading to HSC
pool exhaustion, chronic exposure to IFN-I reestablished the

HSC quiescent state and induced protection from the killing
effects of IFN-I (195). These findings highlight the importance

of advancing research focused on IFN pathway regulation, since
IFNs (specially IFN-α) have been proposed as “awakening” agents
for dormant CSCs. Despite these findings described for HSC, it is
yet to be demonstrated whether acute and chronic exposure of
other CSCs to IFN-I induces the same effects as those described
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for HSCs, but caution should be taken when exploring the
therapeutic effects of IFNs on CSCs, specifically at the level
of dormancy.

Finally and more interestingly, the concept of immunoediting
might prove beneficial to further explain the contradictory
conclusions regarding the effect of IFNs on CSCs (196)
(Figure 2) (Table 1). Briefly, cancer immunoediting refers to a
complex interplay between tumor cells and the host immune
system that can be divided into three phases: elimination
(immunosurveillance), equilibrium (quiescent state) and escape
(immunoevasion) [reviewed by McCoach and Bivona (197)].
Thus, depending on the molecular and functional traits of a CSC
subset at a certain time during tumor progression, IFNs would
be able to boost or shut down that subpopulation. Although
knowledge of how CSCs participate in cancer immunoediting is
now expanding (198, 199), less is known about the role of IFNs
in that interplay. Exploring this field would surely contribute
significantly to a better understanding of the dynamics and
relationship that exists between IFNs and CSCs.

In conclusion, IFNs comprise a family of cytokines with
pleiotropic effects, and among themany effects attributed to IFNs
and their signaling pathways, growing evidence now validates
a unique role for these cytokines in CSC biology. IFNs are
able to display both pro- and anti-CSCs effects, depending on
the context, including synergistic effects with other cytokines.
For this reason, further research is needed in order to build
a more comprehensive perspective of these contradictory roles
with the hope of being able to exploit the anti-tumor effects
of IFNs and at the same time downregulate their pro-CSCs
capabilities as a means of targeting CSCs to improve cancer
patient overall survival.
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