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Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws
including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design
objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In
the present study using the three-dimensional finite element (FE) analytical results based on an L

25
orthogonal array, bending and

pullout objective functions were developed by an artificial neural network (ANN) algorithm, and the trade-off solutions known as
Pareto optima were explored by a genetic algorithm (GA).The results showed that the knee solutions of the Pareto fronts with both
high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of
mathematical analyses were closely related to those of experimental tests with a correlation coefficient of −0.91 for bending and 0.93
for pullout (𝑃 < 0.01 for both). The optimal design had significantly higher fatigue life (𝑃 < 0.01) and comparable pullout strength
as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA
could achieve an ideal with high bending and pullout performances simultaneously.

1. Introduction

The treatment goals of spinal fractures include deformity cor-
rection, neurological decompression, and fixation of the
instability [1]. Transpedicle screw fixators can achieve reduc-
tion, decompression, and fixation at the same time, and
provide high fixation stability for early mobilization [2–4].
One important principle of spinal fixation is to minimize the
instrumentation levels to reduce the surgical trauma, pre-
serve the motion segments, and avoid junctional arthritis
and late back pain caused by long-segment instrumentation
which may increase load at the adjacent segments [5]. How-
ever, relatively high failure rates with this short-segment
instrumentation which fixes only one level above and below

the fractured vertebra have been reported [1]. Failure of the
pedicle screws including breakage and loosening may jeop-
ardize the fixation integrity and lead to treatment failure [6–
8]. Especially, broken pedicle screws trapped in the vertebral
bodies are difficult to retrieve and may interfere with sub-
sequent revision surgeries [9]. Thus, the design rationale of
pedicle screws is to increase bending strength to resist break-
age and pullout strength to resist loosening simultaneous-
ly [10–12]. However, these two design objectives are closely
related to the screws’ structures and may conflict with
each other [10, 13–15]. Improving one objective may cause
deterioration of the other. Therefore, optimization studies to
improve both design objectives simultaneously are critical but
still rare in the literature [16].
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Figure 1: Illustration of structural variables for the spinal pedicle
screw.

In the present study, computer aided engineering (CAE)
with high calculation technology was applied. The pedi-
cle screws were analyzed with finite element (FE) mod-
els, and then artificial neural network (ANN) algorithms
were adopted to model the analytical process. The optimal
screw design was achieved via an evolutionarymultiobjective
approach with a genetic algorithm (GA) [15]. Last, mechan-
ical tests were conducted to validate the optimal design by
comparison with commercially available devices.

2. Materials and Methods

2.1. Screw Structures and Orthogonal Array of Taguchi Robust
Design Methods [15]. In this study the outer diameter of
the pedicle screws was fixed at 7mm. Among the eight
independent structural variables of pedicle screws, six of
them were analyzed including beginning position of conical
angle (BP), inner diameter (ID) at the screw tip, proximal
root radius (PRR), pitch (P), proximal half angle (PHA),
and thread width (TW) (Figure 1). The design space of these
structural variables was determined according to commonly
used pedicle screws and previous studies [1, 15]: 0–36mm for
BP, 3.8–5.5mm for ID, 0.4–1.0mm for PRR, 2.6–4.0mm for
P, 5–20∘ for PHA, and 0.1–0.3mm for TW(Table 1).Thedistal
root radius and distal half angle were fixed at 1mm and 25∘,
respectively, because of minimal effects on the mechanical
performance of the screws [17, 18]. An L

25
orthogonal array

for six factors with five levels was selected for optimization
study. This orthogonal array ensures a balanced comparison
of levels of each structural variable and represents the entire
experimental space. The structural variables were equally
divided to 5 levels and put in the L

25
orthogonal array. All the

screw designs in the orthogonal array fulfilled the geometric
constraints [15].

2.2. FEModels. Three-dimensional solidmodels of the spinal
pedicle screws inserted at the center of a cylinder were first
created by the CAD software SolidWorks 2005 (SolidWorks,
Concord, MA, USA) and then imported into the CAE

software ANSYS 10 Workbench (ANSYS Inc., Canonsburg,
PA, USA) with the use of the Parasolid format (Figure 2).
The screw was 45mm, and the cylinder was 60mm in length.
The pedicle screw was free-meshed with high order 10-
node tetrahedral elements, and the cylinder wasmap-meshed
with 20-node hexahedral elements with the element size of
1.2mm. Surface-to-surface contact elements were used for
the interface between the pedicle screw and cylinder with a
frictionless condition. No axial rotation of the constructs was
allowed. The elastic modulus of titanium pedicle screws was
114GPa.ThePoisson’s ratio was 0.3 for both pedicle screw and
cylinder. The thread valleys with stress concentration were
remeshed, and the numerical convergence was confirmed by
increasing mesh density.

For bending strength, a cantilever bending setupwas used
to simulate the worst-case scenario of total corpectomy con-
ditions. The cylinders with an outer diameter of 20mm were
made from homogeneous polyoxymethylene with an elastic
modulus of 2.6GPa. The screw head was constrained, and a
compressive force of 225N was applied to the cylinder with
a lever arm of 40mm (Figure 2(a)). In the postprocessing,
the maximum tensile stress of the pedicle screw was recorded
to represent the bending strength. Lower maximum tensile
stress represented longer fatigue life and higher bending
strength, and vice versa. For pullout strength, to simulate the
worst case scenario of osteoporosis, the cylinderwith an outer
diameter of 30mmwas assumed to be osteoporotic bonewith
an elastic modulus of 137.5MPa. The effects of bone com-
paction caused by conical screws were simulated by adjusting
the elastic modulus of the bone surrounding the conical core
according to the density change of the surrounding bone [11].
Density change was calculated on the basis of the volume
reduction caused by the compaction. The elastic modulus of
bone was assumed to be a power-law function of the density
with an exponent of 2. In the loading condition, an axial
displacement of 0.01mm was applied to the end surface of
the pedicle screw. The boundary conditions were constraints
at the outer surface of the cylinder (Figure 2(b)). In the
postprocessing, total reaction force on screws, defined as the
summation of the resultant axial force at the surface of the
screw, was recorded. Higher total reaction force represented
stronger pullout strength.

2.3. Artificial Neural NetworkModeling. ANN as a regression
device containing layers of computing nodes with remarkable
information processing capability can detect nonlinearities
by machine learning and adaptability based on the least-
squares algorithm [19]. In the current study, because of the
complexity of FE analyses, ANN was used to replace the
FE models of bending strength and pullout strength for
construction of the objective functions for multiobjective
optimization studies. The supervised feed-forward error-
backpropagation learning models with sigmoid activation
functionwere developed. Six structural variables were used as
inputs, and single output was either maximum tensile stress
or total reaction force (Figure 3). A three-layered ANN based
on the 25 screw designs in the orthogonal array with three
neurons in one hidden layer was used as the learning set.
Another testing set with 10 randomly selected screw designs



Computational and Mathematical Methods in Medicine 3

Table 1: Design variables of the pedicle screws, FE analytical results and ANNmodels.

No. BP (mm) ID (mm) PRR (mm) P (mm) PHA (∘) TW (mm) MTS-FE (MPa) MTS-ANN (MPa) TRF-FE (N) TRF-ANN (N)
1 0 3.80 0.40 2.60 5.00 0.10 464.49 464.71 39.93 39.99
2 0 4.23 0.55 2.95 8.75 0.15 416.30 415.05 38.40 38.59
3 0 4.65 0.70 3.30 12.50 0.20 399.83 392.63 35.56 35.75
4 0 5.08 0.85 3.65 16.25 0.25 377.19 382.49 31.37 31.26
5 0 5.50 1.00 4.00 20.00 0.30 380.56 377.39 26.36 26.48
6 9 3.80 0.55 3.30 16.25 0.30 452.25 457.14 38.37 38.38
7 9 4.23 0.70 3.65 20.00 0.10 415.59 419.10 36.48 36.57
8 9 4.65 0.85 4.00 5.00 0.15 404.94 405.94 33.66 33.72
9 9 5.08 1.00 2.60 8.75 0.20 432.04 427.96 33.96 33.82
10 9 5.50 0.40 2.95 12.50 0.25 393.19 404.48 35.67 35.54
11 18 3.80 0.70 4.00 8.75 0.25 468.89 468.30 36.74 36.80
12 18 4.23 0.85 2.60 12.50 0.30 576.54 574.13 37.94 37.90
13 18 4.65 1.00 2.95 16.25 0.10 444.50 437.91 35.72 35.71
14 18 5.08 0.40 3.30 20.00 0.15 429.80 416.79 36.65 36.33
15 18 5.50 0.55 3.65 5.00 0.20 391.64 397.72 33.37 33.49
16 27 3.80 0.85 2.95 20.00 0.20 608.56 617.34 37.47 37.15
17 27 4.23 1.00 3.30 5.00 0.25 532.07 529.34 36.37 36.23
18 27 4.65 0.40 3.65 8.75 0.30 491.02 481.84 36.73 36.58
19 27 5.08 0.55 4.00 12.50 0.10 460.59 463.83 34.67 34.41
20 27 5.50 0.70 2.60 16.25 0.15 463.35 469.46 35.14 35.44
21 36 3.80 1.00 3.65 12.50 0.15 919.85 918.26 35.19 35.31
22 36 4.23 0.40 4.00 16.25 0.20 787.66 789.04 34.90 35.05
23 36 4.65 0.55 2.60 20.00 0.25 770.40 765.61 36.66 36.90
24 36 5.08 0.70 2.95 5.00 0.30 605.92 611.19 35.97 36.01
25 36 5.50 0.85 3.30 8.75 0.10 527.13 526.30 33.54 33.46
26 25.4 4.7 0.748 3.1 9.53 0.255 488.62 483.69 36.59 36.41
27 0.5 5.093 0.885 3.59 5.68 0.183 375.29 380.79 31.47 31.64
28 31.05 5.144 0.624 3.947 18.07 0.11 504.19 510.02 34.01 33.62
29 16.87 4.3 0.774 3.507 8.95 0.156 444.71 436.37 36.46 36.73
30 25.02 5.46 0.546 3.347 6.58 0.3 429.47 427.33 34.48 34.43
31 10.24 3.87 0.577 3.135 9.515 0.28 447.07 465.53 38.51 38.73
32 6.696 4.79 0.448 3.241 18.58 0.152 412.10 401.96 37.189 37.16
33 23.25 4.39 0.463 2.86 6.16 0.187 495.95 506.34 38.365 38.56
34 21.55 5.334 0.745 2.943 17.91 0.115 420.82 424.14 34.036 34.89
35 31.64 5.49 0.543 3.528 14.39 0.294 476.86 472.29 34.167 33.80
No. 1–25, learning set; No. 26–35, testing set. MTS represents maximum tensile stress. TRF represents total reaction force.

outside the orthogonal array was used to supervise the learn-
ing process. The input quantities were normalized to a range
from −1 to 1, and the output quantities were normalized to a
range from 0 to 1. The initial weights and the biases between
−1 to 1 were randomly assigned. Both learning rate and the
coefficient ofmomentum termwere set at 0.5.Thenewweight
and bias were updated as the error between the predicted
and the target performance was minimized. Generally, the
learning and testing errors kept decreasing during computing
iterations.Theprocesswas terminatedwhen the testing errors
were minimal. The ANN models were run 100 times with
different initial weights, and the best model with the least test
error was selected for optimization study. The ANN is coded
by Microsoft Visual Basic (Redmond, WA).

2.4. Multiobjective Optimization with GAs. GA is commonly
used for multiobjective optimization by using stochastic
operators (Figure 4). The biobjective problem of the screw
functions could be expressed by an aggregated weighted-sum
fitness function (𝐹): 𝐹 = 𝑤 ⋅ 𝐹bending + (1 − 𝑤) ⋅ 𝐹pullout, where
𝐹bending was the normalized objective function of bending;
𝐹pullout was the normalized objective function of pullout; 𝑤,
the given weight, was systematically changed from 0 to 1 to
assess the different combinations of both performances. Both
objective functions were transformed into the-larger-the-
better problem before aggregation, and the fitness function
(𝐹) was maximized. The algorithm was initiated with a
population with 40 randomly selected chromosomes. Each
chromosome was composed of six design parameters with
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Figure 2: Finite element models: bending (a) and pullout (b).

Errors

Feed forward Backpropagation

MTS or TRF

7

1 2 3

1 2 3 4 5 6

BP ID PRR P PHA TW

Hidden layer

Input layer

Output layer

Bias1
Bias2 Bias3

Bias4

w11
w12

w13

w21
w22

w23

w31 w32

w33

w41 w42
w43

w51
w52

w53
w61
w62 w63

w71

w73w72

Sh = ∑wihai − biash

ah =
1

1 + exp(−Sh)

Figure 3: Three-layer feed-forward error—backpropagation neural network model.

Initial population

Encode

Encode

Decode

Decode

No

No

No

Yes
Yes

Yes

Geometric
constraints

Geometric
constraints

Fitness function

Convergence

Pareto frontKnee solutions

Selection and
reproduction

Crossover

Mutation

New population

Figure 4: Flowchart of evolutionary optimality in GAs.



Computational and Mathematical Methods in Medicine 5

(a) (b)

(c) (d) (e)

Figure 5: Tested pedicle screws: (a) Synthes, (b) A-Spine, (c) Moss Miami, (d) Viper, and (e) Optimal.

42 bits of zeros and ones. The optimization process included
selection, reproduction, and termination. Roulette wheel
selection replicates the fitter solutions found in the popula-
tion. Then a second generation population was reproduced
from those selected through genetic operators: crossover and
mutation. The crossover rate and the mutation rate were
90% and 1%, respectively. If the new generations fulfilled the
constraints, the fitness of the new populations was calculated
and reselected again. The process was repeated and termi-
nated until the highest ranking solution’s fitness converged.
The program of GAs was also developed by Microsoft Visual
Basic. The optimization strategy produced a set of Pareto
front with nondominant solutions, which meant there were
no solutions better than those in both objectives.The optimal
design range at the knee region of the Pareto front was
subjectively defined as a less than 2% difference between
the normalized objectives. The knee solutions were validated
with FE analyses and compared with the commercially

available pedicle screws. Ten thousand randomly selected
screw designs were used to validate the Pareto set obtained
in GA.

2.5. Mechanical Validation Tests. The results in the mathe-
matical studies were validated by mechanical tests as con-
ducted in the literature [1]. One optimal design randomly
selected from the knee region of the Pareto front was com-
pared with the four commercially available pedicle screws
with a 7mmouter diameter in both bending and pullout tests:
Synthes (Synthes, Paoli, PA, USA), A-Spine (A-Spine Asia,
Taipei, Taiwan),MossMiami, andViper (DePuy Spine, Rayn-
ham,MA, USA) (Figure 5).The structures of the commercial
screws were measured by measuring microscope (Meiji MC-
50T, New York Microscope, Hicksville, NY). To make the
comparison fair, the screwsweremanufacturedwith the same
titanium alloy by the same process. The mechanical tests
were conducted on a materials testing machine (Bionix 858,
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Figure 6: Optimization results: (a) changes of the values of structural variables related to the normalized objective functions of bending and
pullout corresponding to given weights in GA. (b) Pareto plot with knee solutions.

MTS Corporation, Minneapolis, MN, USA), and the testing
setup was similar to that in the FE models. In bending,
polyoxymethylene cylinders (Universal Plastics, Auckland,
New Zealand) representing the vertebrae could eliminate
the interspecimen variability and prevent specimen failure
during experiments. Sinusoidal waveform cyclic loading
fatigue tests with a frequency of 10Hz were performed with
screws submerged in a saline bath at 37∘C. The maximal
load of the cyclic testing was 410N with a stress ratio of
10%. The tests were terminated when the screws cracked or
the number of testing cycles was more than one million [6].
The number of cycles at failure was recorded. For pullout,
cellular polyurethane foam (Pacific Research Laboratories,
Vashon, WA, USA) conforming to the standard of ASTM
F1839-97 [20] can prevent the widely varying testing results.
Two densities of the foam—0.32 and 0.16 gm/cm3 with a
compressive modulus of 137.5 and 23MPa and a porosity of
71% and 86%, respectively—were used to simulate cancellous
bones with osteoporosis. For a fair comparison, the predrill
hole was the same size as that of the ID of each screw at
the screw tip. Thus, the conical screws could generate bone
compaction during screw insertion. The screws were freely
extracted in longitudinal direction with a loading rate of
5mm/minute.Themaximum load was defined as the pullout
strength.

3. Results

In FE analyses, total element number ranged from 122,550 to
189,224 for bending and from 142,066 to 278,211 for pullout.
The maximum tensile stress in bending tests was located at
the proximal threads near the screw hub. The pedicle screws
in pullout tests had negligible deformation because the bone
was assumed osteoporotic (Figure 2). These two findings
were compatible with the results in the mechanical tests. In
ANN analyses, the computing iteration was 10000 cycles for
bending and 5000 cycles for pullout.The differences between
prophetic outputs obtained in ANN models and FE results
were minimal. For bending, the mean absolute error was 1%
(0.05∼3%) for learning and 1.64% (0.03∼4.13%) for testing.
For pullout, the mean absolute error was 0.4% (0.03∼0.88%)
for learning and 0.78% (0.08∼2.51%) for testing.

The solutions of GA converged after 300 generations
(see Supplementary Materials available at http://dx.doi.org/
10.1155/2013/462875). The main factors that affected the
Pareto set were ID and pitch (Figure 6), which increased
along with the weight (𝑤). In the knee region, the weight
ranged from 0.60 to 0.72. The corresponding range of the
structural variables was 3.8 to 4.06mm for ID and 3.21 to
3.3mm for pitch; the fixed variables were 0mm for BP,
0.4mm for PRR, 5∘ for PHA, and 0.1mm for TW.Thebending

http://dx.doi.org/10.1155/2013/462875
http://dx.doi.org/10.1155/2013/462875
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Table 2: Structures and results of FE analyses and mechanical tests of four commercially available pedicle screws and the optimal design.
Values were expressed as mean (standard deviation).

Mechanical properties Synthes type A-Spine type Moss Miami type Viper type Optimal design
BP (mm) 0 0 40 cylindrical 0
CD (mm) 2.76 4 4.61 4.4 3.8
PRR (mm) 0.22 0.1 3 3 0.4
P (mm) 2 2 2.95 2.87 3.3
PHA (∘) 0 0 31.35 29.93 5
TW (mm) 0.1 0.1 0.2 0.33 0.1
Maximum tensile stress (MPa) 1220 628 1268 1766 422
Total reaction force (N) 40.25 40.77 33.53 34.04 39.1
Fatigue life (103 cycles) 13.77 (4.62) 46.53 (15.9) 8.52 (1.35) — >1000
Pullout strength, 0.32 g/cm3 (N) 2148 (144) 2068 (117) 1598 (56) 1553 (84) 2009 (74)
Pullout strength, 0.16 g/cm3 (N) 1015 (74) 951 (48) 705 (48) 662 (63) 825 (52)
Cyclic loading tests of Viper type screws were not completed because the screws yielded quickly during the tests.

strength and the pullout strength ranged between 92% and
94% of theirmaxima.The exactitude of knee solutions closely
approximated the results of FE analyses. The ten thousand
randomly selected screw designs were all dominant solutions
in Pareto plot. The commercially available pedicle screws
were far away from the knee solutions.The A-Spine and Syn-
thes type screws had high pullout strength but relatively low
bending strength. Moss Miami and Viper type screws were
low in both bending strength and pullout strength.

In the mechanical tests, the logarithm of the fatigue life
was closely related to the maximum tensile stress obtained
in FE analyses with a correlation coefficient of −0.91 (𝑃 <
0.01), and the pullout strength was closely related to the total
reaction force with a correlation coefficient of 0.93 (𝑃 <
0.01) (Table 2). The optimal designs had significantly higher
fatigue lives (>106 cycles) than all the commercial screws by
an analysis of variance test (𝑃 < 0.01, resp.), and pullout
strength was higher than Moss Miami and Viper screws (𝑃 <
0.01 for both foam densities). Synthes and A-Spine screws
had higher pullout strength than optimal designs, but the
bending strength was relatively low because of a very small
pitch (2mm). This was compatible with the findings in FE
analyses.

4. Discussion

In order to reduce the incidence of fixation failure in short-
segment fixation for spinal fractures, different kinds of inter-
ventions have been developed, including combined ante-
rior instrumentation [21], bone cement augmentation [22],
transpedicular vertebroplasty [23], and so forth. However,
these methods are threatened by complications [1]. Improve-
ment of the pedicle screw design to achieve better bending
strength and bone holding power is still themost basic step to
prevent failure of fixation. Investigating only one mechanical
performance of bending strength or pullout strength of
the pedicle screws exclusively might lead to undetected
compromise of the other one, because these two objectives
would conflict with each other in the design process [1, 15]. In
the present study, with adequate control of the design space,

the two mechanical performances of the screws were inves-
tigated simultaneously with ANN and GA for multiobjective
optimization analysis.

FE analysis, a powerful tool for biomechanical researches
on structures with complicated loading and boundary condi-
tions [24, 25], can be reliably used for predicting the bending
strength and pullout strength of orthopedic screws [17, 18]. In
the present study, the FE models could be well validated by
mechanical tests in both bending and pullout tests with very
high correlation coefficients. However, because of the sophis-
ticated computation process, FE analyses are not suitable
for multiobjective design optimization studies. Therefore,
the ANN algorithms, which have the special advantage of
functional approximation with fast computation, can be
used as surrogate functions of FE models for multiobjective
optimization studies.

ANN, a nonlinear statistical data modeling tool, uses
learning rules to develop models and parallel computing
to find answers. These neurocomputing procedures mimic
information processing and knowledge acquisition in human
brains. ANN can construct complex relationships between
input variables and output performances andprocess not only
values but also texts, images, and voices [19, 26]. Its attrac-
tiveness comes from the remarkable information processing
characteristics of the biological systems such as nonlinearity
with better fit to the data, high parallelism, robustness, fault
tolerance, learning, ability to handle imprecise and fuzzy
information, and their capability to generalize. Our previous
optimization study of tibial locking screws developed objec-
tive functions with least-squares linear regression models
[15]. However, with more complex trends in the conical core
design of pedicle screws in the present study, linear regression
analysis with high order polynomials might fit badly at the
extreme of the independent variables or in data with limiting
behaviors, because polynomials do not have asymptotics [27].
ANN viewed as generalizations of “super regression” can
outperform statistical regression with regard to prediction
accuracy. This superiority increases as the dimensionality
and/or nonlinearity of the problem increases. Classically,
development of an ANN requires partitioning of the parent
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database. This may decrease the statistical power. In the
present study, use of all the datasets in the orthogonal array
in the training and 10 testing datasets randomly selected
from the entire parametric space outside the orthogonal array
could avoid this disadvantage and increase the predictability.

Many real-world problems involve multiple competing
objectives. The two objectives of pedicle screws, bending
strength and pullout strength, are conflicting and character-
ized by the fact that improving one objective may jeopardize
the other [15]. The present multiobjective optimization study
used a weighted-sum function and GA to develop Pareto
optima that were trade-off solutions for the conflicting objec-
tives [28].The solutions at the knee region of the Pareto front,
characterized by the fact that a small improvement in either
objective might cause a substantial change in the other, were
considered the most suitable trade-offs (the optimal designs)
by designers. The bending strength and the pullout strength
of the optimal designs ranged between 92% and 94% of
their maxima. This indicated that with minimal compromise
of one objective, the other still could maintain a relatively
high performance.However, thismultiobjective optimization
principle is not adequately considered in the design of com-
mercially available pedicle screws. The Synthes and A-Spine
type screws with a very small pitch (2mm) had very high
pullout strength, but such a small pitch led to a sharp root
radius and high tensile stress. A small increase of maximum
tensile stress mightmarkedly decrease the fatigue life because
of the logarithmic relationship.This was the reasonwhy small
pitch was not included in the design space of the present
study. In contrast, both Viper and Moss Miami type screws
with a cylindrical core had low bending and pullout strength.
They were dominated designs, very far away from the knee
region. Basically, tapering of the ID from the screw tip all
the way to the screw hub may increase the bending strength
and pullout strength simultaneously. Especially, elimination
of the step-off at the screw hub can increase the fatigue
strength substantially [1].This explained higher fatigue life in
A-Spine type and optimal design screws. Viper type screws
with a smaller core at the screw hub for better adjustability of
the polyaxial design might jeopardize the bending strength
extremely.

The present study has potential pitfalls. First, ANN is an
empirical model and its success depends on both the quality
and quantity of the data. Although only 25 datasets were used
for training, the ANNmodel still could accurately reflect the
FE results, because the orthogonal array could fairly represent
the entire parametric space and the FE data were relatively
noise free, as compared with clinical data. Second, a different
outer diameter and range of design space might affect the
ranges of the optimal design. The present study considered
only screws with an outer diameter of 7.0mm, but the design
space could cover the important ranges of the pedicle screw
design. Third, GAs are stochastic iterative processes and
do not guarantee a global optimality. However, the optimal
designs in the present study with fitness levels up to 92%
or 94% of their maxima were already practically acceptable.
Fourth, the ANN is criticized as a “black box” method. One
cannot exactly explain what interactions are modeled in the
hidden layers, and there is still no specific method to define

the optimal hidden layers. However, these did not affect the
method’s robustness in the present optimization study. Last,
the optimal design was closely related to the relative weight
between the bending strength and pullout strength (1 : 1 in the
present study). The selection depended on the factors linked
to the problem and a thorough knowledge of them.

In conclusion, the ANN model could reliably approxi-
mate the results of sophisticated mathematical analyses of
pedicle screws. The model could be used to solve the prob-
lems of conflicting objectives of pedicle screws with evo-
lutionary GA. The trade-off optimal solutions obtained in
this optimization study could achieve an ideal with high
performance in both bending and pullout tests. The present
method proves beneficial to both manufacturers who design
implants and surgeons who select the best product to prevent
failure in the treatment of spine fractures.
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