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Genomic analyses are defining numerous new targets for cancer therapy. Therapies aimed at specific genetic and epigenetic targets
in cancer cells as well as expanded development of immunotherapies are placing increased demands on animal models. Traditional
experimental models do not possess the collective features (cancer heterogeneity, molecular complexity, invasion, metastasis, and
immune cell response) critical to predict success or failure of emerging therapies in humans. There is growing evidence, however,
that dogs with specific forms of naturally occurring cancer can serve as highly relevant animal models to complement traditional
models. Invasive urinary bladder cancer (invasive urothelial carcinoma (InvUC)) in dogs, for example, closely mimics the cancer
in humans in pathology, molecular features, biological behavior including sites and frequency of distant metastasis, and
response to chemotherapy. Genomic analyses are defining further intriguing similarities between InvUC in dogs and that in
humans. Multiple canine clinical trials have been completed, and others are in progress with the aim of translating important
findings into humans to increase the success rate of human trials, as well as helping pet dogs. Examples of successful targeted
therapy studies and the challenges to be met to fully utilize naturally occurring dog models of cancer will be reviewed.

1. Introduction

With more than 7.5 million deaths from cancer worldwide
each year, there is an ever increasing need to develop better
cancer therapies, along with strategies to make cancer care
more accessible. Even with tremendous advances in pharma-
ceutical science and technology, nine out of ten human clin-
ical trials of new cancer therapies fail [1]. One of the major
reasons for these failures is the inability of preclinical models
to predict the safety and efficacy of new cancer drugs in
humans [1]. In in vitro systems, carcinogen-induced,
engraftment, and genetically engineered mouse models are
instrumental and essential in cancer research [2–7], but they

do not possess the collective features (cancer heterogeneity,
molecular complexity, invasion, metastasis, and immune cell
response) critical to predict success or failure of emerging
therapies in humans [1].

The need for relevant cancer models has never been
greater. With advances in sequencing methods and genomic
analyses, the number of therapeutic candidates with sound
biologic rationale justifying investigation in humans con-
tinues to grow [8–16]. However, with the rapidly expanding
number of combinations of targets and mechanisms of
action, the cancer research community has entered an
uncharted era in which the number of cancer patients (espe-
cially those with uncommon cancer types) is insufficient for

Hindawi
International Journal of Genomics
Volume 2017, Article ID 6589529, 9 pages
https://doi.org/10.1155/2017/6589529

https://doi.org/10.1155/2017/6589529


testing even part of the new therapeutic approaches. Hence,
there is an essential need to develop and optimize preclinical
animal models to rapidly facilitate more accurate predictors
of therapeutic success in approaches ultimately chosen to
take forward into humans. With the resurgence of immuno-
therapies and the understanding of the immune system’s role
in many types of therapies [16–18], it is critical that animal
models also possess a level of immunocompetence similar
to that in human cancer patients. As summarized in this
review, and using invasive urinary bladder cancer as an
example, there is compelling evidence that pet dogs with spe-
cific forms of naturally occurring cancer can provide cru-
cially needed relevant animal models to complement other
models in preclinical research to help improve the success
rate in human clinical trials [19, 20].

2. Challenges in Invasive Urinary Bladder
Cancer and a Need for Animal Model
Research

There is a dire need for relevant animal models for research
to improve the treatment and management of humans with
invasive urinary bladder cancer (InvUC). In humans, InvUC
is defined as high-grade UC that has invaded to the depth of
the lamina propria (T1 tumors) or beyond (T2–T4 tumors;
also commonly called muscle invasive bladder cancer) [21].
Even in patients where the local infiltration is limited to the
lamina propria (T1 tumors), that is, not yet into the muscle,
InvUC represents an aggressive, often fatal cancer [21]. It
should be noted that of all human bladder cancer, up to
80% of cases are noninvasive, but the invasive cancers repre-
sent the most challenging form of the cancer to be treated.
Current challenges faced by patients with InvUC in the
United States, for example, include the following: (1) 50%
fatality rate and >16,000 deaths per year, (2) reduced quality
of life from both the cancer and its treatment (cystectomy,
radiotherapy, and chemotherapy), and (3) financial costs
($150,000 median cost of care per patient; $17 billion per
year lost due to untimely deaths from InvUC) [21–28]. In
addition, of the 550,000 people living with nonmuscle inva-
sive cancer in the US, there is a risk of progression to
muscle-invasive stages requiring cystectomy in 10–30% of
the patients. The need for better InvUC drugs is crucial as
drugs are now being applied in multiple settings including
the BCG unresponsive, neoadjuvant and adjuvant periopera-
tive, bladder sparing, and metastatic populations [8, 22–27].
With rare exceptions, relapse after treatment for metastatic
disease is inevitable, with few patients achieving durable
benefit from the second line treatment [29]. There is,
however, hope for vast improvement in the success of InvUC
therapywith emergingmolecularly targeteddrugs, epigenetic-
targeted drugs, and immunotherapies, provided that animal
models can meet research demands [9, 10, 15–18, 25].

Animal models are considered a key to all bladder cancer
research, and several instrumental model systems have been
defined. Carcinogen-induced tumors in laboratory animals
have been used to understand features of bladder tumor
development and drug effects at different stages of the

process in immunocompetent hosts [2–5]. In syngeneic and
immunodeficient mice, tumor cells can be implanted subcu-
taneously or orthotopically in the bladder to evaluate drug
activity. Different types of cells including tumor cells, epithe-
lial cells, stromal cells, and embryonic urogenital sinus mes-
enchymal cells can be implanted under the renal capsule to
evaluate drugs and to study epithelial-stromal interactions
[2, 3, 30]. Genetically engineered mouse models (GEMs)
have been widely used in other types of cancer to analyze
tumor phenotype, to study some subtypes, to investigate
candidate genes and signaling pathways, and to test drugs,
and GEMs are beginning to be used more in bladder can-
cer research [2–4]. GEMs for bladder tumors include those
with altered pRB and/or p53 [31, 32]; Pten with or without
p53 [33, 34]; Kras and Hras [35, 36]; Egfr [37]; p21 [35];
IL17, IL12, IL23, and IFNγ [38–40]; and others [2–4].
Patient-derived xenograft models are also promising tools
to study drug effects on an individual’s tumor, and these
are now being described for bladder cancer [41, 42]. As with
other cancers, however, these animal models of InvUC do
not meet the increasing demands of the complex cancer
therapies being developed to treat the aggressive heteroge-
nous cancer in humans [8–18, 43–52]. But there is growing
evidence that an intriguing complementary animal model,
naturally occurring InvUC in dogs, could help address these
demands [19, 53, 54].

3. Naturally Occurring Canine Invasive Bladder
Cancer and Relevance to Human Invasive
Bladder Cancer

The vast majority of naturally occurring bladder cancer in
dogs consists of InvUC [19]. It should be noted that the
nomenclature for the T stages for canine bladder cancer dif-
fers somewhat from that used in humans [19]. In dogs, “T1
tumors” are superficial and have not invaded the lamina
propria as T1 tumors in humans have. Therefore, in dogs,
invasive cancer is categorized as T2 or T3. There is another
difference in the staging system between dogs and humans.
In dogs, T2 tumors are any tumors that have invaded the
muscularis, while T3 tumors are those that have invaded
neighboring organs; thus, T2 and T3 tumors comprise the
invasive UC reported here. In humans, T2 tumors have
invaded the muscle, T3 tumors have invaded the deep fat
under the muscle, and T4 tumors have invaded the neighbor-
ing organs. Nonmuscle invasive bladder cancer, which is very
common in people with bladder cancer, is rare in dogs [19].
Canine bladder cancer offers a model of the more lethal blad-
der cancer biology in humans, InvUC. Canine InvUCmimics
human InvUC in the following: (1) pathology including cel-
lular features, tumor heterogeneity, and infiltrating immune
cells [19, 20, 55–62]; (2) local invasion and patterns of distant
metastases (lungs and other organs) in >50% of individuals
[19]; and (3) response to cisplatin [63–65], carboplatin [66],
vinblastine [67, 68], doxorubicin [69], and gemcitabine [70]
(summarized in Table 1). Further similarities between canine
and human InvUC include shared druggable mutations and
pathway variants, epigenetic targets, and evidence for gene
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patterns of molecular subtypes (basal and luminal) [71–78].
In microarray analyses of genes differentially expressed
between canine bladder with InvUC and normal canine
bladder, two distinct clusters were identified in the InvUC
samples [71]. A recent reanalysis of the data comparing
findings to a list of >600 genes that segregate human
InvUC into luminal and basal subtypes demonstrated that
these two clusters in canine InvUC align closely with
luminal and basal expression patterns in humans. Perti-
nent to in vitro studies, the establishment of canine InvUC
cell lines has been reported [79, 80].

Although the molecular characterization of canine
InvUC is in the early stages, intriguing similarities to human
InvUC have been noted. Mutations in several genes impli-
cated in human InvUC (EGFR [9, 50, 81], CDKN2B [82,
83], PIK3CA [9, 82], BRCA2 [84], and NFkB [85]) have been
identified in dogs [72]. EGFR overexpression, a particularly
interesting target, has been confirmed by immunohistochem-
istry (IHC) in 73% of canine InvUC cases, similar to that in
humans, and a canine trial of an EGFR-targeted compound
is ongoing [71, 81]. The expression of estrogen and androgen
receptors has also been reported in canine InvUC [19]. In
addition, in microarray studies (canine normal bladder,
canine InvUC, and humanmicroarray data—GEO database),
there were >400 genes differentially expressed between
normal and tumor in both dogs and humans [71, 73].

Although there are marked similarities between canine
and human InvUC, expected differences do occur (Table 1).
The male : female ratio is ~2 : 1 in humans with InvUC [21]
but ~0.5 : 1 in dogs affected by InvUC [19], although most
dogs studied were spayed or neutered. In an intriguing
molecular difference between canine and human InvUC,
the majority of canine InvUCs carry a mutation in theMAPK
signaling pathway (dog homologue of BRAFV600E) reported
in several human cancers [72, 86, 87]. While BRAFmutations
are rare in human InvUC, other activating mutations in the
MAPK pathway occur in ~30% of cases [9]. The finding of
the BRAF mutation in canine InvUC opens the door for
research in dogs with bladder cancer to be applied across
many types of human cancer.

Canine clinical trials of new cancer drugs in which dogs
continue life as pets while participating in a trial are well
accepted and are considered a win-win scenario that benefits
each participating dog and generates knowledge to help peo-
ple and pet dogs [19, 88, 89]. Although InvUC only com-
prises 2% of all dog cancers, approximately six million new
canine cancer cases are diagnosed yearly in the US, resulting
in an ample number of dogs with InvUC available for trans-
lational research [90]. A compelling question of any model is
the extent to which drug effects in the model will predict drug
effects in humans. While this proof-of-concept work has
been limited to date, our group has published an unexpected
beneficial drug effect first identified in dogs with InvUC that
was then found in an exploratory human trial. Briefly, cyclo-
oxygenase (COX) inhibitors have had intriguing antitumor
effects and chemotherapy-enhancing effects on dogs with
InvUC [19, 63, 65, 68, 91–93]. Given as single agents, COX
inhibitors induce remission in 18–20% of dogs with InvUC
and cause tumor stabilization in approximately 50–55% of
dogs [19, 91]. The addition of COX inhibitors substantially
enhances the remission rate of cisplatin (20% with the single
agent cisplatin, 50–70% with combined drugs) [63, 65, 92]
and vinblastine (23% with the single agent vinblastine, 58%
with combined drugs) [68]. In a neoadjuvant trial of a
COX-2 inhibitor, celecoxib, given between cystoscopic diag-
nosis and cystectomy in humans, the same biological effects
associated with COX inhibitor-induced remission in dogs
were found in humans receiving celecoxib [94].

Another aspect of InvUC in dogs which offers key oppor-
tunities for translational research, as well as management of
the cancer in dogs, is the very strong dog breed-associated
risk. Scottish Terriers have an 18–20-fold increased risk for
developing InvUC compared to mixed breed dogs, and
Eskimo Dogs, Shetland Sheepdogs, West Highland White
Terriers, Keeshonds, Samoyeds, and Beagles have a 3–6-
fold increased risk [19]. This offers an unparalleled setting
to study heritable risk and gene-environment interactions
leading to InvUC and to study early intervention strategies
[19, 20, 76, 95–97]. In Scottish Terriers, dogs exposed to lawn
chemicals had a 7-fold higher risk of bladder cancer than

Table 1: Similarities and differences in naturally occurring invasive urothelial carcinoma between dogs and humans.

Similarities between dogs and humans

Physiological age of onset and clinical symptoms

Pathologically high grade, heterogenous cancer

Molecular subtypes (e.g., luminal, basal)

Epigenetic features

Shared molecular targets (e.g., EGFR, CDKN2B, PIK3CA, BRCA2, and NFkB)

Local cancer invasion into the bladder wall

Distant cancer metastases in ≥50% of subjects

Response to chemotherapy (e.g., cisplatin, carboplatin, and vinblastine)

Differences between dogs and humans

Sex differences (male : female ratio 2 : 1 in humans, 0.5 : 1 in dogs; although most dogs studied had been spayed or neutered)

Tumor location in bladder (more often trigonal in dogs; more variable in humans)

Dog tumors possess dog homologue of BRAF V600E mutation common in human melanoma (human InvUC has other variants in
MAPK signaling)
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those not exposed [95]. In humans, approximately half of
bladder cancer is due to first-hand cigarette smoke [21]. In
dogs across all breeds, a link to second-hand smoke has not
been proven, but studies in specific high-risk breeds are indi-
cated. Although heritable factors are thought to play an
important role in InvUC risk in humans, groups of humans
with this level of heritable risk for the cancer have not been
identified due to the tremendous genetic diversity in humans.
Once heritable factors are identified in dogs, those same fac-
tors or related factors and mechanisms could be investigated
in humans [98]. Of equal importance, the strong dog breed-
associated risk for InvUC is defining groups of dogs in which
to study screening protocols, methods for early detection,
and early intervention strategies with promising work ongo-
ing [19, 20, 76, 95–98].

4. Examples of Targeted Therapy Research
Utilizing the Canine Bladder Cancer Model

4.1. Folate-Targeted Therapy. There are published examples
of studies in dogs with InvUC which are aimed at translating
into humans. One example involves folate-targeted therapy,
an approach which stems from the finding that there is much
higher uptake of folate (vitamin B9) and folate drug conju-
gates in certain cancers than in normal tissues [99]. Upregu-
lation of folate receptors (FRs), especially FRα, has been
noted in several forms of human cancer, while the expression
of similar FRs in normal tissues is limited [99, 100]. Although
folate-targeted therapy has been evaluated in humans with
ovarian cancer and other solid tumors [101, 102], this thera-
peutic approach has not yet been studied in human bladder
cancer. To determine the potential value of folate-targeted
therapy in human InvUC, research was conducted to deter-
mine FR expression in the human cancer and in the canine
InvUC model and the safety and activity of folate-targeted
therapy in dogs with InvUC. In dogs, FR expression was
detected in 78% of primary InvUC and 80% of nodal metas-
tases by IHC (PU17, polyclonal antibody, Endocyte, West
Lafayette, IN) [103]. Scintigraphy was used to confirm folate
uptake in primary andmetastatic lesions of dogs with InvUC.
FR expression was also detected in human InvUC, although
further work is required to determine the frequency of the
expression. The FR expression in human InvUC was similar
to that in dogs when using the PU17 antibody for IHC, but
immunoreactivity to a human monoclonal antibody
(mab343) was less frequent [103].

A dose escalation study of folate-targeted vinblastine
(EC0905, Endocyte) was conducted in dogs with biopsy-con-
firmed, FR-positive InvUC [103]. As in all clinical trials in
dogs at our institution, the study was approved by the Purdue
Animal Care and Use Committee, and informed pet owner
consent in writing was required for all participating dogs.
The maximum tolerated dose (MTD) of EC0905 in dogs
(0.25mg/kg IV weekly) was determined with neutropenia
occurring at higher doses. With informative laboratory dog
work done before the pet dog trial, only 10 pet dogs with
InvUC were required to establish the MTD. In 10 dogs, the
tumor responses included partial remission (≥50% reduction
in tumor volume) in 5 dogs and stable disease (<50% change

in tumor volume) in 4 dogs. The tumor response could not be
determined in one dog. With these initial promising findings,
a more extensive trial of folate-targeted therapy in dogs with
InvUC is ongoing. Demonstrating the benefit in dogs could
offer the justification to expand the human application of
folate-targeted therapy to bladder cancer, as well as the other
cancers currently being investigated.

4.2. Epigenetic-Based Therapies—Demethylating Agent
Trials. Another example of targeted therapy research in
canine bladder cancer with a translational goal involves drugs
aimed at epigenetic changes that lead to cancer development
and progression in the absence of DNA mutations [104–
108]. One of the key epigenetic events is the aberrant methyl-
ation in the promoter region of tumor suppressor genes,
resulting in gene silencing. Aberrant DNA methylation has
been identified in multiple genes in human InvUC [107,
108]. DNA methyltransferase 1 (DNMT1), which is a key
player in the aberrant methylation process, has been noted
to be overexpressed in human and canine InvUC [73, 109].
When considering the design of clinical trials of demethylat-
ing agents in humans, key valuable information that could be
rapidly obtained from dogs includes efficacy, safety, and
treatment scheduling. With the need for this information, a
clinical trial of the demethylating agent, 5-azacitidine (5-
AzaC), in dogs with InvUC was conducted [74]. Doses were
escalated in 2 different dose schedules (daily treatment for 5
sequential days for one cycle per month or daily treatment
for 5 sequential days for two cycles per month). Of 18 dogs
evaluable for tumor response, partial remission, stable dis-
ease, and progressive disease were observed in 4 (22.2%), 9
(50.0%), and 4 (22.2%) dogs, respectively. Although remis-
sion is certainly preferred, durable stable disease (i.e., cancer
control) of bladder cancer can also be a very beneficial
response. The MTD in each treatment schedule was defined,
with neutropenia occurring at higher doses. Consistent 5-
AzaC urine levels (205–857ng/ml) were measured.

While 5-AzaC had promising activity in dogs with
InvUC, the route of administration (subcutaneous injection)
required in-hospital treatment. Zebularine, an orally bio-
available cytidine analog with demethylating activity that
has been extensively studied in vitro, circumvents the need
for an intermittent in-hospital dosing schedule and allows
for convenient daily dosing. The ease of use and flexible dose
scheduling of an orally bioavailable demethylating agent
offers advantages over injectable agents; thus, zebularine
was investigated in laboratory dogs and tumor-bearing dogs
[98]. Based on extrapolation from in vitro data and data in
rodents, laboratory dogs were initially treated with 8mg/kg
to determine plasma pharmacokinetics and then daily with
4mg/kg to determine toxicity. Interestingly, and unexpect-
edly based on previously published in vitro and in vivo
rodent data, daily treatment with 4mg/kg zebularine resulted
in severe neutropenia that was resolved with discontinuation
of the drug, but required supportive care. Maximum plasma
concentrations following treatment with 8mg/kg and
4mg/kg were 23± 4.8μM and 8.6± 1.4μM, respectively,
which were much lower than concentrations previously
reported in vitro and in vivo. Neutropenia was not observed
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in a cohort of three tumor-bearing dogs treated with 4mg/kg
once every 21 days, including two dogs with InvUC.

The study of zebularine in laboratory dogs and tumor-
bearing dogs demonstrates the utility of studies in a canine
model, as it was quickly established that zebularine concen-
trations previously achieved in vitro and in vivo in rodents
could not be achieved safely in a veterinary clinical setting
in dogs. However, two dogs with InvUC experienced stable
disease for 12 and 18 weeks while receiving treatment with
zebularine (4mg/kg q21 days), suggesting a clinical benefit
even at doses much lower than those previously reported
in vitro and in vivo in rodents and primates [109]. A subse-
quent dose escalation trial in dogs with InvUC is in progress
with the aim of defining a tolerable, long-term daily treat-
ment schedule, with promising results to date. These studies
demonstrate the promise for demethylating treatment strate-
gies in InvUC as well as findings in dogs that would be
expected to be translated into beneficial effects in humans
and inform the design of human clinical trials.

5. Challenges to Be Met in Applying Naturally
Occurring Canine Cancer Models

There is compelling evidence for the value of studies of pet
dogs with naturally occurring cancer as a complementary
animal model for improving the success rate in human trials,
thus helping reduce the morbidity, mortality, and health care
cost associated with cancer treatment, as well as greatly
reducing the overall cost of the drug development process.
There are, of course, challenges to be met in applying pet
dog models. First, the characterization of canine cancer at
the molecular level is in the early stages. While it is further
along in some cancers, such as InvUC [19, 58, 71–73, 75,
110], than in others, there is still much work to be done. Sec-
ond, the “canine model system” has not yet been fully tested
to prove that the outcome in dog studies will predict the out-
come in human studies. There is early evidence of this [88,
94], and more work is in progress, but, currently without this
proof, major pharmaceutical companies have hesitated to
invest in canine studies. And, without the funding, the proof
of concept work in dogs cannot be done. An appropriately
powered, randomized three-arm treatment trial in dogs,
depending on the agent being tested and numbers of dogs
needed, would cost a fraction of a similar human trial, but
would cost much more than a laboratory rodent study. In
addition, clinical trials in dogs can take a few months to
two to three years, while the rodent studies are accomplished
more quickly. Third, the number of veterinary clinician sci-
entists and programs with the requisite skills, knowledge in
comparative oncology, and specific tumor caseload would
be required to grow should the demand for comparative
oncology trials escalate. In addition to academic programs,
there are other programs in place to facilitate canine clinical
trials including the Comparative Oncology Trials Consor-
tium directed by the Comparative Oncology Program at the
National Cancer Institute [111]. Another consortium, the
Canine Comparative Oncology Genomics Consortium
(CCOGC) [112], sponsored by the National Cancer Institute,
the American Kennel Club Canine Health Foundation, the

Morris Animal Foundation, and Pfizer, is facilitating access
to tumor and normal tissues and other samples from dogs
through a biospecimen repository.

With the tremendous benefits to be gained from the full
utilization of naturally occurring canine animal models of
cancer, the challenges described above can certainly be met
with a concerted effort in this area. As therapeutic drugs con-
tinue to become specifically targeted or engaged in complex
interactions with the intact immune system, naturally occur-
ring canine models that replicate key features of human can-
cer (cancer heterogeneity, molecular complexity, invasion,
metastasis, and immune cell response) are uniquely posi-
tioned for the investigation of new therapeutic drugs and to
complement work in traditional animal models. With the
reports of immune checkpoints in canine tumors that are
critical in human cancer, there is considerable interest in
developing canine-specific therapeutic antibodies to block
these checkpoints [62, 113–116]. The promise of compara-
tive oncology research to improve the success of human clin-
ical trials has never been more important.
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