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Overwintering success is an important determinant of arthropod populations that must
be considered as climate change continues to influence the spatiotemporal population
dynamics of agricultural pests. Using a long-term monitoring database and biologically
relevant overwintering zones, we modeled the annual and seasonal population dynamics
of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability
zones throughout North America using four decades of soil temperatures: the southern
range (able to persist through winter), transitional zone (uncertain overwintering survi-
vorship), and northern limits (unable to survive winter). Our model indicates H. zea
population dynamics are hierarchically structured with continental-level effects that are
partitioned into three geographic zones. Seasonal populations were initially detected in
the southern range, where they experienced multiple large population peaks. All three
zones experienced a final peak between late July (southern range) and mid-August to
mid-September (transitional zone and northern limits). The southern range expanded
by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other
zones are expected to decrease in the future. These changes suggest larger populations
may persist at higher latitudes in the future due to reduced low-temperature lethal
events during winter. Because H. zea is a highly migratory pest, predicting when popu-
lations accumulate in one region can inform synchronous or lagged population develop-
ment in other regions. We show the value of combining long-term datasets, remotely
sensed data, and laboratory findings to inform forecasting of insect pests.
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Animal population dynamics often reflect large-scale climatic variations (1). For exam-
ple, many insects have short annual cycles, with elevated population densities during
warm summer months (2, 3), while populations of other animals respond to long-term
climatic oscillations (4, 5). Thus, understanding how animal population dynamics are
influenced by climatic conditions has been an important research theme in modern
ecology.
Understanding the seasonality of pest population dynamics is essential to imple-

menting integrated pest management (IPM) strategies to reduce dependence on pesti-
cide applications and preserve ecosystem services while ensuring food security (6, 7). In
this context, it is important to understand how long-term trends in pest population
dynamics are predicted by climatic seasonality as climate change alters species ranges
(8). For many insects, winter temperatures are one of the fundamental abiotic factors
limiting range expansion into higher latitudes or elevations. With climate change,
warmer winters may increase the land area suitable for insect overwintering, which, in
turn, is predicted to increase crop damage and pesticide use and resistance in some spe-
cies (9, 10). Therefore, it is important to document baseline trends to track annual or
interannual climate change effects on pests prior to the expansion of overwintering
ranges. Here, we investigate the impact of a changing climate on seasonal population
dynamics of corn earworm, Helicoverpa zea (Boddie, 1850), in North America by using
long-term monitoring datasets, remotely sensed weather data, and laboratory findings.
H. zea is an excellent study organism for observing gradual effects of climatic season-

ality on pest population dynamics because its geographic distribution spans a broad
temperature gradient in North America. It is a polyphagous, highly migratory, and
multivoltine lepidopteran pest of crops such as maize, cotton, soybeans, and vegetables,
and feeds on many noncrop hosts (11–13). H. zea pupae undergo a facultative winter
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diapause that enables them to overwinter underground below
the 40°N latitude in North America (14, 15). It is generally
accepted that few individuals overwinter above this 40°N lati-
tude due to lethal winter temperatures (14). However, its sum-
mer range expands north to approximately the 52°N latitude
(14). Seasonal H. zea populations have been monitored across
broad regions of North America over decades to estimate their
activity and potential for crop infestation (16). This long-term
dataset provides opportunity to gain insight into the relation-
ship between climate, seasonal population dynamics, and range
expansion.
Prior efforts to model H. zea overwintering biology that

relate laboratory estimates of low-temperature tolerance thresh-
olds to climate data have agreed with historical reports that suc-
cessful overwintering is limited to latitudes below 40°N latitude
(17). However, there have been no reported models directly
linking H. zea observational data with remotely sensed data to
determine the relationship between climatic seasonality and the
continental-scale population dynamics of this important pest
species. Remotely sensed data provide measurements of envi-
ronmental processes that enable large-scale modeling efforts not
previously possible. Connecting temperature-mediated overwin-
tering zones to long-term H. zea population datasets and
remotely sensed data can provide a foundation to monitor and
project population changes under current and future climate
change scenarios.
Evidence supports that in-season temperature differences

directly affect H. zea population dynamics in conjunction with
host phenology and cropping patterns and that they do so dif-
ferently at a regional scale (18). We know populations migrate
northward in a somewhat predictable way. Using a combina-
tion of radar and pollen identification, researchers have con-
firmed that spring H. zea populations undergo long-distance
dispersal each year (19–21). There is abundant evidence that
H. zea does not effectively overwinter in the more northerly
regions, where it is a later-season pest in most years (14, 22).
Based on this, we expect the timing and severity of problems in
northern regions to be influenced by the southern H. zea popu-
lations that develop and are sources of migrants. Other within-
season factors can also affect regional population dynamics.
These include but are not limited to cropping patterns and
practices, host phenology, spring and summer temperatures,
precipitation, and pest management interventions (23–26). We
also expect overwintering survival, especially in marginal areas,
to vary depending on winter temperatures. This variation may
affect intra- and interregional dynamics by altering timing and
magnitude of population development and the role of migra-
tion from core overwintering areas. On this basis, we investi-
gated the relationship between predicted H. zea overwintering
success based on soil temperatures and continental-scale varia-
tion in its population dynamics.
Because winter soil temperature is a critical determinate of

overwintering survival (27), we investigated the relationship
between overwintering conditions and historical H. zea popula-
tion dynamics. We show how changes in climate may translate
into a projected shift in the overwintering range of H. zea. To
do this, we integrated long-term H. zea adult moth abundance
datasets with laboratory data on low-temperature survival
thresholds for diapausing pupae and remotely sensed tempera-
ture data. We used these data to identify three broad zones
throughout North America representing likely overwintering
survival based on soil temperature suitability. These zones are:
the southern range, where overwintering success is predictable;
transitional zone, where overwintering success is expected to

vary based on winter temperatures; and northern limits, where
lethal winter temperatures are expected to prevent survival. We
then constructed generalized additive mixed models (GAMMs)
with varying hierarchical structure (no structure to global- and
group-level structure) connecting H. zea population dynamics
to the overwintering zones.

We hypothesized that H. zea population dynamics will vary
based on broad zones of soil temperature suitability. Specifically:
Populations in the southern range, where overwintering success
is predictable, will increase and reach higher levels earlier in the
season compared with both the transitional zone, where overwin-
tering success is uncertain, and the northern limits, where lethal
winter temperatures are expected to prevent survival. Because
H. zea is migratory, we expected to see a signal of seasonal north-
ward migration in the form of a predictable increase in northern
populations following peak abundance in the south. Lastly, we
forecast how the three overwintering zones may change in area
based on climate change scenarios. Our results highlight the
potential for range expansion and changes in the seasonal abun-
dance of this important crop pest due to increasing temperature
suitability in northern latitudes as the climate changes. We visu-
ally outline our approach in Fig. 1.

Results

Overwintering Zone Classification. We examined the widely
accepted northern overwintering limit of the 40°N latitude and
found that there is significant spatial and temporal variation
around this line (Fig. 2A). A 40-y averaged overwintering map
constructed based on remotely sensed soil temperature pro-
jected the transitional zone to be largest in area, followed by
the southern range and then the northern limits (Fig. 2B).
Over the past 40 y, changes in temperature predict a consistent
expansion of the southern range and transitional zone and a
decrease in the northern limits after 2000 (SI Appendix, Fig.
S1). These changes are visualized in Movie S1.

We tested the validity of our overwintering zones using the
Akaike information criterion (AIC) and Bayesian information
criterion (BIC). Both overwhelmingly selected a model parti-
tioning of 40-y averaged overwintering into three zones as com-
pared with other models tested including the 40°N latitude (SI
Appendix, Table S1). This result indicates the importance of a
transitional zone to reflect winter soil temperature uncertainty
between the overwintering southern areas and the lethal north-
ern areas and suggests a temporal lag effect of winter soil tem-
peratures on H. zea population dynamics.

Using the three overwintering zone partitions in the final hier-
archical models, we then show that H. zea population dynamics
are structured with a global and three, similarly smoothed, over-
wintering zone group levels (model GS; SI Appendix, Table S2).
Acknowledging this hierarchy improved model fit, increasing
adjusted R-squared values from 0.13 (model N, a model with no
structure) to 0.30 (model GS; SI Appendix, Table S3). Model
predictions were more certain about population dynamics in the
northern limits and southern range than the transitional zone (SI
Appendix, Table S4). This hierarchical model (SI Appendix,
Table S2) had the best or second-best predictive ability for
both the northern limits and transitional zone but not the south-
ern range, where a model (model S; SI Appendix, Table S5)
with similarly smoothed group levels only was the best predictor.
H. zea sample distributions and all other model summaries
are reported in SI Appendix, Figs. S2 and S3 and Tables S6
and S7. A latitude–longitude–year tensor and spatial correlation
of remaining residuals are shown in SI Appendix, Figs. S4 and S5.

2 of 8 https://doi.org/10.1073/pnas.2203230119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203230119/-/DCSupplemental


H. zea Population Dynamics. H. zea populations displayed non-
linear trends between and within years (Fig. 3 and SI Appendix,
Table S2). Overall, three clear interannual population peaks
occurred in 1995, 2004, and around 2010 (Fig. 3A). The south-
ern range had more dynamic population booms and busts when
compared with the other two zones and the populations in the
transitional zone were more dynamic than in the northern lim-
its. Averaged across zones, intraannual population dynamics
were characterized with three peaks roughly at weeks 18, 35,
and 42 (Fig. 3B). This global trend is divided into the

overwintering zones, with only the southern range model fits
exhibiting early and midseason peaks around week of year 18
and 32, respectively (Fig. 3B). The northern limits and transi-
tional zone models exhibited one midseason peak around week
35, which aligns with a northward temporal lag across the zones,
with the southern range peaking first followed by peaks in the
transitional zone and northern limits 4 to 5 wk later. Southern
range annual population peaks were highly positively correlated
with the transitional zone (rho = 0.75; SI Appendix, Fig. S6A)
and northern limits peaks (rho = 0.49; SI Appendix, Fig. S6B).

Fig. 2. Overwintering zone classification based on a 40-y averaged modeled soil temperature (0 to 28 cm). (A) How often year-to-year changes occur
between the three overwintering zones. The scale represents the number of between-year changes between the three zones. For example, if a pixel
switched between the northern limits and transitional zone between the years 2001 and 2002, we assigned a value of 1 and summed up all between-year
changes for the available data. (B) The 40-y averaged zone classification. Grey dashed lines indicate the location of the widely accepted northern overwinter-
ing limit of the 40°N latitude.

Fig. 1. Overview of our modeling approach. We constructed overwintering zones based on laboratory cold tolerance studies with remotely sensed climatic
reanalysis data. Then, we partitioned H. zea population dynamics based on the overwintering zones. Lastly, we projected the H. zea overwintering range into
the future by relating current soil and air temperature data and predicting future soil temperature using future air temperature conditions.
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And transitional zone yearly peaks were also highly correlated
with northern limits yearly peaks (rho = 0.81; SI Appendix, Fig.
S6C). Southern range populations were higher throughout the
year on average than in the other regions.

Future Change of Overwintering Zones. To forecast changes in
overwintering zone areas in response to climate change, we first
predicted soil temperature from future air temperatures until
2099 using a simple GAM (adjusted R-squared: 0.87) modeling
the relationship between air and soil temperature (SI Appendix,
Fig. S7). Then, we used this relationship to visualize forecasted
changes in overwintering zones based on projected soil temper-
ature (Fig. 4). These forecasts predict an expansion of the
southern range from 34 to 56% and a major decrease in the
northern limits from 39 to 11% of the proportional area with
temperature change into the next century.

Discussion

Our findings, using one of the largest spatiotemporal datasets
compiled for a migratory agricultural pest in North America,
are consistent with multiscale climatic seasonality of H. zea

population dynamics at scales ranging from continental to three
distinct zones across North America that are expected to differ
in overwintering success. Here, we linked long-term observa-
tional data on H. zea adult activity to overwintering zones
defined by remotely sensed soil temperature and laboratory
survival data. Our spatially explicit approach refines the histori-
cally proposed 40°N latitude limit for overwintering popula-
tions (14, 15), shifting it to 35°N latitude in the southwestern
United States, a distance of ∼555 km (Fig. 2B). This suggests a
need to reassess this overwintering zone division, as it is a com-
mon spatial divide used for established and potentially invasive
insect pest species. Our models describe temporally lagged asso-
ciations across zones of overwintering success between winter
soil temperature and H. zea population dynamics, consistent
with migration from southern areas acting as a driver of
dynamics north of their overwintering range. This result agrees
with studies focused on northward H. zea migration in North
America (19–21). The specific areas of these zones are predicted
to change based on climatic fluctuation, both in terms of large-
scale climatic patterns (e.g., sea surface temperature anomalies)
and anthropogenically induced climate change. Our results sug-
gest that the spatial extent of overwintering suitability has been
changing over the past decade with an expansion of southern
range area (SI Appendix, Fig. S1).

A surprising outcome of this work was the selection of the
40-y average as the most meaningful predictor of H. zea popu-
lation dynamics. If overwintering mortality is the key factor
driving population dynamics, we would expect conditions
within the preceding winter to be most important. Logically,
these effects should be strongest in areas where the frequency of
change between suitable and unsuitable diapause conditions is
high, specifically at the interface between the transitional zone
and northern limits (Fig. 2A). However, it is reasonable to
expect that other factors beyond overwintering mortality also
play a role governing H. zea populations. One clear example is
the role of host crop availability in agricultural landscapes,
which can affect the abundance of this pest. The effects of
annual cropping cycles are strongest in the southern United
States, where a sequence of suitable H. zea hosts are grown
each year (23–25, 28). As a result, fluctuations in the abun-
dance and composition of host crop acreage over time may be
another explanation for the limited effect of annual winter
temperatures.

Our analyses of moth-trapping data revealed H. zea popula-
tion dynamics are hierarchically structured with overall and
nested effects between the overwintering zones. Such changes
in population patterns based on spatial scale are common
in ecology (29). Without acknowledging this, researchers and
practitioners risk erroneous conclusions about population
dynamics among spatial scales (30). H. zea are highly migra-
tory, capable of dispersing at least 600 to 1,000 km by using
seasonal wind patterns (19, 31). Thus, population dynamics of
one region likely influence the dynamics in distant regions,
with practical consequences for pest management targeting
H. zea. Hence, accounting for migration is critical in predicting
when and where H. zea populations proliferate at the continen-
tal scale.

Our analysis showed that, except for 2010, when all regions
experienced an uptick in H. zea densities, population dynamics
were not synchronized between regions interannually. This sug-
gests that regional abiotic and biotic factors not included in our
models likely explain the limited within-region descriptive
capability of our coarse models. These differences may have
resulted from changes in the agricultural production system,

Fig. 3. H. zea population dynamics among (A) and within (B) years. Figures
are final model predictions (model GS) for year and week of year, respec-
tively. Solid black lines represent the global (or species range) and dashed
lines represent the population dynamics within the overwintering zones.
Gray shaded areas represent model uncertainty.
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abiotic conditions, and/or landscape composition. For exam-
ple, the natural population cycles among years could have
been disrupted by adoption of Bacillus thuringiensis (Bt) maize
and cotton starting in 1996 (26). Although we did not have
sufficient historical crop production data to illustrate the dis-
ruptive effect of Bt adoption on H. zea, Bt crops are known to
reduce the probability of crop injury by both H. zea (26) and
Helicoverpa armigera, a cosmopolitan pest species in the same
genus that fills a similar niche (32). Although the Bt crops
have been shown to suppress polyphagous lepidopteran pests,
the longevity of this benefit is a significant concern. Recent,
widespread evolution of Bt resistance in H. zea populations,
now common in all overwintering zones, may alter the
continental-scale population dynamics and undermine the
benefit of damage suppression in the eastern United States
(27, 28, 33–35). Clearly, annual changes in population
dynamics reported in this study must be accounted for to
understand the long-term effects of widespread Bt adoption on
H. zea.
Land management practices are constantly changing, impact-

ing overall landscape suitability for many insect pest species
(36–38). The abundance of H. zea habitat within overwintering
zones varies greatly, and both regional and annual variability in
abundance of key host crops (maize, soybean, and cotton) may
explain additional noise in our dataset (39).
Within a given year, our results support the importance of

knowing when southern range populations of H. zea build and
adults migrate into the two northern regions (40). Our simple
interannual peak correlations predict temporally lagged, strong
positive associations between overwintering zones (rho = 0.49
to 0.81; SI Appendix, Fig. S6), which would enable predictions
of when H. zea migrants are expected to reach the transitional
zone and northern limits, given the timing of population devel-
opment in the southern range. Interregion monitoring efforts
could improve smaller-scale tracking efforts within individual
H. zea regions (16). For a migratory species like H. zea, effec-
tive monitoring at the continental scale is necessary to have the
greatest management effect (41). This requires a coordinated

network of stakeholders, from growers to extension agents and
crop advisors, actively communicating among crop regions.

With climate change, seasonal patterns are changing. As a
result, H. zea and other animal overwintering distributions are
being influenced (42). While there is limited understanding of
future soil temperatures, our coarse predictions of future H. zea
overwintering zones (Fig. 3) suggest that the historical drivers
of population abundance and distribution will likely change
with warming winter temperatures. An important aspect of
the transitional zone’s forecasted northward shift (Fig. 4) is
increased year-to-year uncertainty in overwintering success and,
consequently, the potential for damaging H. zea populations.
Successful overwintering of H. zea populations at higher
latitudes due to warmer winters can be expected to affect the
timing and intensity of populations in regions currently only
accessible to migrants that arrive later in the season. Histori-
cally, the US maize belt has been too cold for this species to
overwinter (14, 27). However, warmer winter temperatures
expected in the future may allow early-season population
increases resulting from increased overwintering success and
annual migration from the southern range (Fig. 3) that may
result in increased pesticide use and yield loss in northern maize
production regions. Even though some regions experience fre-
quent zone changes throughout the years (Fig. 2A), our model
selection criteria selected for the 40-y averaged zone as com-
pared with the year-to-year overwintering zones. This suggests
that there are temporally lagged associations between yearly
zone classifications at this level. However, it is reasonable to
expect that year-to-year zone change may be important, and
this merits further investigation.

In interpreting our results, it is important to note that we
used a simple definition of overwintering success. We did not
directly model overwintering survival; rather, we inferred sur-
vival based on seasonal population dynamics. A more compre-
hensive model including other survival-limiting factors such as
lethal event duration (e.g., time spent below 0 °C) would
increase model accuracy. Whereas the relationship between
overwintering temperatures and insect overwintering success

Fig. 4. Projected overwintering zone change from historic and current averages to 2099. Area was estimated using NASA’s Earth Exchange Global Daily
Downscaled Climate Projection under RCP 8.5 adjusted to soil temperatures. Because these data were derived from projected air temperatures, they only
provide a coarse understanding of potential overwintering zone shift.
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has been shown in other insects (17, 42–44), the ability to fore-
cast distributions of species that overwinter in buffered micro-
habitats such as soil is limited due to lack of available relevant
climate data. We used a simplified relationship between air and
soil temperature to forecast the impact of climate change on
our overwintering zones, and careful interpretation is needed
for our projected overwintering zones. Further development of
global, high-resolution datasets is needed to predict species dis-
tributions for organisms that are limited by winter soil tempera-
ture. Our study highlights the need for research modeling of
future soil temperatures and their relationship to both host
range and population dynamics of agricultural pests, including
H. zea. Developing biologically relevant models that illuminate
how climate change may impact the overwintering success of
insects is imperative for sustainable crop protection that allevi-
ates the negative impacts of pesticides on rural communities
and the environment.

Materials and Methods

Overwintering Zone Classification. To determine where H. zea can overwin-
ter throughout North America, we used experimental thresholds generated by
Morey et al. (27) that show diapausing H. zea pupae had significantly higher
mortality below 0 °C and minimal mortality at 5 °C. Although many variables
influence overwintering success (45), including time spent at a given tempera-
ture and the interaction with soil moisture, we assume averaged winter soil
temperature to be a suitable proxy for complex interactions between soil temper-
ature and diapause success, in that decreasing temperatures imply increasing
probability of mortality. We used this cold tolerance survival as a conservative
threshold to construct three broad survival zones:

Southern range, where the mean minimum soil temperature in winter is
above 5 °C;
Transitional zone, where the soil temperatures range from 0 to 5 °C;
Northern limits, where the soil temperature is below 0 °C.

These zones reflect areas where H. zea is likely to overwinter (southern
range), potentially overwinter given the specific year (transitional zone), and
unlikely to overwinter (northern limits). The transitional zone is a zone of uncer-
tainty between the two major regions that accounts for variation between zones
based on winter soil temperatures and other abiotic and biotic factors limiting
overwintering survival.

For map construction, we extracted mean minimum winter (December to
February) soil temperature to approximate the winter temperature extremes
experienced from the Copernicus Climate Change Service’s ERA5-Land climate
reanalysis database (46). This database provides hourly estimates of various cli-
matic variables from 1981 to the present at a spatial resolution of 0.1 × 0.1°
(native resolution of 9 km). To reflect the variability of where H. zea diapause as
pupae in the soil profile across the continent and the available soil depths within
the climatic reanalysis dataset, we averaged soil temperatures from 0 to 28 cm
below the surface (14). We then binned cell values as one of the three zones for
each year based on the temperature ranges discussed above.

To visualize interannual changes in the three overwintering zones, we con-
structed a raster with 41 bands representing the zones from 1981 to 2021 and a
40-y averaged zone map (Fig. 2B). We then produced a static map (Fig. 2A) and
video to illustrate how the area of each zone varies over time (Movie S1).

H. zea Database Construction. Historical H. zea data were retrieved from
public and private organizations throughout the United States and Canada (SI
Appendix, Fig. S2). The data consist of georeferenced periodic adult H. zea
counts caught in 1,986 unique pheromone and black light traps located in
37 US states and one Canadian province (47). The combined dataset included
over 100,000 unique H. zea observations from the early 1980s to 2021. Traps
were checked either daily or weekly, although some were checked less fre-
quently. To homogenize the structure between all sources, we summed up all
counts to the International Organization for Standardization (ISO) 8601 system’s
week of year, including a recurring leap week. For traps checked irregularly and

for longer than 1 wk, we divided the H. zea count by the number of days the
trap was operational and multiplied by seven to have an approximate weekly
rate. Pheromone trap lures were changed approximately every 2 wk. Trap loca-
tions were biased toward the eastern seaboard, where H. zea is a persistent pest
of multiple crops; however, trap locations from several western states were also
included (SI Appendix, Fig. S2). We were able to account for differences between
pheromone and black light trap catches by including trap location and trap type
as a random effect in our analyses. Trapping usually happens during season and
therefore a limitation of this dataset is it is unlikely to capture nongrowing sea-
son population dynamics. We have provided density plots for H. zea count, week
of the year, and year (SI Appendix, Fig. S3).

Statistical Analysis. To evaluate how H. zea population dynamics vary
between the overwintering zones, we constructed hierarchical GAMMs. These
models allow for the relationship between the dependent and independent vari-
ables to be smoothed and thus allow nonlinear relationships (48). This flexibility
leads to an easy extension into hierarchical modeling where the smoothed rela-
tionships vary between groups (49).

To test the overwintering zone structure, we constructed six models: a model
with three, 40-y averaged overwintering zones; a model with two 40-y averaged
overwintering zones (dissolving the transitional zone into the southern range);
two seasonal models with the same structure as the 40-y averaged models; a
model that reflected the 40°N latitude split between overwintering and nonover-
wintering zones; and a model with no partitioning at all. Each model included
the following independent variables: week of year and year as fixed effects, and
trap location and their respective zone partitioning as random effects. We
selected the best fit model based on AIC and BIC.

We fitted GAMMs to H. zea count data with the following variables: week of
year, year, longitude/latitude, trap location, trap type, and overwintering zone.
These variables were specified differently based on a hierarchical structure, as
explained below. All models had a space–time tensor of two-dimensional lati-
tude and longitude smooths and one-dimensional year term (using Gaussian
process bases), which models the spatial and yearly temporal component of
H. zea counts to account for autocorrelation. We used the Tweedie distribution as
discussed in SI Appendix Text, S1.

To test the hierarchical nature of the overwintering zones, we constructed six
models with a varying structure following methods similar to other studies
(30, 49). We constructed two models with a global smoother (the entire dataset
extent relationship) and group-level trends that were either similarly smoothed
(group-level relationships are modeled dependent on each other; model GS) or
differently smoothed trends (group-level relationships are modeled indepen-
dently; model GI); two models without a global smoother but with group-level
trends either similarly or differently smoothed (models S and I, respectively);
one model with a global-level smoother only (model G); and a model with no
hierarchy (model N). This allowed us to test for multiscale H. zea population
dynamics with two spatial levels: the entire dataset level (e.g., global trend) and
three nested overwintering zones (e.g., group-level trends).

All models were verified via diagnostic plots. We ensured basis dimensions
were large enough to capture nonlinear trends (SI Appendix, Tables S8–S10).
We used null space penalization to test the presence of nonlinear trends in the
model (48, 50). The final model was chosen using five model selection criteria
to account for discrepancies between criteria (51). We calculated the AIC and BIC
from models built with all data followed by 10-fold cross-validation using ran-
domly sampled training (70%) and testing (30%) splits of weekly moth counts to
test the predictive ability of all models. We calculated out of sample deviance
(49) and root-mean-square error between known testing data and model predic-
tive values and averaged all fold model adjusted R-squared values together. The
final model had the most support from all selection criteria.

We used Pearson correlation of the peak week of year range per zone as
determined by the overall GAMM to understand the relationship between H. zea
peak populations among the overwintering zones. This allowed us to associate
the peak abundance week for each zone in each year as a rough estimate of
interzone correlations.

To demonstrate potential overwintering zone change driven by future climate
change, we constructed future soil temperature maps based on the most
extreme representative concentration pathway (RCP 8.5). Due to limited avail-
ability of future soil temperature projections, we used a GAM (family: Gaussian;
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link: identity) with historical soil and air temperature as the dependent and
independent variables, to predict future mean minimum winter soil temper-
ature for the years 2022 to 2047, 2048 to 2073, and 2074 to 2099. We
used NASA’s Earth Exchange Global Daily Downscaled Climate Projection
(52), which is a dataset composed of 22 different climatic scenarios which we
averaged with equal weighting together to produce ensemble predictions
for historical and future air temperatures and the ERA5 dataset for historical
soil temperatures at 0- to 28-cm depth. We assumed a relationship between
air and soil temperature (53, 54). However, we acknowledge that several
factors can also influence soil temperatures, including snow cover, litter
cover, and soil type (55–57). Hence, our approach likely over- and underesti-
mates the overwintering zones in some areas. As such, these maps were gen-
erated to provide a visual illustration and represent a coarse understanding
of how H. zea overwintering zones may change in the future. All software
used is discussed in SI Appendix.

Data, Materials, and Software Availability. The dataset and modeling
script reported in this article have been deposited in Dryad, https://doi.org/10.
5061/dryad.m0cfxpp5x (47).
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