organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4,6-Trimethyl-3,5-bis[(phenylcarbonothioyl)sulfanylmethyl]benzyl benzenecarbodithioate

M. Kannan, V. Ramkumar and R. Dhamodharan*

Department of Chemistry, IIT Madras, Chennai, TamilNadu, India Correspondence e-mail: damo@iitm.ac.in

Received 21 April 2010; accepted 30 April 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.059; wR factor = 0.188; data-to-parameter ratio = 21.4.

In the title compound $C_{33}H_{30}S_6$, the three pendant methylene benzodithioate groups lie to one side of the central benzene ring in a *cis-cis-cis* 'tripod' arrangement. The dihedral angles between the central benzene ring and the three pendant rings are 72.54 (4), 89.68 (4) and 86.74 (4)°. In the crystal structure, one of the benzene rings is disordered over two orientations in a 0.559 (13):0.441 (13) ratio.

Related literature

For applications of the title compound, see: Stenzel-Rosenbaum *et al.* (2001); Chong *et al.* (1999); Takolpuckdee *et al.* (2005). For a related structure, see: Li *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{33}H_{30}S_6\\ M_r = 618.93\\ \text{Monoclinic, } P2_1/n\\ a = 9.5698 \ (3) \\ \text{\AA}\\ b = 21.7668 \ (10) \\ \text{\AA}\\ c = 15.3823 \ (8) \\ \text{\AA}\\ \beta = 94.819 \ (2)^\circ \end{array}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\rm min} = 0.841, T_{\rm max} = 0.915$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.188$ S = 1.017773 reflections 363 parameters $V = 3192.9 \text{ (2) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.45 \text{ mm}^{-1}$ T = 298 K $0.40 \times 0.22 \times 0.20 \text{ mm}$

23638 measured reflections 7773 independent reflections 3544 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

 $\begin{array}{l} 1 \mbox{ restraint} \\ H\mbox{-atom parameters constrained} \\ \Delta \rho_{max} = 0.68 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.43 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT-plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5411).

References

Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chong, Y. K., Le, T. P. T., Moad, G., Rizzardo, E. & Thang, S. H. (1999). Macromolecules, 32, 2071–2074.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Li, J.-R., Yan, Z., Du, M., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2002). Acta Cryst. E58, 0243–0244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stenzel-Rosenbaum, M., Davis, T. P., Chen, V. & Fane, A. G. (2001). J. Polym. Sci. A, 39, 2777–2783.
- Takolpuckdee, P., Mars, C. A., Perrier, S. & Archibald, S. J. (2005). *Macromolecules*, 38, 1057–1060.

Acta Cryst. (2010). E66, o1382 [doi:10.1107/S1600536810016028]

2,4,6-Trimethyl-3,5-bis[(phenylcarbonothioyl)sulfanylmethyl]benzyl benzenecarbodithioate

M. Kannan, V. Ramkumar and R. Dhamodharan

Comment

The title compound $C_{33}H_{30}S_6$ is a tri-functional dithioester derivative, which is used as a chain transfer agent (CTA) (Chong *et al.* 1999) in reversible addition fragmentation chain transfer (RAFT) polymerization. Being a tri-functional unit it can form the core of star polymer (Stenzel *et al.* 2001) when used as a CTA. Most of the reported mono functional CTAs are liquid and hence, very few single crystal XRD reports are available (Takolpuckdee *et al.* 2005). In the case of the multi-functional CTAs are characterized by other techniques, their single crystal XRD reports are not available. Here we report the title compound which is one such multi functional CTA, crystallised from hexane.

The title compound C_{33} H_{30} S_6 adopts a *cis,cis,cis*- conformation where the three pendant arms (methylene benzodithioate) protrude on one side of the mean plane of the central benzene ring. Similar structures have been reported (Li *et al.*, 2002) where the three pendant arms (phenylthio groups) adopt *cis,trans, trans*- conformation. The replacement of phenylthio groups by benzodithioate groups flips the conformation from *cis,trans, trans* (`soft-shelled crawling turtle') to *cis,cis,cis*conformation ('tripod stand').

The dihedral angle between the central benzene ring and the three methylene benzodithioate groups are 72.54 (4)°, 89.68 (4)° and 86.74 (4)°. The torsion angle of the three methylene benzodithioate group C2—C10—S1—C11, C4—C18—S3–C19 and C6—C26—S5—C27 are 147.1 (3),-174.8 (3) and -179.3 (3)°, respectively.

Experimental

Phenyl magnesium bromide was prepared *in-situ* by adding bromobenzene (5 mmol) to activated Mg (5.5 mmol) in dry THF and the solution was refluxed for 1 h. To this reaction mixture carbon disulfide (5.5 mmol) was added over 10 min at 273 K. The mixture was allowed to warm to room temperature. Then 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1 mmol) was added over 15 min. The reaction mixture was then placed in a constant temperature bath stirred at 323 K for 3 h and concentrated under reduced pressure. The resulting crude product was dissolved in ether, rinsed thrice with water, followed by brine solution and dried over anhydrous magnesium sulfate. The crude product was purified by column chromatography using 10% ethyl acetate in hexane as the eluent to obtain the pure title compound as a bright red solid. Recrystallization of the compound from hexane gave red blocks of (I).

Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl and methylene H atoms at $U_{iso}(H) = 1.2U_{eq}(C)$ and methyl H atoms at $U_{iso}(H) = 1.5U_{eq}(C)$. C29 and C30 of one methylene benzodithiote arm is disordered over two sites in a ratio of 44° and 56°.

Figures

Fig. 1. The molecular structure of (I) with atoms represented as 30% probability ellipsoids.

2,4,6-Trimethyl-3,5-bis[(phenylcarbonothioyl)sulfanylmethyl]benzyl benzenecarbodithioate

l
l

	_3
$M_r = 618.93$ $D_x = 1.288$	3 Mg m ⁻³
Monoclinic, $P2_1/n$ Mo Ka rad	liation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn Cell param	neters from 4990 reflections
$a = 9.5698 (3) \text{ Å}$ $\theta = 2.7-22$	8°
$b = 21.7668 (10) \text{ Å}$ $\mu = 0.45 \text{ m}$	nm ⁻¹
c = 15.3823 (8) Å $T = 298 K$	
$\beta = 94.819 (2)^{\circ}$ Block, red	
$V = 3192.9 (2) \text{ Å}^3$ 0.40×0.22	$2 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	7773 independent reflections
Radiation source: fine-focus sealed tube	3544 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
phi and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999)	$h = -9 \rightarrow 12$
$T_{\min} = 0.841, T_{\max} = 0.915$	$k = -29 \rightarrow 29$
23638 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.188$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0749P)^2 + 1.3743P]$ where $P = (F_o^2 + 2F_c^2)/3$
7773 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

363 parameters	$\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*² are statistically about twice as large as those based on *F*, and *R*factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.1544 (3)	0.05751 (14)	0.5508 (3)	0.0658 (9)	
C2	0.0778 (3)	0.07500 (14)	0.4741 (2)	0.0612 (9)	
C3	-0.0514 (3)	0.10408 (14)	0.4769 (2)	0.0623 (9)	
C4	-0.1075 (3)	0.11213 (14)	0.5571 (3)	0.0684 (10)	
C5	-0.0318 (4)	0.09496 (16)	0.6348 (3)	0.0717 (10)	
C6	0.0991 (4)	0.06642 (15)	0.6311 (3)	0.0712 (10)	
C7	0.2994 (4)	0.02961 (17)	0.5468 (3)	0.0886 (12)	
H7A	0.2905	-0.0117	0.5251	0.133*	
H7B	0.3473	0.0292	0.6042	0.133*	
H7C	0.3519	0.0537	0.5086	0.133*	
C8	-0.1286 (4)	0.12723 (19)	0.3935 (3)	0.0865 (12)	
H8A	-0.0620	0.1409	0.3543	0.130*	
H8B	-0.1883	0.1608	0.4065	0.130*	
H8C	-0.1844	0.0947	0.3666	0.130*	
C9	-0.0902 (5)	0.1067 (2)	0.7219 (3)	0.1069 (15)	
H9A	-0.1512	0.1418	0.7171	0.160*	
H9B	-0.0144	0.1144	0.7654	0.160*	

H9C	-0.1419	0.0714	0.7382	0.160*	
C10	0.1363 (4)	0.06230 (16)	0.3885 (3)	0.0755 (10)	
H10A	0.0602	0.0549	0.3440	0.091*	
H10B	0.1946	0.0258	0.3935	0.091*	
C11	0.3706 (3)	0.09594 (16)	0.3015 (2)	0.0672 (9)	
C12	0.4644 (3)	0.14406 (16)	0.2717 (3)	0.0691 (10)	
C13	0.5167 (5)	0.1390 (2)	0.1906 (3)	0.0962 (13)	
H13	0.4962	0.1044	0.1565	0.115*	
C14	0.5993 (5)	0.1852 (3)	0.1602 (4)	0.1174 (18)	
H14	0.6318	0.1821	0.1051	0.141*	
C15	0.6332 (5)	0.2353 (2)	0.2109 (5)	0.1130 (18)	
H15	0.6887	0.2663	0.1902	0.136*	
C16	0.5863 (4)	0.2402 (2)	0.2916 (4)	0.0965 (13)	
H16	0.6121	0.2739	0.3264	0.116*	
C17	0.5010 (4)	0.19564 (18)	0.3221 (3)	0.0792 (11)	
H17	0.4676	0.2000	0.3768	0.095*	
C18	-0.2524 (4)	0.13992 (16)	0.5593 (3)	0.0835 (12)	
H18A	-0.2991	0.1225	0.6071	0.100*	
H18B	-0.3084	0.1309	0.5052	0.100*	
C19	-0.4041 (3)	0.24648 (15)	0.5844 (2)	0.0612 (8)	
C20	-0.4158 (4)	0.31403 (16)	0.5938 (2)	0.0637 (9)	
C21	-0.3297 (5)	0.35393 (19)	0.5555 (4)	0.1077 (16)	
H21	-0.2596	0.3391	0.5228	0.129*	
C22	-0.3475 (6)	0.4169 (2)	0.5657 (4)	0.131 (2)	
H22	-0.2877	0.4438	0.5400	0.158*	
C23	-0.4486 (6)	0.4397 (2)	0.6115 (4)	0.1091 (15)	
H23	-0.4598	0.4819	0.6168	0.131*	
C24	-0.5334(5)	0.4008 (2)	0.6498 (3)	0.0922 (13)	
H24	-0.6029	0.4164	0.6825	0.111*	
C25	-0.5189(4)	0.33840 (18)	0.6414 (2)	0.0745 (10)	
H25	-0.5791	0.3122	0.6681	0.089*	
C26	0.1786 (5)	0.04527 (17)	0.7143 (3)	0.0897 (12)	
H26A	0.2269	0.0070	0.7046	0.108*	
H26B	0.1146	0.0386	0.7591	0.108*	
C27	0.3891 (4)	0.07623 (15)	0.8423 (2)	0.0657 (9)	
C28	0.5103 (4)	0.11464 (17)	0.8736 (2)	0.0734 (10)	
C29	0.541 (2)	0.1707 (9)	0.8418 (17)	0.106 (4)	0.444 (13)
H29	0.4751	0.1884	0.8014	0.127*	0.444 (13)
C30	0.659 (2)	0.2029 (9)	0.8639 (16)	0.126 (5)	0.444 (13)
H30	0.6787	0.2388	0.8344	0.152*	0.444 (13)
C29A	0.4891 (16)	0.1805 (7)	0.8748 (12)	0.106 (4)	0.559 (13)
H29A	0 4036	0 1981	0.8556	0.127*	0.559 (13)
C30A	0.6036 (18)	0.2161 (8)	0.9062 (11)	0.126 (5)	0.559 (13)
H30A	0.5950	0.2582	0.9144	0.152*	0.559 (13)
C31	0.7455 (8)	0.1828 (4)	0.9268 (4)	0.150 (3)	
H31	0.8059	0.2089	0.9596	0.180*	
C32	0.7429 (6)	0.1233 (3)	0.9417 (3)	0.1197 (18)	
H32	0.8207	0.1043	0.9704	0.144*	
C33	0.6275 (5)	0.0890 (2)	0.9155 (3)	0.0947 (13)	
-	/		\- /	/	

H33	0.6288	0.0470	0.9264	0.114*
S1	0.23941 (10)	0.12712 (4)	0.35723 (8)	0.0838 (3)
S2	0.39012 (14)	0.02285 (5)	0.28250 (9)	0.1074 (4)
S3	-0.23485 (10)	0.22221 (5)	0.57331 (10)	0.0997 (4)
S4	-0.53785 (10)	0.19992 (5)	0.58348 (8)	0.0873 (4)
S5	0.30387 (13)	0.10484 (5)	0.74795 (8)	0.0999 (4)
S6	0.34802 (13)	0.01222 (5)	0.88751 (8)	0.0956 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0529 (19)	0.0435 (17)	0.102 (3)	-0.0026 (15)	0.012 (2)	0.0022 (18)
C2	0.0537 (19)	0.0422 (16)	0.089 (3)	-0.0039 (14)	0.0129 (18)	-0.0020 (16)
C3	0.0524 (18)	0.0427 (16)	0.092 (3)	-0.0024 (14)	0.0092 (18)	-0.0004 (17)
C4	0.056 (2)	0.0477 (18)	0.104 (3)	-0.0036 (15)	0.018 (2)	-0.0068 (19)
C5	0.072 (2)	0.056 (2)	0.089 (3)	-0.0163 (18)	0.021 (2)	-0.0066 (19)
C6	0.068 (2)	0.0529 (19)	0.091 (3)	-0.0124 (17)	-0.002 (2)	0.0078 (19)
C7	0.063 (2)	0.063 (2)	0.138 (4)	0.0059 (18)	0.002 (2)	0.006 (2)
C8	0.074 (2)	0.076 (2)	0.108 (3)	0.010 (2)	0.004 (2)	0.003 (2)
C9	0.116 (4)	0.102 (3)	0.108 (4)	-0.026 (3)	0.037 (3)	-0.016 (3)
C10	0.073 (2)	0.0525 (19)	0.104 (3)	-0.0045 (17)	0.026 (2)	-0.0056 (19)
C11	0.062 (2)	0.060 (2)	0.081 (3)	0.0077 (17)	0.0129 (18)	-0.0047 (18)
C12	0.0562 (19)	0.063 (2)	0.090 (3)	0.0115 (17)	0.0190 (19)	0.0035 (19)
C13	0.100 (3)	0.086 (3)	0.108 (3)	0.009 (2)	0.042 (3)	-0.002 (3)
C14	0.114 (4)	0.114 (4)	0.134 (5)	0.018 (3)	0.071 (3)	0.025 (4)
C15	0.082 (3)	0.087 (3)	0.175 (6)	0.005 (3)	0.047 (3)	0.028 (4)
C16	0.072 (3)	0.081 (3)	0.140 (4)	-0.009 (2)	0.024 (3)	0.002 (3)
C17	0.065 (2)	0.078 (3)	0.096 (3)	-0.001 (2)	0.015 (2)	0.000 (2)
C18	0.059 (2)	0.059 (2)	0.136 (4)	-0.0014 (17)	0.028 (2)	-0.018 (2)
C19	0.0589 (19)	0.064 (2)	0.063 (2)	0.0018 (16)	0.0155 (15)	-0.0032 (16)
C20	0.066 (2)	0.062 (2)	0.065 (2)	0.0060 (17)	0.0104 (17)	-0.0004 (17)
C21	0.118 (4)	0.069 (3)	0.145 (4)	-0.009 (2)	0.064 (3)	-0.011 (3)
C22	0.161 (5)	0.070 (3)	0.173 (6)	-0.017 (3)	0.072 (4)	0.000 (3)
C23	0.141 (4)	0.069 (3)	0.117 (4)	0.016 (3)	0.015 (3)	-0.016 (3)
C24	0.103 (3)	0.089 (3)	0.085 (3)	0.034 (3)	0.009 (2)	-0.011 (2)
C25	0.076 (2)	0.080 (3)	0.068 (2)	0.019 (2)	0.0104 (18)	-0.0026 (19)
C26	0.100 (3)	0.060 (2)	0.107 (3)	-0.026 (2)	-0.006 (2)	0.014 (2)
C27	0.083 (2)	0.0506 (18)	0.066 (2)	0.0023 (17)	0.0209 (18)	-0.0040 (16)
C28	0.091 (3)	0.061 (2)	0.067 (2)	-0.008 (2)	0.001 (2)	0.0029 (18)
C29	0.087 (9)	0.062 (5)	0.164 (14)	-0.009 (6)	-0.016 (7)	0.005 (7)
C30	0.138 (12)	0.085 (7)	0.151 (14)	-0.043 (7)	-0.015 (8)	0.009 (7)
C29A	0.087 (9)	0.062 (5)	0.164 (14)	-0.009 (6)	-0.016 (7)	0.005 (7)
C30A	0.138 (12)	0.085 (7)	0.151 (14)	-0.043 (7)	-0.015 (8)	0.009 (7)
C31	0.156 (6)	0.179 (7)	0.108 (5)	-0.087 (6)	-0.029 (4)	0.010 (4)
C32	0.106 (4)	0.160 (6)	0.087 (4)	-0.018 (4)	-0.020 (3)	-0.005 (4)
C33	0.106 (3)	0.094 (3)	0.081 (3)	-0.002 (3)	-0.011 (3)	-0.002 (2)
S1	0.0767 (6)	0.0507 (5)	0.1303 (9)	0.0011 (4)	0.0448 (6)	-0.0054 (5)
S2	0.1203 (9)	0.0640 (6)	0.1464 (11)	0.0082 (6)	0.0606 (8)	-0.0146 (7)

\$3	0.0552 (6)	0.0626 (6)	0 1851 (13)	-0.0040(4)	0.0333 (6)	-0.0255 (7)
S5 S4	0.0552 (0)	0.0020(0) 0.0743(6)	0.1307 (10)	-0.0039(5)	0.0304 (6)	0.0255(7)
85	0.0007(0) 0.1170(9)	0.0645 (6)	0.1114 (9)	-0.0320(6)	-0.0304(7)	0.0302 (6)
85 86	0.1170(9) 0.1257(9)	0.0049 (0)	0.0882(8)	-0.0192(6)	0.0304(7)	0.0302(0)
50	0.1257 (5)	0.0755 (7)	0.0002 (0)	0.0192 (0)	0.0141 (7)	0.0241 (0)
Geometric param	neters (Å, °)					
C1—C2		1.389 (5)	C1	8—H18A	0.97	00
C1—C6		1.398 (5)	C1	8—H18B	0.97	00
C1—C7		1.520 (5)	C1	9—C20	1.48	3 (5)
C2—C3		1.393 (4)	C1	9—S4	1.63	2 (3)
C2—C10		1.499 (5)	C1	9—83	1.72	6 (3)
C3—C4		1.398 (5)	C2	0—C21	1.36	4 (5)
С3—С8		1.512 (5)	C2	0—C25	1.38	3 (5)
C4—C5		1.396 (5)	C2	1—C22	1.39	2 (6)
C4—C18		1.516 (5)	C2	1—H21	0.93	00
C5—C6		1.403 (5)	C2	2—С23	1.33	9 (7)
С5—С9		1.515 (5)	C2	2—Н22	0.93	00
C6—C26		1.504 (5)	C2	3—C24	1.34	2 (6)
C7—H7A		0.9600	C2	3—Н23	0.93	00
С7—Н7В		0.9600	C2-	4—C25	1.37	3 (6)
С7—Н7С		0.9600	C2-	4—H24	0.93	00
C8—H8A		0.9600	C2	5—H25	0.93	00
C8—H8B		0.9600	C2	6—S5	1.81	2 (4)
C8—H8C		0.9600	C2	6—H26A	0.97	00
С9—Н9А		0.9600	C2	6—H26B	0.97	00
С9—Н9В		0.9600	C2	7—C28	1.47	7 (5)
С9—Н9С		0.9600	C2	7—S6	1.62	0 (3)
C10—S1		1.810 (3)	C2	7—S5	1.72	1 (4)
C10—H10A		0.9700	C2	8—C29	1.36	(2)
C10—H10B		0.9700	C2	8—C33	1.36	5 (5)
C11—C12		1.478 (5)	C2	8—C29A	1.44	7 (16)
C11—S2		1.631 (3)	C2	9—C30	1.35	(3)
C11—S1		1.718 (3)	C2	9—Н29	0.93	00
C12—C13		1.386 (5)	C3	0—C31	1.29	(2)
C12—C17		1.392 (5)	C3	0—Н30	0.93	00
C13—C14		1.385 (6)	C2	9A—C30A	1.39	(2)
C13—H13		0.9300	C2	9A—H29A	0.93	00
C14—C15		1.364 (7)	C3	0A—C31	1.55	(2)
C14—H14		0.9300	C3	0A—H30A	0.93	00
C15—C16		1.359 (7)	C3	1—C32	1.31	6 (8)
C15—H15		0.9300	C3	1—Н31	0.93	00
C16—C17		1.376 (5)	C3	2—C33	1.36	5 (7)
C16—H16		0.9300	C3	2—H32	0.93	00
С17—Н17		0.9300	C3	3—Н33	0.93	00
C18—S3		1.810 (4)				
C2—C1—C6		120.0 (3)	C4		109.	9
C2—C1—C7		119.6 (4)	S3-		109.	9
C6—C1—C7		120.4 (4)	H1	8A—C18—H18B	108.	3

C1—C2—C3	120.3 (3)	C20—C19—S4	123.4 (2)
C1—C2—C10	119.1 (3)	C20—C19—S3	113.1 (2)
C3—C2—C10	120.6 (3)	S4—C19—S3	123.4 (2)
C2—C3—C4	119.5 (3)	C21—C20—C25	117.9 (3)
C2—C3—C8	119.8 (3)	C21—C20—C19	122.4 (3)
C4—C3—C8	120.7 (3)	C25—C20—C19	119.7 (3)
C5—C4—C3	120.8 (3)	C20—C21—C22	119.6 (4)
C5—C4—C18	119.9 (4)	C20—C21—H21	120.2
C3—C4—C18	119.3 (4)	C22—C21—H21	120.2
C4—C5—C6	119.0 (3)	C23—C22—C21	121.6 (5)
C4—C5—C9	120.5 (4)	C23—C22—H22	119.2
C6—C5—C9	120.5 (4)	C21—C22—H22	119.2
C1—C6—C5	120.2 (3)	C22—C23—C24	119.2 (5)
C1—C6—C26	120.5 (4)	С22—С23—Н23	120.4
C5—C6—C26	119.3 (4)	С24—С23—Н23	120.4
С1—С7—Н7А	109.5	C23—C24—C25	120.8 (4)
С1—С7—Н7В	109.5	C23—C24—H24	119.6
H7A—C7—H7B	109.5	C25—C24—H24	119.6
С1—С7—Н7С	109.5	C24—C25—C20	120.8 (4)
H7A—C7—H7C	109.5	С24—С25—Н25	119.6
Н7В—С7—Н7С	109.5	С20—С25—Н25	119.6
C3—C8—H8A	109.5	C6—C26—S5	107.4 (2)
C3—C8—H8B	109.5	C6—C26—H26A	110.2
H8A—C8—H8B	109.5	S5—C26—H26A	110.2
С3—С8—Н8С	109.5	С6—С26—Н26В	110.2
H8A—C8—H8C	109.5	S5—C26—H26B	110.2
H8B—C8—H8C	109.5	H26A—C26—H26B	108.5
С5—С9—Н9А	109.5	C28—C27—S6	124.0 (3)
С5—С9—Н9В	109.5	C28—C27—S5	112.0 (2)
Н9А—С9—Н9В	109.5	S6—C27—S5	123.9 (2)
С5—С9—Н9С	109.5	C29—C28—C33	110.1 (9)
Н9А—С9—Н9С	109.5	C29—C28—C29A	31.6 (8)
Н9В—С9—Н9С	109.5	C33—C28—C29A	120.6 (7)
C2C10S1	110.0 (2)	C29—C28—C27	125.4 (10)
C2-C10-H10A	109.7	C33—C28—C27	120.9 (4)
S1-C10-H10A	109.7	C29A—C28—C27	117.2 (7)
C2	109.7	C30—C29—C28	125 (2)
S1-C10-H10B	109.7	С30—С29—Н29	117.4
H10A-C10-H10B	108.2	С28—С29—Н29	117.4
C12—C11—S2	123.6 (3)	C31—C30—C29	118.7 (19)
C12—C11—S1	111.3 (2)	С31—С30—Н30	120.6
S2-C11-S1	125.1 (2)	С29—С30—Н30	120.6
C13—C12—C17	118.1 (4)	C30A—C29A—C28	116.6 (13)
C13—C12—C11	119.9 (4)	C30A—C29A—H29A	121.7
C17—C12—C11	122.0 (3)	С28—С29А—Н29А	121.7
C14—C13—C12	120.4 (5)	C29A—C30A—C31	117.4 (12)
C14—C13—H13	119.8	C29A—C30A—H30A	121.3
C12—C13—H13	119.8	C31—C30A—H30A	121.3
C15—C14—C13	120.2 (5)	C30—C31—C32	116.3 (10)

C15-C14-H14	119.9	C30—C31—C30A	36.5 (9)
C13—C14—H14	119.9	C32—C31—C30A	117.8 (7)
C16-C15-C14	120.3 (5)	C30-C31-H31	121.8
C16—C15—H15	119.9	C32—C31—H31	121.8
C14—C15—H15	119.9	C30A—C31—H31	108.6
C15—C16—C17	120.5 (5)	C31—C32—C33	120.9 (6)
C15—C16—H16	119.7	C31—C32—H32	119.6
С17—С16—Н16	119.7	С33—С32—Н32	119.6
C16—C17—C12	120.5 (4)	C32—C33—C28	121.9 (5)
С16—С17—Н17	119.8	С32—С33—Н33	119.1
С12—С17—Н17	119.8	С28—С33—Н33	119.1
C4—C18—S3	108.7 (2)	C11—S1—C10	105.19 (17)
C4—C18—H18A	109.9	C19—S3—C18	103.65 (16)
S3—C18—H18A	109.9	C27—S5—C26	103.75 (18)
C6-C1-C2-C3	3.0 (5)	C25-C20-C21-C22	03(7)
$C_{1}^{-1} = C_{2}^{-1} = C_{3}^{-1}$	-1760(3)	$C_{19} = C_{20} = C_{21} = C_{22}$	179.0(4)
$C_{1}^{(-)} = C_{2}^{(-)} = C_{1}^{(-)}$	-1771(3)	C_{20} C_{21} C_{22} C_{23}	-0.8(9)
$C_{0} = C_{1} = C_{2} = C_{10}$	$\frac{1}{1}$	$C_{20} = C_{21} = C_{22} = C_{23}$	1.1(9)
$C_{1} = C_{2} = C_{10}$	-40(5)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.9(8)
$C_1 = C_2 = C_3 = C_4$	4.0(3)	$C_{22} = C_{23} = C_{24} = C_{23}$	0.9(8)
$C_{10} - C_{2} - C_{3} - C_{4}$	176.2(3)	$C_{23} - C_{24} - C_{23} - C_{20}$	0.3 (7)
$C_1 = C_2 = C_3 = C_8$	1/5.5 (5)	$C_{21} = C_{20} = C_{23} = C_{24}$	-0.1 (6)
C10-C2-C3-C8	-4.5 (5)	C19 - C20 - C23 - C24	-1/8.9(3)
$C_2 = C_3 = C_4 = C_5$	4.1 (5)	C1 = C6 = C26 = S5	83.7 (4)
$C_8 - C_3 - C_4 - C_5$	-1/5.2(3)	C3-C6-C26-S5	-96.6 (4)
C2—C3—C4—C18	-175.9 (3)	S6—C27—C28—C29	-174.4 (10)
C8—C3—C4—C18	4.8 (5)	S5—C27—C28—C29	9.7 (11)
C3—C4—C5—C6	-3.3 (5)	S6—C27—C28—C33	29.1 (5)
C18—C4—C5—C6	176.7 (3)	S5—C27—C28—C33	-146.9 (3)
C3—C4—C5—C9	177.0 (3)	S6—C27—C28—C29A	-138.4 (8)
C18—C4—C5—C9	-3.0 (5)	S5—C27—C28—C29A	45.7 (9)
C2—C1—C6—C5	-2.2 (5)	C33—C28—C29—C30	-14 (2)
C7—C1—C6—C5	176.8 (3)	C29A—C28—C29—C30	102 (4)
C2—C1—C6—C26	177.5 (3)	C27—C28—C29—C30	-172.5 (13)
C7—C1—C6—C26	-3.5 (5)	C28—C29—C30—C31	-8(3)
C4—C5—C6—C1	2.4 (5)	C29—C28—C29A—C30A	-67 (3)
C9—C5—C6—C1	-177.9 (3)	C33—C28—C29A—C30A	11.2 (16)
C4—C5—C6—C26	-177.3 (3)	C27—C28—C29A—C30A	178.8 (9)
C9—C5—C6—C26	2.4 (5)	C28-C29A-C30A-C31	6.7 (18)
C1—C2—C10—S1	-90.9 (3)	C29—C30—C31—C32	26 (2)
C3—C2—C10—S1	89.0 (3)	C29-C30-C31-C30A	-76 (2)
S2-C11-C12-C13	37.9 (5)	C29A—C30A—C31—C30	75 (2)
S1-C11-C12-C13	-141.6 (3)	C29A—C30A—C31—C32	-22.0 (16)
S2-C11-C12-C17	-143.2 (3)	C30—C31—C32—C33	-22.3 (15)
S1-C11-C12-C17	37.3 (4)	C30A—C31—C32—C33	18.9 (12)
C17—C12—C13—C14	-2.0 (6)	C31—C32—C33—C28	-0.5 (9)
C11—C12—C13—C14	176.9 (4)	C29—C28—C33—C32	17.4 (12)
C12—C13—C14—C15	1.9 (7)	C29A—C28—C33—C32	-15.8 (10)
C13—C14—C15—C16	0.1 (8)	C27—C28—C33—C32	177.2 (4)
C14—C15—C16—C17	-1.8(7)	C12-C11-S1-C10	-179.9(3)

C15—C16—C17—C12	1.7 (6)	S2-C11-S1-C10	0.6 (3)
C13-C12-C17-C16	0.2 (6)	C2-C10-S1-C11	147.4 (3)
C11—C12—C17—C16	-178.6 (3)	C20-C19-S3-C18	-178.0 (3)
C5—C4—C18—S3	87.6 (4)	S4—C19—S3—C18	1.4 (3)
C3—C4—C18—S3	-92.3 (4)	C4—C18—S3—C19	-174.8 (3)
S4—C19—C20—C21	-148.1 (4)	C28—C27—S5—C26	171.9 (3)
S3—C19—C20—C21	31.2 (5)	S6—C27—S5—C26	-4.0 (3)
S4-C19-C20-C25	30.6 (5)	C6—C26—S5—C27	-179.7 (3)
S3—C19—C20—C25	-150.0 (3)		

Fig. 1

