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Abstract

Background: Transcranial direct current stimulation (tDCS) is widely investigated as a 

therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative 

disease. Prior research demonstrates that electric current delivery to the brain can vary 

significantly across individuals. Quantification of this variability could enable person-specific 

optimization of tDCS outcomes. This pilot study used machine learning and MRI-derived electric 

field models to predict working memory improvements as a proof of concept for precision 

cognitive intervention.

Methods: Fourteen healthy older adults received 20 minutes of 2 mA tDCS stimulation (F3/F4) 

during a two-week cognitive training intervention. Participants performed an N-back working 

memory task pre-/post-intervention. MRI-derived current models were passed through a linear 

Support Vector Machine (SVM) learning algorithm to characterize crucial tDCS current 
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components (intensity and direction) that induced working memory improvements in tDCS 

responders versus non-responders.

Main results: SVM models of tDCS current components had 86% overall accuracy in 

classifying treatment responders vs. non-responders, with current intensity producing the best 

overall model differentiating changes in working memory performance. Median current intensity 

and direction in brain regions near the electrodes were positively related to intervention responses 

(r = 0:811, p < 0:001 and r = 0:774, p = 0:001).

Conclusions: This study provides the first evidence that pattern recognition analyses of MRI-

derived tDCS current models can provide individual prognostic classification of tDCS treatment 

response with 86% accuracy. Individual differences in current intensity and direction play 

important roles in determining treatment response to tDCS. These findings provide important 

insights into mechanisms of tDCS response as well as proof of concept for future precision dosing 

models of tDCS intervention.
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1. Introduction

For almost two decades, transcranial direct current stimulation (tDCS) has been instrumental 

in advancing the knowledge of human brain function by altering neural activity in the brain 

[1–3]. tDCS has been suggested to alter resting membrane potentials (i.e., modulate or 

attenuate), influencing neuronal excitability across the local field of stimulation [1–5]. With 

this, tDCS has shown great promise as a therapeutic intervention in various neurological and 

psychiatric disorders [6–9]. While the number of tDCS applications within the literature has 

grown exponentially [1–5], the optimal dosing parameters (e.g., applied current, electrode 

placement, etc.) that underlie the positive effect of tDCS remain unclear.

Prior research shows that increasing or decreasing the intensity of applied stimulation to the 

scalp results in corresponding changes in the electric field within the brain [10]. In vitro 
studies have shown that the intensity component of tDCS current can modulate cortical 

excitability [11,12]. Experimental and theoretical studies have indicated that tDCS-related 

electric field intensity is essential for altering neuron resting membrane potentials and 

modification of synaptic strength (i.e., LTP/LTD) [13–17]. Studies show that increased 

applied current intensity is associated with increased amplitude of motor evoked potentials 

(MEPs), suggesting neuronal sensitization of the motor cortex [8,18–20]. Therefore, varying 

levels of applied current intensity in tDCS may lead to changes in behavioral outcomes.

Furthermore, electrode placements during tDCS can greatly affect the distribution and 

direction of electric current throughout the brain [21,22]. Whole-cell recordings have 

demonstrated that electric field orientation is essential to the likelihood of neuronal firing 

[23]. Neuronal bodies in parallel with the direction of applied electric fields are more 

susceptible to stimulation responses. Human studies have also highlighted the importance of 

tDCS current direction for modulating cortical excitability [24,25]. Rawji et al. (2018) 
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evaluated individual effects of tDCS montages that produced electric fields oriented 

orthogonal or parallel to the motor cortex on the modulation of MEPs. The orthogonal 

montage was observed to have greater current flow normal to the cortical surface (i.e., 

current flow in parallel with the dendritic axis of cortical neurons). These authors reported 

significant alterations in MEPs with this montage compared to sham [25]. These data 

suggest that the direction of current flow in the tDCS electric field may be strongly 

correlated with behavioral outcomes of tDCS.

Conventional tDCS typically employs a fixed applied current (e.g., 2 mA) and electrode 

placement (e.g., F3/F4) across participants [26]. However, the orientation and intensity of 

the generated electric field within cortical tissue can be dramatically altered by inter-

individual anatomical differences. For instance, brain atrophy can reduce the level of current 

reaching the brain due to an increase in current shunting within cerebrospinal fluid (CSF) 

[27,28]. Individual skull thickness and subcutaneous adipose tissue volume can also alter 

voltage delivery due to differences in tissue conductivity [29–32].

MRI-derived finite element models (FEM) can be used to estimate individualized electric 

field induced by tDCS. Advancements in tissue segmentation tools and automated modeling 

pipelines [33,34] have enabled more efficient generation of large and complex FEM that 

would normally require extensive computing power and time. These models have recently 

been compared to experimental results obtained via a novel in-vivo magnetic resonance 

electrical impedance tomography technique [35,36] and intracranial recordings [22,37]. 

While the experimental results showed a strong correlation with computational model 

outcomes, a large variation across individuals was observed. Therefore, investigating the 

nuance of electrical distribution in individualized models may provide more insight into 

inter-individual variability seen with tDCS. However, the size (i.e., millions of voxels across 

multiple dimensions) and complexity of generated electric fields has made interpretation of 

the essential current characteristics (i.e., current direction, intensity, etc.) challenging.

Few studies have attempted to systematically investigate these estimates of electric field 

distributions as a predictor of responses to tDCS [38–40]. All three prior studies reported 

increases in current intensity associated with increases in the target behavioral response 

(e.g., self-reported and physiological measures) [38–40]. Antonenko et al. also reported a 

positive relationship between the current direction normal to the cortical surface and 

sensorimotor network strength [40]. These studies employed univariate approaches that treat 

each voxel or region of interest within the brain as an independent predictor of treatment 

response. At present, no studies have employed multivariate approaches to investigate 

patterns within the current distribution as a predictor of treatment response.

Supervised machine learning methods (e.g., support vector machines; SVM) constitute a 

novel approach in neuroimaging to investigate large and complex datasets [41–44]. SVM 

uses Mercer’s Theorem [45], which allows the representation of high dimensional feature 

space in a low-dimensional Gram matrix (Equation (4)) – also known as the “kernel trick” 

[46]. SVM performs multivariate analyses across many voxels to classify patterns of 

information [41] that can be used to identify individual contributions of current intensity and 

direction towards behavioral responses. Multivariate classifiers are iteratively trained to 
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search for patterns within the data that best predict a specified prognostic label, such as 

behavioral response. This is usually achieved within a cross-validation procedure, 

withholding a different partition of data for each iteration of training. This is a standard 

approach within the statistical literature and a widely used technique to provide unbiased 

generalizability to new data samples [42–44,47]. One study used machine-learning of 

clinical data to predict treatment responses [48]; however, there are currently no studies that 

utilize machine learning on FEM to investigate the critical components of dosing parameters 

in tDCS.

Previous work from our research group demonstrated working memory improvements in 

older adults following tDCS paired with cognitive training [49]. The objective of this study 

was to apply machine learning and FEM in the same dataset and identify the central 

determinants of treatment response. Specifically, the present study applied an SVM 

machine-learning algorithm to investigate the contributions of current intensity and 

direction, as well as their interaction, for predicting working memory improvements in older 

adults. Our primary hypothesis is that SVM applied to individualized tDCS current models 

are capable of classifying tDCS responders and non-responders above chance (i.e., area 

under the curve > 0.5). In addition, we hypothesized that the interaction of direction and 

intensity is the most essential dosing feature for predicting behavioral response. These data 

will provide critical insight to inform tDCS mechanism theory and provide a potential 

foundation for methods to increase the effectiveness of tDCS applications.

2. Methods

Structural imaging and behavioral data were sourced from a phase-II pilot clinical trial that 

employed a randomized, triple-blinded (assessor, interventionist, participant) design 

(NCT02137122). This approach enabled examination of the combined effects of tDCS with 

cognitive training on working memory function in healthy older adults [49].

2.1. Participants

Fourteen healthy older adults receiving active-tDCS stimulation were selected for further 

analysis by the current study [mean (sd) age = 73.57 (7.84), mean MoCA = 27.85 (1.79), 

7F:7M]. All participants were screened for eligibility based on study inclusion criteria 

detailed in the prior manuscript [47]. The study protocol was in accordance with the 

Declaration of Helsinki and approved by the University of Florida’s Institutional Review 

Board. Informed written consent was obtained from participants prior to study procedures.

2.2. tDCS protocol and application

Conventional 1 × 1 tDCS (Soterix Medical, tDCS-CT for clinical trials) was applied using 

two 5 × 7cm2 pad electrodes presoaked with 2 mL of 0.9% NaCl and 4 mL added per side 

(10 mL total per sponge) at F3 (cathode) and F4 (anode) location. Participants underwent 

head measurements using the International 10–20 system to locate F3–F4 locations at each 

session. Participants were stimulated at 2 mA intensity for 20 minutes with a 30-second 

current ramp up and down, with a total of 10 stimulation sessions over 14 days. Each session 

included 40-minute computerized cognitive training for working memory with stimulation 
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delivered during the first 20 minutes. Details of the computerized training tasks are 

described in the previous publication [49]. No significant effects of unblinding or differences 

in sensation were found for active vs. sham participants in the parent study [49].

2.3. Behavioral tasks

Participants’ working memory was assessed with an in-scanner N-back task only given at 

baseline and post-intervention. The task paradigm for each run consisted of four blocks of 

two-back and four blocks of zero-back presented in a randomized order with 20 seconds of 

rest between blocks. During the two-back, participants viewed uppercase letters, one at a 

time. A screen with a central crosshair (+) was presented during the inter-trial interval (Fig. 

1). The stimuli appeared for 1 second, followed by a crosshair for 3 seconds, providing a 4-

second window to make a response. Details of the N-back task procedure are outlined in the 

prior paper [49]. Participants performed practice on the N-back task (two- and zero-back) 

outside of the scanner to ensure understanding of the task at both baseline and post-

intervention visits. Two-back performance change (i.e., pre-/post-intervention) was analyzed 

as a composite percent improvement score for accuracy and reaction time ΔACC + ΔRT
2 .

2.4. Imaging sequences and parameters

Structural T1-weighted MRI scans were obtained using a 32-channel, receive-only head coil 

from a 3-T Siemens MAGNETOM Prisma MRI scanner. MPRAGE sequence parameters 

included: repetition time (TR) = 1800 ms; echo time (TE) = 2.26 ms; flip angle = 8°; field of 

view (FOV) = 256 × 256 × 176 mm; voxel size = 1 mm3.

2.5. Computational model construction

Individual T1-weighted images were converted from DICOM to NIfTI using dcm2niix [50] 

and resampled with the FreeSurfer v6.0.0 image analysis suite (http://

surfer.nmr.mgh.harvard.edu/) into a 256 mm3 field of view (RAS orientation), 1 mm3 voxel 

size. The computational models of current density were computed using the Realistic 

vOlumetric-Approach to Simulate Transcranial Electric Stimulation (ROAST; https://

www.parralab.org/roast/) toolbox [33] with parallel processing on a high performance 

cluster with 50 CPU cores and 175 GB of RAM provided by the Research Computing at the 

University of Florida (HiPerGator). The resampled T1 images (256 × 256 × 256, 1 mm3) 

were individually processed in parallel using ROAST. The segmentation process was carried 

out in FreeSurfer to classify tissue types into gray and white matter. FreeSurfer 

segmentations were visually inspected and manually corrected for errors before reprocessing 

through FreeSurfer – a procedure that has been validated against manual segmentation [51] 

and histological measures [52]. Segmentations from FreeSurfer were then combined with 

segmented CSF, bone, skin, and air from ROAST (See Supplemental Fig. 1). Combined 

segmented tissues were visually inspected for unassigned voxels to ensure every voxel 

within the head volume was assigned to one of the six tissue types by overlaying individual 

segmented volumes with their respective T1 images. Default isotropic conductivity values 

(gray matter: 0.276 S/m; white matter: 0.126 S/m; CSF: 1.65 S/m; bone: 0.01 S/m; and skin: 

0.465 S/m) were assigned to each tissue in ROAST [33]. Volumetric meshes of each tissue 

type were generated using iso2mesh [53]. Boundary conditions were assigned within 
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ROAST and a finite element solver, getDP [54], was used to compute voltage solutions to 

the Laplace equation, in the meshed models, where V is the electric potential within the 

volume and σ is the tissue conductivity. Additional MATLAB routines to compute current 

density (J) from electric field (E) and tissue conductivity (σ) were added in accordance with 

Ohm’s law: J = σE. Current density (J) is a useful metric for determining the dosage of 

current (A/m2) induced in the brain from electrical stimulation. Current density also 

represents a unit of current directly adjustable through alteration of applied stimulation 

intensity (e.g., 2 mA vs. 2.3 mA) for the purposes of individualized dosing calculations.

The intensity of current at each voxel was calculated with the function:

J = Jx
2 + Jy

2 + Jx
2 (1)

Direction of current density in each coordinate plane was separated from intensity by 

deriving the zenith angle, θ, between J  and the z-axis, and the azimuthal angle, φ, between 

the projection of J  onto the xy-plane, J ′ and the x-axis:

θ = cos−1 Jz

Jx
2 + Jy

2 + Jz
2 (2)

φ = tan−1 Jy
Jx

(3)

2.6. Electrode placements

Conventional electrodes (5 × 7 cm2) were constructed from 3D captured electrode models as 

reported in our previous publication [26] and added to the segmented models in ROAST. 

Individual electrode placement variability per session for each participant can be found in 

Supplemental Fig. 3. Default conductivity values of 5.9 × 107 S/m and 0.3 S/m were 

assigned to the electrode and gel layers, respectively [55]. A +2 mA voltage boundary 

condition was assigned to the anode electrode at the F4 location, while a −2 mA voltage 

boundary condition was assigned to the cathode electrode at the F3 location (Fig. 2). Precise 

electrode locations were recorded for each session with a 3D scanner mounted to an iPad. 

3D images were converted to a surface mesh via TechMed3D’s MSoft software [TechMed 

3D, Quebec City]. More details of this procedure can be found in a previous publication 

[26]. Electrode information from each session was added to individual segmented tissue 

volumes prior to creating volume meshes and solving finite element models, totaling 10 

unique head models per individual. Individual, as well as grouped, average and variance 

maps of current density per electrode placement can be found in Supplemental Figs. 5–8. 

Electrode displacement was computed as the 3D Euclidean distance between modeled 

electrodes and the ideal location of F3–F4 derived from ROAST [55].
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2.7. Supervised machine-learning

Current density values were computed in native space then masked using individual 

participants’ white and gray matter voxels to restrict current values within brain region only 

and reduce the number of features submitted into the classifier. Masked values were then 

transformed with the University of Florida Aging Brain-587 tissue probability map [28] into 

MNI space using SPM’s normalise function [56]. Median values of J  before and after the 

transformation were computed as a quality check for transformation errors (r = 0:998). 

Participant classes were determined by separating participants into binary groups based on 

pre-/post-intervention performance changes on the two-back working memory task above or 

below the median. The tDCS responder class (n = 7) had an average performance increase of 

22%, whereas, the tDCS non-responder class (n = 7) was found to have an average 9% 

increase in two-back performance (F(1) = 21:02, p < 0.001). No significant differences in 

age (p = 0:89), sex (p = 0:66), education (p = 0:53), cortical atrophy (p = 0:22), nor any 

normalized tissue volume (See Supplemental Figs. 1–2) between these groups were 

observed.

Due to the high dimensionality of MRI data, feature selection was performed on the training 

data to further reduce the number of trained features. One popular method of feature 

selection is to filter the features via voxel wise t-tests between classes to select current 

elements with a significant group-level difference (p < 0:01) as features for the subsequent 

prediction step [42,57,58]. To classify responders from non-responders, we used Support 

Vector Machine (SVM), a machine learning algorithm to search for the optimal hyperplane 

that separates two classes with maximal margin under the assumption of independently and 

identically distributed (iid) data [59], which is satisfied in this study. Specifically, LIBSVM 

[41] was used to optimize the objective function:

min
w, b

1
2wTw + C ∑

i = 1

l
max 1 − yi wTxi + b , 0 2

(4)

where C ≥ 0 is a penalty parameter on the training error. A linear kernel K was generated 

with the function:

K xi, xj = xiTxj (5)

Model performance was evaluated across ten permutations of two-level nested stratified 

cross-validation [60–62]. To elaborate, we began by splitting the data into K-folds (in this 

case K = 7) and performed an outer cross-validation loop consisting of K iterations. In each 

iteration, K-1 folds were used as training data with a single fold left out as test data. A 

second, inner cross-validation loop was then performed on the training data, providing us 

with optimal hyper-parameter C. Following training, predictions of held out test data, x, 

were performed with the decision function:

f(x) = sgn wTx + b (6)
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After all K iterations in the outer cross-validation loop were performed, predicted labels of 

all subjects were compared against ground truth labels to calculate performance metrics. A 

receiver operating characteristic (ROC) curve of true positive rate against false positive rate 

was plotted to demonstrate the separability of classes within each model by calculating the 

area under the ROC curve (AUC). To assess the stability of feature weights, the standard 

deviation of feature weights across folds were plotted (see Supplemental Fig. 9). For feature 

weight generation and deployment, a final model was trained on all fourteen current density 

maps to derive overall classification weights, w (i.e., the model parameters learned by the 

optimization function during the training phase, cf. Equation (3)). These weights can be 

applied to independent data from a new subject to predict their tDCS response classification 

associated with specific observed J-map features in test data. The feature weights at each 

voxel, representing the relative contribution of each voxel to the classification, were 

separated by positive and negative weights that predict responders and non-responders, 

respectively [63]. Positive and negative weights were divided by their respective sum of 

weights to compute the percent contribution of each voxel toward either positive or negative 

predictions. To demonstrate specific brain regions that predict working memory 

improvements, regions of interest (ROIs) were defined using the Harvard-Oxford atlas [64] 

and ranked based on their average voxel percent contribution.

2.8. Statistical analyses

SPSS Statistics 25 (https://www.ibm.com/analytics/spss-statistics-software) and the 

Statistics and Machine Learning toolbox in MATLAB 2019b [65] were used to carry out 

statistical analyses. One-way ANOVA was used to assess mean difference in model 

performance between the three data types (direction, intensity, direction x intensity). A 

secondary set of analyses was aimed at determining the characteristics of current within the 

voxels determined to be essential for treatment response. Within these regions, Pearson’s 

correlation analyses were used to assess the relationship of behavioral response with field 

characteristics. Linear regression analyses were used to fit lines of least square residuals. 

Hedge’s g was computed to define effect sizes of mean differences, corrected for small 

sample bias [66]. Since all fourteen participants in our study were individuals with no 

familial relationship and each participant’s data were collected under the same condition, 

these data points met the statistical assumptions of independently and identically distributed 

(iid) data. To determine the normality of each variable, we tested the null hypothesis that 

each data vector comes from a standard normal distribution, against the alternative that it 

does not come from such a distribution, using the one-sample Kolmogorov-Smirnov test 

[67,68]. The null hypothesis of a normal distribution was not rejected by the Kolmogorov-

Smirnov test for all variables analyzed.

To quantify the required input current for converting non-responders into the responder 

range, the formula:

I = Io 1 + J − x
x (7)

where x represents a non-responder mean current value, J represents the target current 

values (i.e., average values computed in the responder group), Io represents the original 
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injected current (e.g., 2 mA), and J − x
x  represents the percent difference. The optimal 

electrode displacement was defined as the mean responder displacement minus the non-

responder displacement.

3. Results

3.1. Machine learning predictions of tDCS intervention efficacy

Computational models of current intensity, current direction, and their interaction, all 

demonstrated above chance performance for classifying treatment responders (i.e., 

AUC>50%). The AUC revealed that the probability of current intensity model to rank a 

randomly chosen responder higher than a randomly chosen non-responder was 80.6% (Fig. 

3A) [69]. Classification of the direction alone and combined models of direction and 

intensity produced AUCs of 77.6% and 74.9%, respectively. A summary of model 

performances can be found in Table 1. Computational models of current intensity alone 

marginally outperformed current direction and the combination of current direction with 

intensity in the classification problem (Fig. 3B). However, a one-way ANOVA between the 

AUC of each current characteristic (F(2) = 1:31, p = 0:288) revealed a non-significant 

difference between the three variables. The support vector machine classification of all three 

models correctly differentiated tDCS responders from non-responders with averaged overall 

accuracy of 86.43%. The 95% confidence interval of classification accuracy for these 

models was between [CI: 85.03–87.83%].

3.2. Field characteristics within voxels predictive of treatment responders

Within the voxels that discriminate tDCS responders from non-responders (Fig. 4), 

responders were found to have greater current intensity within these regions (Fig. 5A–B), 

with greater median (r = 0:811, p < 0:001) and mean current intensity (r = 0:720, p = 0:004) 

correlated with treatment response (Fig. 5C). Responders produced an effect size of 5.63 

(Hedges’ g; Fig. 5D) with a 95% confidence interval between [CI: 3.82–7.94] and a 

significant two-sided permutation t-test (p < 0:001, 5000 permutations). Behavior change 

was also related to the azimuthal angle, the angle of the current vector in the axial plane 

between the electrodes, φ (r = 0:774, p = 0:001) and the x-magnitude of the current vector, Jx 

(r = 0:832, p < 0:001). Behavior change was not related to zenith angle, θ (r = 0:289, p = 

0:32; see Supplemental Fig. 4), y-magnitude of the current vector, Jy (r = 0:222, p = 0:45), or 

the z-magnitude of the current vector, Jz (r = 0:281, p = 0:33). Thus, current angled toward 

the cathode related to positive outcomes (see Fig. 6A–C for representative model). On 

average, the current direction computed within the xy-plane, φ, showed greater percentages 

of positive angles in responders, whereas non-responders demonstrated greater percentages 

of negative angles. Thus, an enhanced convergence of current direction toward the cathode 

was found within responders (Fig. 6D). Shifts in electrode location were also inversely 

correlated with behavior change (anode: r = − 0:732, p = 0:003, cathode: r = − 0:775, p = 

0:001), as well as changes in median current intensity (anode: r = − 0:523, p = 0:06, cathode: 

r = − 0:632, p = 0:02) and azimuthal angle (anode: r = − 0:579, p = 0:03, cathode: r = − 

0:794, p < 0:001) within these voxels.
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3.3. Evaluation of simplified SVM models.

To determine whether the complexity of the original model presented in the current paper is 

required to achieve sufficient model performance, we assessed a set of simplified SVM 

models. As electrode displacement was strongly associated with behavior change, we trained 

an SVM to classify responder and non-responders based on only electrode displacement. In 

addition, prior research argues that tDCS primarily impacts only gray matter regions. As 

such, we trained an SVM to classify reponders and non-responders using only current 

characteristics from gray matter regions. These models did not outperform the original 

model (see Supplemental Table 1 and Supplemental Table 2; respectively).

3.4. Regional contributions toward predictions of tDCS response

Fig. 7A–B illustrates the top ten ranked ROIs based on the mean percent contribution per 

voxel within each region. See Fig. 7C for the distribution of percent contribution across 

Harvard-Oxford ROIs. The top ten ROIs that predicted working memory improvements were 

largely located in the frontal region underneath and between the electrodes (Fig. 7A). These 

ROIs were labelled as the: 1) Right Superior Frontal Gyrus, 2) Left Superior Frontal Gyrus, 

3) Right Middle Frontal Gyrus, 4) Left Putamen, 5) Right Frontal Pole, 6) Right Precentral 

Gyrus, 7) Left Frontal Pole, 8) Right Pars Opercularis, 9) Left Caudate, 10) Right 

Supramarginal Gyrus, anterior division (Fig. 7B).

3.5. Dosing charactersitics in responders and non-responders

Equation (6) was used to determine the optimal dosing parameters that are likely to convert 

non-responders into responders. To match the mean profile of current characteristics 

demonstrated in responders, non-responders would require an average increase of applied 

current intensity to 4.3 mA [range(sd): 3.19–5.37 (0.71) mA] and shift in the cathode 

location 1.25 cm [range(sd): 0.52–2.22 (0.59) cm] closer to its ideal 10–20 location (F3). 

Fig. 8A and B demonstrate the relationship between differences in electrode placement and 

behavioral response. Fig. 8C and D demonstrate the required shifts in intensity (8C) and 

electrode placement (8D) to match the mean profile of responders.

4. Discussion

The present study investigated the essential characteristics of tDCS current (i.e., current 

intensity, current direction, etc.) by using a machine learning algorithm to predict tDCS 

effects on measured behavioral outcomes. Overall, both current direction and intensity are 

demonstrated to be critical components of stimulation response. Consistent with our primary 

hypothesis, the electric field components produced predictions of tDCS response 

classification beyond chance (i.e., AUC > 50%). While current intensity did marginally 

outperform other variables, this difference was not statistically significant. Contrary to our 

second hypothesis, all tested variables were comparable in classifying responders and non-

responders. Considering each of these datatypes are derived from the same data vector, it is 

likely that the interaction of direction and intensity does not provide sufficient new 

information to outperform intensity alone. Since the SVM relies on pattern similarities 

between observations to make predictions, the interaction term of direction and intensity did 

not explain a significant level of new variance that was not already explained by the separate 

Albizu et al. Page 10

Brain Stimul. Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



main effects of intensity and direction. Using a small clinical trial dataset, the machine-

learning algorithm presented in this paper provides proof of concept that an SVM was able 

to classify tDCS responders and non-responders with 86% accuracy based on patterns of 

current characteristics.

4.1. Characteristics of current

The weights produced by the SVM algorithm revealed the brain regions that contributed 

most to predictions of treatment response category. Within these regions, median and mean 

current intensity were found to positively relate to behavioral response, suggesting greater 

current intensity may produce greater behavioral response. Since tDCS is typically applied 

at a fixed dose across individuals, individual differences in anatomy are likely to cause 

varying amounts of current intensity within these essential brain regions. For instance, those 

with greater degrees of brain atrophy would have a decreased level of current intensity 

within stimulated brain tissues and thus may experience reduced efficacy from fixed dose 

tDCS. It is important to note that while our data demonstrate an association between 

delivering larger amounts of current intensity and better behavioral responses, this does not 

necessarily mean that “more is better” universally. For instance, Samani et al. previously 

reported that applied current doses beyond 2 mA demonstrates nonlinear alterations in 

neuronal excitability [70]. Thus, within the range of current intensities inducible in the 

brains of older adults receiving fixed 2 mA dose, increased current intensity appears 

beneficial for treatment response. Applied current doses beyond this range require further 

research. Electrode orientation and location during tDCS can also dictate the shape and 

location of stimulation contact area, altering the pattern of current flow within the brain [22]. 

Both anode and cathode displacement were found to negatively affect intensity and direction 

of current within the brain as well as behavioral response. Minor electrode shifts (i.e., ≥1 

cm) have been previously demonstrated to dramatically alter the current intensity by up to 

38% [21,71]. Therefore, monitoring and increasing electrode placement accuracy via 3D 

capture techniques [26] may improve individual treatment response.

4.2. Regions of importance

The top ten ROIs that predict working memory improvements included the dorsolateral 

prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), basal ganglia, and 

cingulo-opercular network regions [72]. The DLPFC and VLPFC are critically involved in 

monitoring, maintaining, and manipulating task-relevant information. These processes are 

vital for working memory function [73–75]. Recent studies have reported increased 

functional connectivity within these regions paired with improvements in working memory 

performance following applications of tDCS [49,76].

The basal ganglia also play an important role in learning and memory [77]. Specifically, the 

basal ganglia have been suggested to work conjunctively with the middle frontal gyrus to 

select information to be stored in working memory [78]. In addition, increased functional 

connectivity of the cingulo-opercular network (also referred to as the ventral attention/

salience network) is associated with better performance on measures of fluid cognition (e.g., 

executive function) in older adults [79]. The SVM identified critical current features in brain 
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regions previously associated with working memory performance and age-related cognitive 

decline, serving as an additional proof of principle for this approach.

4.3. Future directions

The generated SVM model was highly accurate at classifying treatment responders in older 

adults, based only on the distributed patterns of electric current. Using these methods, 

precision tDCS dosing tailored to each individual can be generated to efficiently deliver 

equivalent current intensity within cortical regions that are essential for producing 

improvements in working memory. With optimization, application of these presented 

methods could potentially be expanded to improve tDCS efficiency in not only healthy older 

adults but also various mental health [7,80,81] and brain-based pathologies [8,9].

4.4. Study limitations

The limited number of data points (n = 14) in the current study may affect the 

generalizability of the model. Thus in our future work, we will use a larger and more 

heterogeneous tDCS clinical trial dataset (n = 160) [82] (NCT02851511) which is near 

completion. To maximize the use of available data points and avoid overfitting in this study, 

we used two-level nested cross-validation to increase the number independent test samples 

and used 10 permutations to assess the retest reliability of these models. Average accuracy 

and confidence intervals across these permutations were used to estimate model performance 

on novel datasets. Our results show a 95% confidence interval of [85.03–87.83%] when the 

average accuracy is 86.42%, which demonstrates robust performance and small standard 

deviation of the classification performance. However, cross-validated analyses could lead to 

overoptimistic results. While efforts have been made to avoid overestimating the 

performance due to “double-dipping” in the choice of model hyperparameters [83] through 

nested cross-validation, results should be validated on an independent, larger cohort.

For simplicity of interpretation, we used a binary SVM to distinguish discrete classes: 

responders and non-responders. However, it is also feasible to utilize machine-learning 

algorithms to make continuous predictions (i.e., magnitude of improvement). It should also 

be noted that misclassification of tissue continues to be a challenge for automated 

segmentation routines [84] which can influence subsequent FEM results since current 

density estimation is directly related to tissue organization and their assigned conductivity 

values. For instance, both bone and CSF compartments appear dark in T1-weighted images 

and thus bone tissue might be misclassified as CSF, or vice versa. This type of tissue 

misclassification can alter the amount of current entering the skull cavity [85] and thus 

affecting the estimated current found in the brain that was used for SVM classification. 

Therefore, the findings of the present study are limited by segmentation inaccuracy produced 

from the automated segmentation routines. Future studies are warranted to implement 

manual corrections to automated tissue segmentation and further analyze SVM results for 

automated versus manual segmentation process. Further, the present study serves as a proof 

of concept study for classification of tDCS responders and non-responders by utilizing 

features submitted to the classifier from the computational FEM. Introducing additional 

neuroimaging modalities and clinical data into the model may further enhance performance 
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and predictive value of machine-learning based approaches for understanding tDCS 

treatment response.

5. Conclusion

Clinical applications of tDCS have grown exponentially, yet reproducibility of these studies 

remains a challenge. At present, the optimal stimulation parameters remain unknown, 

making it difficult to ensure optimal treatment response on an individual basis. In this study, 

we proposed novel methods using FEM and SVM algorithms to detect the critical features of 

tDCS current, and identify stimulated cortical structures implicated in producing intended 

functional outcomes. We tested our methods in fourteen tDCS participants that underwent 

multiple days of stimulation at the F3–F4 locations. Our results demonstrated that current 

intensity has the strongest predictive value for treatment responders, with the performance of 

current direction only slightly inferior. These data suggest that reducing electrode 

displacement and delivering greater current intensity to essential brain regions implicated in 

treatment response are important for producing positive alterations in working memory 

performance. Future studies may include a larger cohort to generate more generalizable 

predictive models. Findings from this study can be coupled with customized electrode 

montages and dosing parameters to potentially enhance functional gains from tDCS 

treatment on an individual basis for a variety of therapeutic applications.
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Fig. 1. 
An example of the stimulus presentation in the two-back variant of the N-back task.
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Fig. 2. 
A) The F3-F4 electrode montage with the F3 electrode as the cathode (blue) and the F4 

electrode as the anode (red). B) A representative image of actual anode (red) and cathode 

(blue) placements for a single subject across ten sessions. The mean displacement for this 

participant of the anode and cathode was 1.9 cm (−0.2 St. Dev.) and 1.7 cm (−0.45 St. Dev.), 

respectively.
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Fig. 3. 
A) Areas under the ROC curve across ten iterations of three data types: direction, intensity, 

and combined. Mean AUC plotted as bars. No significant difference was observed. B) The 

mean ROC curve of each model across ten iterations with shaded area conveying 95% 

confidence interval.
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Fig. 4. 
Discrimination maps of regions that predict working memory improvements with the percent 

contribution of each voxel to the SVM decision function, superimposed onto the MNI152 

Template.
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Fig. 5. 
Plots to demonstrate the current density characteristics within regions predictive of tDCS 

responders. A) Histogram of current intensity (bin width of 0.0013 Am-2) with the y-axis 

representing the number of observations in each bin divided by the total number of 

observations, where the sum of all bar heights is equal to 1. B) Cumulative histogram of 

current intensity with the height of each step equal to the cumulative number of observations 

in the bin over the total number of observations in each bin and all previous bins where the 

height of the last bar is equal to 1. C) Scatter plot of behavior change (post – pre intervention 

working memory performance) vs. median current intensity. D) The Hedges’ g between 

responders and non-responders is shown in a Gardner-Altman estimation plot. The mean 

difference is plotted on a floating axis as a bootstrap sampling distribution. The mean 

difference is depicted as a dot; the 95% confidence interval is indicated by the ends of the 

vertical error bar.
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Fig. 6. 
Single representative participant A) Coronal, B) Sagittal, and C) Axial image of current 

intensity represented by the color of the images, and current direction represented by the 

arrows within the images. The color bar represents electric field in volts per meter (v/m). D) 

Histogram of azimuthal angle δ with the height of each bar representing the number of 

observations in each bin divided by the total number of observations, where the sum of the 

all bar heights is equal to 1.
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Fig. 7. 
A) Visualization of the top 10 regions of interest from the Harvard-Oxford atlas ranked 

based on their contribution toward predictions of treatment response. B) Rank, label, and 

mean percent contribution per voxel of the top ten regions of interest. C) a bar graph to 

represent the average percent contribution per voxel within each ROI of Harvard-Oxford 

atlas with the top 10 regions of interest highlighted in red.
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Fig. 8. 
A) Anode and B) Cathode displacement between responders and non-responders, with 

means plotted as bars. Non-responders were found to have greater displacement of both 

electrodes (anode: F 2 = 6.73, P = 0.023, cathode: F 2 = 19.39, p < 0.001) from their ideal 

placement compared to responders. Linear regression of C) current intensity and D) current 

direction, based on the percent difference of average current intensity and cathode 

displacement versus behavioral change. The optimal stimulation parameters are represented 

by the diamond in the figure (i.e., the mean within the responder group). * represents p < 

0.05 and ** represents p < 0.01).
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