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Abstract: Hemorrhagic transformation (HT) is one of the leading causes of a poor prognostic marker
after acute ischemic stroke (AIS). We compared the performances of the several machine learning (ML)
algorithms to predict HT after AIS using only structured data. A total of 2028 patients with AIS, who
were admitted within seven days of symptoms onset, were included in this analysis. HT was defined
based on the criteria of the European Co-operative Acute Stroke Study-II trial. The whole dataset was
randomly divided into a training and a test dataset with a 7:3 ratio. Binary logistic regression, support
vector machine, extreme gradient boosting, and artificial neural network (ANN) algorithms were
used to assess the performance of predicting the HT occurrence after AIS. Five-fold cross validation
and a grid search technique were used to optimize the hyperparameters of each ML model, which
had its performance measured by the area under the receiver operating characteristic (AUROC)
curve. Among the included AIS patients, the mean age and number of male subjects were 69.6 years
and 1183 (58.3%), respectively. HT was observed in 318 subjects (15.7%). There were no significant
differences in corresponding variables between the training and test dataset. Among all the ML
algorithms, the ANN algorithm showed the best performance in terms of predicting the occurrence
of HT in our dataset (0.844). Feature scaling including standardization and normalization, and the
resampling strategy showed no additional improvement of the ANN’s performance. The ANN-based
prediction of HT after AIS showed better performance than the conventional ML algorithms. Deep
learning may be used to predict important outcomes for structured data-based prediction.

Keywords: stroke; hemorrhagic transformation; machine learning; deep learning; neural network

1. Introduction

According to the Global Burden of Stroke in the World Health Organization’s 2016
report, stroke is the leading cause of death and disability worldwide [1], with the incidence
of ischemic stroke exceeding that of hemorrhagic stroke [2]. Hemorrhagic transformation
(HT) is the one of the major potential complications after acute ischemic stroke (AIS), and
is associated with the natural recanalization of the occluded cerebral arteries, thrombolysis,
or mechanical thrombectomy, and is a major barrier for antithrombotic treatment after
AIS [3–5]. Therefore, it is an important issue for stroke practitioners to predict the occur-
rence of HT during treatment in these patients [6,7]. However, in previous studies, the
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performance of predicting HT via C-statistics showed relatively poor predictive power at
0.70 [8].

Recently, machine learning (ML) or deep learning (DL) algorithms have been widely
used in medical practice as a clinical decision support system [9,10]. In several stud-
ies, the usefulness of the ML strategy to predict the risk of HT following AIS was as-
sessed [11–15]. Wang et al. reported that the neural network model showed the best
performance (AUROC = 0.82) to predict symptomatic intracerebral hemorrhage (ICH) fol-
lowing thrombolysis in patients with AIS [11]. In another multicenter trial using the
Observational Medical Outcomes Partnership Common Data model, the least absolute
shrinkage and selection operator regression model showed an AUROC of 0.75 to predict
HT [12]. Asadi et al. studied the usefulness of ML algorithms to predict poor outcomes in
patients with AIS who received endovascular intervention [13]. They suggested that the
support vector machine (SVM) successfully predicted poor outcomes, and that post-infarct
ICH was an important factor in a poor prognosis. However, this study had a relatively
small number of study participants (107 subjects) and, thus, the study result may require
additional validation. Other studies reported a high accuracy rate (~84%) for predicting HT
in their stroke cohort, with only the radiologic markers of an MRI used to perform the ML
tasks [14,15]. In this regard, different ML algorithms were used to improve the prediction
of HT after AIS. However, there are no studies showing high prediction performance using
clinical variables in ML tasks.

HT can be divided into symptomatic and asymptomatic cases. Previous studies
reported that not only symptomatic HT, but also asymptomatic HT can affect clinical
outcomes after AIS [7,16]. There are cases where intracranial hemorrhage, occurring after
cerebral reperfusion, could be asymptomatic [17], and, in these cases, it is difficult to
determine when to begin antithrombotic treatment [18]. Therefore, we limited HT to a
radiological definition rather than a clinical definition. We hypothesized that DL algorithms
could better predict HT after AIS than conventional prediction models. Thus, we aimed to
assess the important predictor of HT in several ML algorithms, and how to improve the
prediction performance of the ML model used in this study.

2. Materials and Methods
2.1. Population and Study Design

This study is a cross-sectional retrospective case-control study using a prospectively
collected stroke database in a tertiary teaching hospital. In this registry, patient’s demo-
graphics, stroke mechanism, clinical, laboratory, and radiological results were collected by
the stroke practitioner and regularly audited by external researchers [19]. From January
2015 to December 2020, a total of 2555 patients admitted to this hospital were included in
the registry. Among them, patients with diffusion restrictive lesions in brain MRI scans,
with relevant focal neurologic deficits, were included in the analysis. In this analysis, we
excluded patients admitted to the hospital seven days after stroke onset and those with
missing variables in clinical and laboratory parameters (Figure 1). This study was approved
by the Chuncheon Sacred Heart Hospital Institutional Review Board/Ethics Committee
(IRB No. 2019-11-017). Written informed consent for the registry enrollment was provided
by the participants or their guardians.

2.2. Data Information

Clinicodemographic variables, including age, sex, body mass index, and cardiovascu-
lar disease risk profile at hospital admission, were included in the ML model. Age, sex,
and stroke-related information, including a history of taking antithrombotics, symptom
onset to hospital arrival time, stroke subtype according to the Trial of ORG 10172 in Acute
Stroke Treatment classification, and laboratory parameters at hospital admission were
also included in the ML model. Originally, HT was divided into hemorrhagic infarct type
1, 2, parenchymal hemorrhage type 1, 2, and symptomatic ICH according to the second
European Co-operative Acute Stroke Study-II criteria [20]. We defined HT as when all of
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these subtypes of HT were identified in follow up brain CT or gradient-echo MRI 48 h after
the initial evaluation of AIS.
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Figure 1. Flowchart of the study participants. DWI: diffusion weighted image; HT: hemorrhagic
transformation.

2.3. Machine Learning Algorithm

As described earlier, we aimed to assess the classification performance (HT or no HT)
of several ML algorithms using different optimization techniques. At first, we randomly
divided a whole dataset into a training and test dataset with a 7:3 ratio, with a similar
proportion of HT maintained in the training and test dataset. For the input variables,
continuous variables were used as the raw values, and categorical variables were encoded
using one-hot encoding. In the preprocessing process of the continuous variables, we
used these as raw values (crude method) for the different scaling methods, including
normalization, min-max scaling, standardization, and robust scaling (Figure 2a) [21,22].
Binary logistic regression (BLR), SVM, extreme gradient boosting (XGB), and artificial
neural network (ANN) algorithms were used to assess the performance of each algorithm
in predicting HT in our dataset. The ANN algorithm was composed of an input layer, four
fully connected hidden connected layers, and one output layer (Figure 2b) in the ANN
preprocessing task. In the training process, we used five-fold cross validation to reduce
the model’s overfitting, and used the grid search technique to select the best combination
of hyperparameters in each ML algorithm. The detailed information on the parameter
settings are presented in Table S1. On performing each ML task, we extracted the variable
importance of the input variables to identify which variables were important in predicting
HT in the training dataset. We used the sklearn and keras Python package for these ML
processes, and the model training was performed with the TensorFlow interface using
NVIDIA’s GeForce GTX 1080ti graphic processing units.
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Figure 2. Schematic representation of the machine learning model: (a) the preprocessing process of the categorical
and continuous variables and (b) the schematic representation of the artificial neural network structure. BLR: binary
logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; ANN: artificial neural network; HTf:
hemorrhagic transformation; and relu: rectified linear unit.

2.4. Statistical Analysis

The baseline characteristics of the patients in the training and test datasets were com-
pared using the Student’s t-test or the Mann–Whitney U test for continuous variables, and
Pearson’s χ2-test for categorical variables, as appropriate. When we obtained the probabil-
ity for the HT from each ML classifier, values of >0.5 were assigned positive HT status. The
performance of each ML model was measured with the receiver operating characteristics
curve. All statistical analyses were performed with R version 3.6.1 (the R Foundation for
Statistical Computing) and Python version 3.7.7 in the anaconda environment.

3. Results

A total of 2028 patients were included in the final ML tasks. Age and portion of
male were 69.6 years and 58.3%, respectively. In the whole dataset, HT was observed in
318 patients (15.7%). The comparison of baseline characteristics between the training and
test datasets are presented in Table 1. Stroke subtype and stroke severity were equally
distributed in the training and test datasets. In addition, the proportion of patients who
had been taking antithrombotics before the index stroke or who received thrombolysis
for the index stroke were also equally distributed between the training and test datasets.
Therefore, there was no significant difference in the input variables for the HT prediction
model.

Table 2 shows the overall performance of HT prediction for each of the ML classifiers.
The performance of the grid search-based ANN algorithm was the best classifier for
predicting HT (accuracy = 87.8%, F1-score = 93.2%), followed by the SVM algorithm. In
addition, we represented the most important variables in each of the ML classifiers (Table 3).
Although the variable importance factors in each ML algorithm were different, gender, age,
prior antithrombotic usage, stroke severity, white blood cell count, stroke subtype, and
fasting blood sugar were identified as important factors in the model’s classification.
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Table 1. Comparison of baseline characteristics between training and test datasets.

Variables Training (n = 1419) Test (n = 609) Whole Dataset
(n = 2028) p Value

Male 815 (57.4%) 368 (60.4%) 1183 (58.3%) 0.229
Age, year 69.7 ± 12.9 69.3 ± 12.4 69.6 ± 12.8 0.451

Onset to arrival time, hours 29.1 ± 44.5 32.2 ± 45.8 30.6 ± 48.2 0.183
BMI, kg/m2 24.1 ± 3.6 24.1 ± 3.4 24.1 ± 3.6 0.606

Initial NIHSS, score 5.1 ± 5.7 4.9 ± 5.6 5.0 ± 5.6 0.562
Stroke subtype 0.313

LAA 491 (34.6%) 222 (36.5%) 713 (35.2%)
SVO 410 (28.9%) 185 (30.4%) 595 (29.3%)
CE 270 (19.0%) 111 (18.2%) 381 (18.8%)

SOE 51 (3.6%) 12 (2.0%) 63 (3.1%)
SUE 197 (13.9%) 79 (13.0%) 276 (13.6%)

Past medical history
Prior stroke 359 (25.3%) 146 (24.0%) 505 (24.9%) 0.564

Hypertension 921 (64.9%) 398 (65.4%) 1319 (65.0%) 0.834
Diabetes 250 (17.6%) 118 (18.3%) 368 (18.1%) 0.167

Dyslipidemia 495 (34.9%) 208 (34.2%) 703 (34.7%) 0.979
Current smoking 319 (22.5%) 140 (23.0%) 459 (22.6%) 0.847
Atrial fibrillation 273 (19.2%) 105 (17.2%) 378 (18.6) 0.319

Prior antithrombotics
treatment 529 (37.3%) 222 (36.5%) 751 (37.0%) 0.762

Thrombolysis 188 (13.2%) 76 (12.5%) 264 (13.0%) 0.689
Laboratory parameter

WBC, 103/µL 7.8 ± 2.9 7.9 ± 3.0 7.8 ± 2.9 0.414
Hemoglobin, g/dL 13.6 ± 2.0 13.8 ± 1.8 13.7 ± 2.0 0.140

Platelet count, 103/µL 233.6 ± 74.9 234.5 ± 80.9 233.9 ± 76.8 0.820
Total cholesterol, g/dL 168.1 ± 63.7 168.2 ± 41.5 168.2 ± 57.9 0.994

TG, mg/dL 128.8 ± 85.5 133.1 ± 81.3 130.1 ± 84.3 0.288
HDL, mg/dL 45.7 ± 11.5 44.9 ± 10.6 45.5 ± 11.3 0.158
LDL, mg/dL 100.3 ± 35.4 102.4 ± 34.9 100.9 ± 35.2 0.225
BUN, mg/dL 17.7 ± 9.4 17.6 ± 9.3 17.7 ± 9.4 0.860

Creatinine, mg/dL 1.0 ± 0.8 1.0 ± 0.7 1.0 ± 0.7 0.956
FBS, mg/dL 126.7 ± 52.8 126.0 ± 49.0 126.5 ± 51.6 0.759

A1c, % 6.3 ± 1.4 6.3 ± 1.4 6.3 ± 1.4 0.848
INR 1.1 ± 0.4 1.0 ± 0.2 1.1 ± 0.3 0.235

SBP, mmHg 146.0 ± 26.5 145.6 ± 26.4 145.9 ± 26.5 0.768
DBP, mmHg 84.0 ± 13.9 83.9 ± 14.1 84.0 ± 13.9 0.522

Hemorrhagic transformation 221 (15.6%) 97 (15.9%) 318 (15.7%) 0.893

Categorical variables are represented by the number (percent), and continuous variable are represented by mean (± standard deviation).
BMI: body mass index; NIHSS: National Institute of Health Stroke Scale; LAA: large artery atherosclerosis, SVO: small vessel occlusion;
CE: cardioembolism; SOE: stroke of other determined etiology; SUO: stroke of undetermined etiology; WBC: white blood cell; TG:
triglycerides; HDL: high-density lipoprotein; LDL: low-density lipoprotein; BUN: blood urea nitrogen; FBS: fasting blood sugar; A1c:
glycated hemoglobin; INR: international normalized ratio; SBP: systolic blood pressure; and DBP: diastolic blood pressure.

Table 2. Results of several performance parameters of machine learning algorithms to predict hemorrhagic transformation
in the test dataset.

TP FP FN TN Total Precision Recall Accuracy F1-Score

BLR 486 28 71 24 609 87.3 94.6 83.7 90.8
SVM 504 10 78 17 609 86.6 98.1 85.6 92.0
XGB 486 28 73 22 609 86.9 94.6 83.4 90.6

ANN_crude 506 17 57 29 609 89.9 96.7 87.8 93.2

TP: true positive; FP: false positive; FN: false negative; TN: true negative; BLR: binary logistic regression; SVM: support vector machine;
XGB: extreme gradient boosting; and ANN crude: artificial neural network crude model.
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Table 3. Most important input variables of predicting hemorrhagic transformation after acute ischemic stroke in each
machine learning classifier.

No Variable BLR SVM XGB ANN

1 Age 3rd 7th 1st
2 Male 1st 5th 8th
3 Onset to arrival time
4 BMI
5 NIHSS 1st 3rd 1st
6 Previous mRS 7th
7 TOAST_1
8 TOAST_2 2nd
9 TOAST_3 2nd 5th

10 TOAST_4 8th 9th 2nd
11 TOAST_5 8th
12 Previous stroke 10th
13 Hypertension
14 Diabetes 4th
15 Dyslipidemia 6th 9th
16 Current smoking
17 Atrial fibrillation 7th
18 Prior antithrombotic usage 2nd 4th
19 Thrombolysis 9th 10th
20 WBC 3rd 6th
21 Hemoglobin 5th 10th
22 Platelet count 8th 9th
23 Total cholesterol
24 Triglycerides
25 High density lipoprotein 6th
26 Low density lipoprotein 5th
27 Blood urea nitrogen 4th
28 Creatinine
29 Fasting blood sugar 3rd
30 Glycated hemoglobin 7th
31 INR
32 BPsys 10th 4th
33 BPdia 6th

BLR: binary logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; ANN: artificial neural network; BMI: body
mass index; NIHSS: National Institute of Health Stroke Scale; mRS: modified Rankin Scale; TOAST: Trial of ORG 10172 in Acute Stroke
Treatment; WBC: white blood cell; INR: international normalized ratio; BPsys: systolic blood pressure; and BPdia: diastolic blood pressure.

Figure 3 shows the result of the performance of each ML classifier with a five-fold cross
validation and grid search hyperparameter optimization technique. The ANN algorithm
was the best performing algorithm on the test dataset (AUROC = 0.842, Figure 3a,b). We
additionally performed ANN modelling with scaling of the input variables, and there
was no additional improvement in the model’s performance (Figure 3b). We performed
ML tasks to determine whether scaling of the input parameters or resampling technique
could improve ML algorithm performances. The implementation of these techniques in our
BLR, SVM, and XGB algorithms did not show any additional improvement in the model’s
performances (Figures S1 and S2).
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4. Discussion

In this study of the performance comparison of HT prediction in AIS patients, we
identified that the ANN’s prediction performance was better than those of other ML
algorithms. In addition, the grid-search hyperparameter optimization technique was useful
for improving the performance of ML algorithms using structural numerical data, but the
scaling strategy did not show any additional improvement.

It is important for AIS patients who have completed the emergent treatment to reduce
the incidence of complications, such as pneumonia, deep vein thrombosis, or HT, which is
known to be associated with the worsening of the stroke prognosis. The incidence of HT
ranges from 11.0 to 37.5 in patients with AIS according to different clinical settings [23–28].
Antithrombotic therapy to prevent additional ischemia immediately after the index stroke
is associated with the development of HT or intracranial hemorrhage. On the other
hand, the risk of stroke recurrence is high during the acute stage and more than half of
relapsed patients have a recurrence within 30 days of the index stroke [29]. Therefore,
to minimize the impact of HT after a stroke, we should consider which variables have a
causal relationship with the HT development using the conventional statistical model, and
which ML models are effective at improving the prediction performance of subsequent HT
development.

The ANN algorithm had several advantages compared to traditional ML algorithms.
First, the ANN algorithm is quite robust to noise in the training data [30]. If the training
data contains errors, they do not significantly affect the final result of the algorithm. Second,
ANN is resilient to long duration training processes due to the considerable number of
parameter weights and training examples [31]. Third, the higher the number of hidden
layers stacked in the ANN algorithm, the more chance that vanishing gradient problems
could develop. However, ANN algorithms with few hidden layers, utilizing structured
numerical data, can overcome these problems [32]. There is no exact information about how
many layers can be stacked to overcome the disadvantage of ANN algorithms falling into
the local minima. However, in the case of using medical structured data, the performance
of ANN algorithms is reported to be superior when using 3–5 hidden layers, as in this
study [33,34]. In addition, the ANN algorithm can perform complex non-linear fitting of
high dimensional data, and has well-developed architecture selection methods to prevent
the overfitting of training models [35].

Wang et al. studied the usefulness of ML algorithms to predict symptomatic ICH
after thrombolysis in 2237 patients with hyperacute ischemic stroke [11]. Of these ML
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models, the three-layered ANN model showed the best performance in terms of predicting
symptomatic ICH in this cohort. This study was conducted on a different stroke pop-
ulation and, thus, a direct comparison of the algorithm’s performance may be difficult.
However, these difference in the ANN model’s performance could be explained by the
following reasons. First, Wang et al.’s study used imputation for missing parameters. Since
missing values were replaced with representative values, such as mean or median values
during multiple imputation, the meanings of the variables may have flattened during
this imputation process and, as a result, the performance of the ML classifier could be
underestimated [36]. Second, the absence of stroke-related information, such as stroke
subtype or laboratory parameters, in Wang et al.’s study might be associated with lower
resolution for HT prediction. Indeed, stroke subtype classified with the Trial of Org 10172
in Acute Stroke Treatment classification is associated with the occurrence of HT, with
cardioembolic stroke etiology having a causal relationship with the HT development [37].
Third, we used five-fold cross validation and the grid search technique for hyperparameter
optimization, which enabled us to obtain tuned performance for each ML algorithm by
reducing the overfitting of training data.

In general, scaling methods, such as standardization or normalization, reduce the
variability of the weight or error of each variable, thereby reducing the failure of the
learning process due to gradient exploding that occurs during learning of the neural
network model and improving the performance of the model [38]. However, the learning
result of additional ANN models performed with the scaling input variable in our study
were not better than the crude ANN model. In other DL studies relating to stroke, there was
no mention of the effect of neural network scaling on DL performance [11,39]. Ahsan et al.
reported the effect of scaling on performance in various ML methods [40]. They concluded
that the effect of scaling on ML performance varied depending on the characteristics of
the data. Therefore, it can be reported as evidence that the scaling method of ANN had no
effect on the model performance improvement of the numerical data of stroke patients.

Of our ML models, age, gender, stroke severity, stroke subtype, prior antithrom-
botics usage, white blood cell count, and fasting blood sugar were important variables
in predicting HT (Table 3). Age and stroke severity are important prognostic markers for
AIS [41], and were also identified as a predictor for HT in other studies [42]. Andrade
et al. summarized the important predictors for HT in clinical trials [43]. Considering that
important variables in our ML model are exactly matched with the variables presented in
this report, we suggest that clinically important variables have a significant influence on
the performance of the classifier, even in ML classification.

There are several limitations to our study. First, we only evaluated the numerical or
categorical data related to the patients’ clinicodemographic factors for laboratory variables
at admission. HT can be affected by a variety of post-stroke management treatments,
such as blood pressure management and concurrent post-stroke antithrombotic medi-
cations [44,45]. Therefore, we could not evaluate the impact of post-stroke care for the
development of HT. Second, we did not assess radiologic markers of HT. Aside from our
research on HT, image DLs using CT or MRI are being actively conducted. In future studies,
we expect that the ensemble learning method, which adds the patient’s clinical variables
and image variables, will further enhance the predictive power of the DL model.

5. Conclusions

The ANN algorithm was more effective at predicting HT in AIS patient then the
conventional ML algorithms and showed the best performance for the prediction of HT
in our dataset (0.844) without additional feature scaling. In later trials, ensemble strategy,
using numerical and unstructured imaging data DL, could be useful to predict HT after AIS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11090863/s1, Table S1: Grid search parameters in each machine learning classifier.;
Figure S1: Result of the receiver operating characteristic curve of binary logistic regression (a) and
support vector machine (b), extreme gradient boosting (c), and artificial neural network algorithm
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(d) before and after resampling strategy.; Figure S2: Result of the receiver operating characteristic
curve of binary logistic regression (a) and support vector machine (b), and extreme gradient boosting
(c) before and after different scaling methods.
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