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Abstract

Stimulus selection is a critical part of experimental designs in the cognitive sciences. Quantifying and controlling item similarity
using a unified scale provides researchers with the tools to eliminate item-dependent effects and improve reproducibility. Here we
present a novel Similar Object and Lure Image Database (SOLID) that includes 201 categories of grayscale objects, with
approximately 17 exemplars per set. Unlike existing databases, SOLID offers both a large number of stimuli and a considerable
range of similarity levels. A common scale of dissimilarity was obtained by using the spatial-arrangement method (Exps. 1a and
1b) as well as a pairwise rating procedure to standardize the distances (Exp. 2). These dissimilarity distances were then validated
in a recognition memory task, showing better performance and decreased response times as dissimilarity increased. These
methods were used to produce a large stimulus database (3,498 images) with a wide range of comparable similarities, which
will be useful for improving experimental control in fields such as memory, perception, and attention. Enabling this degree of
control over similarity is critical for high-level studies of memory and cognition, and combining this strength with the option to

use it across many trials will allow research questions to be addressed using neuroimaging techniques.

Stimulus—response effects are integral to empirical experi-
ments exploring cognitive psychology and neuroscience.
The selection of stimuli is a crucial aspect of experimental
design and is essential to the testing of any refined mechanistic
model of cognition. In spite of this, stimulus selection and
classification is often reliant on the subjective judgment of
the experimenter, or their intuition. Moreover, reproducibility
through high-quality experimental replication is critical to the
durability, longevity, and respect of psychological science,
and of science more generally (Open Science Collaboration,
2015). Consequently, an index of stimulus similarity would
improve experimental precision and allow the assessment of
performance across standardized task variants. Quantification
of item similarity will allow tighter control over item-
dependent effects and enable better reproducibility. Here we
introduce a new database of over 200 objects with similar
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lures, which enables the selection of stimuli based on a unified
dissimilarity scale.

A direct application of databases such as this one is in the
field of learning and memory. Recognition memory paradigms
can gain substantial benefits from the control and titration of
stimulus discrimination, by manipulating target-lure similarity.
For example, forced choice tasks that utilize similar lures can
dissociate familiarity and recollection memory processes
(Migo, Montaldi, Norman, Quamme, & Mayes, 2009).
Additionally, studies exploring pattern separation and its neural
bases must carefully control the degree of similarity between
the target and lures in order to examine hippocampal engage-
ment (Bakker, Kirwan, Miller, & Stark, 2008; Hunsaker &
Kesner, 2013; Lacy, Yassa, Stark, Muftuler, & Stark, 2011;
Liu, Gould, Coulson, Ward, & Howard, 2016). Similarly, item
generalization tasks often use variants of the original studied
target (such as a rotated image) to assess the degree of gener-
alization when a task is performed under different conditions
and experimental manipulations (Kahnt & Tobler, 2016;
Motley & Kirwan, 2012). As a result, titrated target—lure sim-
ilarity would also be particularly valuable in these studies.

Such titrations may also have utility for manipulations in
the fields of visual perception, attention, and object identifica-
tion experiments. For example, studies examining attention
deficits often use similar foils to increase attentional demands
(Rapcsak, Verfaellie, Fleet, & Heilman, 1989; Rizzo,
Anderson, Dawson, Myers, & Ball, 2000). Similarly,
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perceptual similarity can be utilized to study the prioritization
of attention and attentional control in a visual search task
(Nako, Wu, & Eimer, 2014; Wu, Pruitt, Runkle, Scerif, &
Aslin, 2016). Studies in these fields are often forced to rely
on manipulations of verbal or abstract stimuli, which may
limit investigative abilities into their research questions. Poor
stimulus selection can result in the misattribution of item-
dependent false-positive errors as scientifically informative
effects. Participants can adopt alternative strategies without
the knowledge of the experimenters, leading to erroneous as-
sumptions about task completion. These issues may be further
exacerbated in neuroimaging experiments, where the environ-
ment may augment the effect of confounding variables and
induce additional interference. Hout et al. (2016) directly ex-
plored the drawbacks of stimulus selection through the sub-
jective judgment of the researchers and demonstrated the clear
advantage of using a quantitative index of stimulus similarity
in visual search and eye movement research. We believe that
these advantages can also greatly benefit many other aspects
of cognitive neuroscience research, including the field of
learning and memory.

Two multidimensional-scaling databases of dissimilarity
have previously been developed for object picture sets.
These databases were both established using the spatial-
arrangement method (first developed by Goldstone, 1994).
First, Migo, Montaldi, and Mayes (2013) produced a database
of 50 object sets (~ 17 images/set) with a common scale of
dissimilarity. Following the spatial-arrangement method pro-
cedure, a sample of the images was rated using pairwise com-
parisons. These ratings were subsequently used to standardize
the level of dissimilarity across sets. Critically, this step en-
ables two image pairs from different object sets with the same
quantitative degree of dissimilarity to be interpreted as equally
similar. This resource, though small, approaches the current
methodological gold standard for the development of a data-
base of dissimilarity. The dissimilarity database produced by
Hout, Goldinger, and Brady (2014; based on images taken
from the Massive Memory Database of Konkle, Brady,
Alvarez, & Oliva, 2010) is much larger than that of Migo
et al. (2013); however, the dissimilarity distances of objects
within a set are substantially greater. Furthermore, the sam-
pling-based, pairwise comparison procedure used by Migo
et al. (2013) was not utilized to standardize dissimilarity dis-
tances across all the sets. Therefore, the intraset dissimilarity
measure cannot be utilized for accurately matching pairwise
dissimilarity across sets on a common scale. This is a serious
shortcoming of the database, in that it does not provide an
objective comparison, or calibration, of distances obtained
from different sets of objects. Therefore, two object pairs rated
with equal dissimilarity distance might in fact be quite differ-
ent in the objective resolution of their similarity. Overall, these
features limit the applicability of these resources in fine-
grained cognitive neuroscience and neuroimaging.
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The range of image pair similarities in a database is also
important to its utility in cognitive neuroscience experiments.
The range of within-object-set dissimilarities in previous da-
tabases has been limited. Upon visual inspection, it is clear
that the images within each set of the Migo et al. (2013) data-
base are much more similar than the images used by Hout
et al. (2014). The dissimilarity between a pair of images from
the Migo et al. (2013) database is comparable to viewing the
same item from a different perspective. In contrast, the images
used by Hout et al. (2014) generally reflect somewhat differ-
ent versions of items within a set. Consequently, these two
databases are very distinct and are likely to represent polar
extremes of the dissimilarity continuum, with a clear lack of
continuity. Production of a database with an even distribution
of dissimilarities across the full continuum (within and be-
tween sets) would enable more freedom in experimental de-
sign and control, as well as the opportunity for more refined
hypothesis testing.

For the Similar Objects and Lures Image Database
(SOLID), we aimed to (a) develop a database large enough
to be employed in neuroimaging experiments that demand
many trials, (b) establish a common scale of dissimilarity both
within and across image sets, and (c) ensure that the database
retains utility across the dissimilarities continuum. To achieve
these objectives, we first developed a new set of images to
complement the images available from Migo et al. (2013). We
then utilized the spatial-arrangement method to establish
within-object-set dissimilarity distances for these images
(Exp. 1a). We also employed the spatial-arrangement method
with a subset of images (Exp. 1b) from another large database
of images that does not provide data on image similarity
(Konkle et al., 2010). This provided an even greater breadth
of similarity and of choice of object categories and images
across SOLID. In Experiment 2, we standardized the
dissimilarity distances taken from Migo et al. (2013) and those
established in Experiments la and 1b using a sample of im-
ages from each object set in a pairwise rating procedure. The
scaled dissimilarity indices (DI) that were produced were then
validated using a forced choice memory paradigm (Exp. 3).
This ensured that image dissimilarity was accurately reflected
in our DI, resulting in better memory performance and re-
duced response times as dissimilarity increased.

Experiment 1a: Spatial arrangement of new
object images developed for SOLID

Method

Participants Twenty participants (mean age = 28.5; 14 female,
six male) performed the spatial-arrangement procedure. The
sample size was informed by previous research by Migo et al.
(2013) using the same procedure. Participants received £7 per
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hour as compensation for their time. All experimental proce-
dures were approved by the University of Manchester
Research Ethics Committee and were conducted in accor-
dance with their guidelines and regulations. Informed consent
was collected for all participants prior to data collection.

Materials Freely accessible and available online resources un-
der a Creative Common license were used to collect 231 im-
ages of everyday objects, split equally across 77 object sets
(i.e., three images per set). The images were converted to
grayscale and presented on a white background. These 231
images were manipulated (in terms of shape, size, shade, ori-
entation, texture, and features) using Coral PHOTO-PAINT
X5 to create another 12 images per set (total 1,155 images,
15 per set). All images are provided in the supplementary
materials. Images were presented in Microsoft PowerPoint
on a 21-in. computer monitor (screen resolution = 1,920 x
1,080 pixels) and arranged by participants using a mouse.

Procedure Participants were presented with the 15 images in
each object set on each trial and instructed to arrange the
images so that the distance between any image pair reflected
the dissimilarity of that pair of images (Charest, Kievit,
Schmitz, Deca, & Kriegeskorte, 2014; Goldstone, 1994;
Migo et al., 2013). A greater distance between images indi-
cated greater dissimilarity, irrespective of position.
Participants were encouraged to use the whole screen to ar-
range the images into the spatial arrangement that best repre-
sented the dissimilarity across the set. We clearly articulated
that this arrangement need not apply across different catego-
ries. This process enabled the collection of dissimilarity rat-
ings between all objects within an object set in a single trial.
Each testing session consisted of 77 self-paced trials and took
approximately 105 min to complete. No participants took
more than 120 min to complete the entire procedure.

Results

Each sorting map (Fig. 1) produced an individual dissimilarity
rating for every object as compared to every other object with-
in a set. Averaging across each image-by-image comparison
between participants produced a matrix of dissimilarity dis-
tances for each object set. The mean dissimilarity distance
within a set ranged from between 250 (Ladybird) and 297
(Cards) pixels. As expected, there were minor differences in
judgments of the dissimilarity distance of each image pair
across participants. The variability of these participant-
specific sorting maps produced a standard deviation for each
image pair. We provide the group average dissimilarity dis-
tance for every image pairing in every set and the standard
deviations of these distances in the supplementary materials.

To further examine the level of agreement between
participants in sorting the objects within each set, we

performed multidimensional scaling (MDS) for each set,
using the PROXSCAL algorithm in SPSS (IBM, v.23).
MDS is used to spatially represent the relationships be-
tween data points. Using a set number of dimensions (%),
the goal of this analysis is to minimize the differences
between the input proximities (dissimilarity distance, in
this case) and the new representation of the data in &
dimensions. We reduced our data to two dimensions by
using a stress convergence value of .0001 and a maximum
of 100 iterations. We then computed a dissimilarity mea-
sure, d, reflecting the difference between each partici-
pant’s similarity sorting and the final group average
(Migo et al., 2013). Table 1 shows that the highest varia-
tion in sorting among participants was for the “Avocado”
set, and the lowest was for “Balloon.”

Experiment 1b: Spatial arrangement of object
images from Konkle et al. (2010)

Method

Participants A new group of ten participants (mean age = 33;
six male, four female) performed the spatial-arrangement pro-
cedure (original Method 1). To ensure that this sample size
was sufficient, we compared the standard deviations of sorting
with those from the previous experiment, as well as those from
Migo et al. (2013), and found no differences between them.
Participants received £7 per hour as compensation for their
time. All experimental procedures were approved by the
University of Manchester Research Ethics Committee and
were conducted in accordance with their guidelines and regu-
lations. Informed consent was collected for all participants
prior to data collection.

Materials In all, 1,275 images of objects, split equally across
75 object categories (17 images per set), were sourced from a
large object image database without reference to item similar-
ity (Brady, Konkle, Alvarez, & Oliva, 2008; Konkle et al.,
2010). The images were converted to grayscale and presented
on a white background.

Procedure Participants were presented with the 17 images in
each object set on each of the 75 trials and received the same
instructions as had been given in Experiment 1a.

Results

Each sorting map produced an individual dissimilarity
rating for every object as compared to every other object
within a set. Averaging across each image-by-image com-
parison between participants produced a matrix of dissim-
ilarity distances for each object set. The mean
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Fig. 1 (A) The “Accordion” object set from Experiment la. (B) The
group average 2-D multidimensional-scaling (MDS) solution. (C) One
participant’s sorting map, closest to the group MDS solution. (D) Another

dissimilarity within a set ranged from 287 (“Nunchaku”)
to 328 (“Car”) pixels. As in Experiment 1, there were
differences in judgments of the dissimilarity distance of
each image pair across participants. The variability of
these participant-specific differences produced a standard
deviation for each image pair. We provide the group av-
erage dissimilarity distance for every image pairing in
every set and the standard deviations of these distances
in the supplementary materials.

We again performed an MDS analysis to further explore the
similarity sorting techniques used across participants. The
mean d (dissimilarity measure) and the MDS standard devia-
tion can be found in Table 2, with “Stapler-var” showing the
highest variation among participants, and “Necklace” the least.
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participant’s sorting map, furthest away from the group MDS solution.
(E) A participant’s sorting map midway between those in panels C and D.

Experiment 2: From dissimilarity distances
to DI

Method

Participants A group of 23 new participants (mean age =
19.4, all female) completed the standardizing procedure in
exchange for course credit. This experiment was approved
by the University of Manchester Research Ethics
Committee and was conducted in accordance with their
guidelines and regulations. Informed consent was collect-
ed for all participants prior to data collection. The data
from two participants were excluded from the analysis
due to technical failures with the task.
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Table 1 Results of the multidimensional-scaling analysis for Experiment 1a

Picture Set d SD Picture Set d SD Picture Set d SD
Accordion 0.459 0.162 Cushion 0.43 0.181 Pigeon 0.494 0.175
Acorn 0417 0.195 Daisy 0.412 0.158 Pin 0.434 0.182
Airplane 0.433 0.2 Deer 0.47 0.157 Pipe 0.397 0.114
Artichoke 0.408 0.163 Dolphin 0.393 0.16 Rabbit 0.475 0.176
Avocado 0.593 0.212 Duck 0.442 0.186 Racket 0.486 0.137
Axe 0.465 0.172 Faucet 0.433 0.126 Radish 0.501 0.162
Balloon 0.317 0.153 Fishing rod 0.478 0.204 Real pig 0.336 0.187
Beach ball 0.572 0.175 Frog 0.44 0.128 Recliner 0.438 0.165
Bird 0.437 0.156 Garlic 0.42 0.143 Rooster 0.352 0.153
Bouquet 0.382 0.166 Ginger 0.423 0.176 Rose 0.381 0.125
Box 0.437 0.138 Giraffe 0.407 0.163 Shoe 0.463 0.167
Brush 0.408 0.155 Glasses 0.501 0.167 Shovel 0.502 0.196
Cable 0.405 0.23 Grape 0.406 0.205 Slide 0.408 0.185
Cactus 0.5 0.103 Guitar 0.432 0.169 Snail 0.398 0.125
Candle-large 0.364 0.159 Helmet 0.559 0.12 Snorkel 0.422 0.145
Car-classic 0.506 0.168 Horse 0.514 0.192 Starfish 0.534 0.14
Cards 0.518 0.128 Kangaroo 0.52 0.157 Sushi 0.472 0.146
Cat 0.518 0.216 Ladybug 0.472 0.171 Swan 0.507 0.18
Cauliflower 0.488 0.186 Luggage 0.401 0.17 Swing seat 0.546 0.181
Cedar 0.497 0.174 Mantis 0.356 0.154 Telephone 0.353 0.199
Cigarette 0.419 0.167 Meter 0.415 0.161 Train 0.412 0.159
Coke 0.429 0.181 Mug 0.445 0.184 Turtle 0.444 0.156
Compass 0.426 0.192 Panda 0.479 0.149 Tyre 0.578 0.212
Com 0.396 0.165 Pencil 0.426 0.187 Veg 0.484 0.217
Cowboy hat 0.546 0.154 Penguin 0.424 0.184 Watermelon 0.502 0.118
Cupcake 0473 0.168 Pepper 0.424 0.131

Materials The dissimilarity distance matrices resulting from
the spatial-arrangement method in Experiments la and 1b
and in Migo et al. (2013) were used to select the images for
the standardization procedure. In the previous experiments, all
participants had been instructed to try to use the entire screen
to sort the images. As a result, the overall relative dissimilarity
distances within image sets were extremely similar. However,
software and hardware differences in the collection of the
spatial-arrangement maps produced systematic, overall differ-
ences in the distances produced by Migo et al. (2013) and in
Experiments 1a and 1b. We therefore scaled the output of the
dissimilarity distances from the spatial-arrangement maps pro-
duced in Experiments 1a and 1b to match the grand average of
the dissimilarity distances produced by Migo et al. (2013).
This correction overcame any potential methodological differ-
ences between the experiments. These produced matched dis-
similarity matrices (provided in the supplementary material)
were used to select the images for Experiment 2.

We selected two images from each object set whose
dissimilarity closely matched the grand average (the mean
dissimilarity distance across all image comparisons) of

770 pixels (Fig. 2). Experiment 2 used 202 images pairs
(one pair from every set). The mean dissimilarity distance
between the selected pairs and the grand average (770)
was 2.26 pixels (SD = 2.75).

Procedure Each participant rated the similarity of each
image pair on a scale from 1 to 9, where a lower number
indicated that the images were more similar. The images
were presented using Microsoft PowerPoint with the same
materials described in Experiments 1a and 1b. Participants
responded by pressing the appropriate number from 1 to 9
on the keyboard of an HP laptop. Successful standardiza-
tion of the database required accurate and reliable ratings
between the object categories. To prevent item-dependent
effects or noise potentially induced by rating the image
pairs without having seen the full range of dissimilarities,
participants were required to reevaluate the first quarter of
the image pair ratings. Participants were instructed that
they could change any of their ratings in the reevaluation
stage and that they should continue until they felt their
scale of ratings was consistent across all image settings.
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Table 2 Results of the multidimensional-scaling analysis for Experiment 1b

Picture Set d SD Picture Set d SD Picture Set d SD
Backpack 0.474 0.159 Dresser 0.698 0.14 Pot 0.668 0.153
Bagel 0.444 0.115 Drum 0.561 0.143 Present 0.621 0.154
Ball-ball 0.473 0.16 Earing 0.649 0.17 Rabbit 0.695 0.164
Barbie 0.432 0.184 Extension 0.656 0.162 Razor 0.423 0.193
Beaker 0.695 0.119 Fan 0.521 0.174 Rug 0.597 0.099
Beer 0.534 0.093 Folder 0.496 0.174 Saddle 0.452 0.148
Bell 0.573 0.147 Garland 0.591 0.173 Scales 0.485 0.182
Big-car 0.544 0.232 Grater 0.521 0.18 Scissors 0.587 0.153
Binoculars 0.577 0.194 Hairband 0.526 0.164 Skates 0.495 0.211
Bonsai 0.662 0.141 Hairbrush 0.582 0.125 Sofa 0.625 0.132
Boot 0.649 0.168 Hammer 0.665 0.197 Soldier 0.662 0.156
Broom 0.596 0.133 Handfan 0.541 0.163 Speakers 0.626 0.179
Buggy 0.505 0.222 Headphones 0.546 0.182 Stapler-var 0.716 0.129
Calculator 0.647 0.106 Hourglass 0.613 0.163 Stocking 0.561 0.162
Camera 0.606 0.164 Kayak 0.588 0.215 Suit 0.402 0.174
Candle 0.559 0.175 Lamp 0.671 0.134 Swimsuit 0.572 0.187
Ceiling fan 0.666 0.142 Lipstick 0.598 0.275 Table 0.529 0.159
Chair 0.629 0.143 Mask 0.467 0.118 Telescope 0.557 0.2
Clock 0.582 0.151 Microscope 0.558 0.143 Toilet 0.465 0.179
Compass 0.564 0.149 Microwave 0.611 0.138 Torch 0.502 0.163
Doll house 0.651 0.16 MP3 0.644 0.139 Tree 0.506 0.229
Dolls 0.722 0.168 Muffin 0.583 0.163 Trousers 0.501 0.153
Donut 0.565 0.229 Necklace 0.376 0.121 Trunk 0.572 0.174
Door-key 0.552 0.176 Nunchaku 0.636 0.162 Watch 0.549 0.219
Doorknob 0.483 0.177 Padlock 0.593 0.115

Results Most critically, this procedure produced a set of matrices

This standardization procedure produced a dissimilarity rat-
ing for each object set. For example, the images selected
within the hairband set (hairband 15 and hairband 17) re-
ceived an average dissimilarity rating of 3.27. Figure 3A
illustrates the distribution of average ratings across image
sets. Every value in the object dissimilarity matrix was mul-
tiplied by the set’s pairwise rating. This procedure revealed
the range of dissimilarities across all sets, without influenc-
ing the relative dissimilarities of all the objects within a set.

G
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with a common scale of dissimilarity. The average dissimi-
larity distance across an image set was 3608.02 dissimilarity
index (DI) units (SD = 1421.42). Figure 3B illustrates the
mean DI of each image set. Importantly, an abundance of
image pairs can be selected for any chosen value along the
DI continuum. Furthermore, visual inspection of Fig. 3B
shows that the majority of image sets show a large range
of DIs across the image pairs. All tables containing the DI
matrix for each object set, as well as all stimuli, are present-
ed in the supplementary materials.

< AR 4

Fig. 2 Four representative examples of image pairs used in the standardization procedure. Each pair had a very similar dissimilarity distance, resulting
from Experiment 1. The rating assigned to each pair was used to moderate the similarity distances of the rest of the images in the relevant set.
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Fig.3 (A) The distribution of dissimilarity scores assigned to the image pairs in Experiment 2. (B) An illustration of the mean dissimilarity indexes of the

object image sets.

Experiment 3: Validating SOLID in a forced
choice memory paradigm

The comparability of DIs across object categories (i.e., an
image pair with a DI of 700 in the “Bracelet” set is as dissim-
ilar as an image pair with the same DI in the “Backpack” set)
is crucial to the utility of SOLID. We validated the accuracy
and comparability of the DIs in Experiment 3 using a forced
choice memory task. The relationship between similarity and
memory accuracy has been clearly described previously
(Dickerson & Eichenbaum, 2010; Migo et al., 2013;
Norman, 2012): As the dissimilarity between target and lure
increases, an individual’s ability to identify the target over the
lure improves. The selection of targets and lures based on the
DlIs included in SOLID should produce this pattern of behav-
ioral performance if our data accurately scale image
dissimilarity.

Method

Participants Thirty-one healthy participants completed the
validation procedure. This experiment was approved by the
University of Manchester Research Ethics Committee and
was conducted in accordance with their guidelines and regu-
lations. Informed consent was collected for all participants
prior to data collection. Participants received course credit in
exchange for their time. One participant had previously been
exposed to the stimuli and was excluded from the analysis.
The data from one other participant were lost due to technical
difficulties during collection. All remaining participants (N =
29; mean age = 19.06; 27 female, two male) had normal/
corrected-to-normal vision, reported no history of neurologi-
cal disorder, and had not previously been exposed to the stim-
uli. This sample size is equivalent to that used to validate
previous databases (Migo et al., 2013).

Materials One image pair was selected from each object set to
create target—lure pairs. The first image of the 202 image pairs
was presented in the study phase and subsequently served as a
target during the test phase. The second image in each object
pair was used as the lure. The DI matrices developed in
Experiment 2 were used to select these image pairs. Image
pairs with the following target—lure DI values—1300, 2000,
2700, 3400, 4100, and 4800—were selected for use in
Experiment 3. These intervals best characterized the variabil-
ity in DI across the database. For counterbalancing purposes,
we used three versions of the experiment, with different object
sets contributing to each DI interval. This between-subjects
counterbalance removed any effect of potential variability in
specific item memorability.

Procedure Prior to the study phase, participants were
instructed to study each item carefully. We informed partici-
pants that this was a memory task and that they would be
asked to distinguish between very similar images at test. The
study phase consisted of 3-s presentations of single images,
each presented once. Participants then engaged in mental ar-
ithmetic problems during a 5-min delay. The presentation or-
der in both the study and test phases was random. The subse-
quent test phase consisted of 5-s presentations of the target and
lure pair. Participants were asked to identify which of the two
images they had seen previously. The experiment was present-
ed in PsychoPy (Peirce, 2007) with the same setup as
Experiments 1 and 2.

Results

Experiment 3 assessed memory performance, measured by the
target hit rate (calculating d’ is not possible in forced choice
paradigms, since the targets and lures are mutually dependent)
over six levels of DI. A 6x3 repeated measures analysis of
variance assessed differences across the six DI levels and
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between the three experiment versions. A significant main
effect of DI level was observed [F(5, 130) = 37.17, p < .001,
r]p2 = .588]. The main effect of experiment version was not
significant [F(2, 26) = 0.28, p = .755, n,” = .021]. We did not
observe a significant interaction between DI level and exper-
iment version [F(10, 130) = 1.85, p = .176, np2 =.125]. With
increasing DI levels (target—lure dissimilarity), we observed a
linear increase in memory accuracy [F(1, 26) = 130.74, p <
.001, np2 = .834; Fig. 4A]. Memory performance was above
chance across all DI values (ps < .001).

Similar analyses were conducted to assess differences in
response times with changes in DI levels. We observed a sig-
nificant effect of DI level on response times [F(5, 130) =
37.51, p < .001, 77p2 = .591, sphericity not assumed].
Increases in DI (target—lure dissimilarity) were accompanied
by a significant linear decrease in response times [F(1, 26) =
72.19, p < .001, n,> = .735; Fig. 4B].

Demonstration of the characteristic linear relationship be-
tween increasing dissimilarity and better memory perfor-
mance illustrates that SOLID achieved its goal to provide a
well-controlled set of object images with a wide range of
similarities that can be utilized in cognitive research.

General discussion

In the present study, we have presented a series of experiments
that established a large set (3,498 images, 201 sets; mean of
17.4 [range 13-25] images per set) of everyday object images
with known, quantitative similarity information. A spatial-
arrangement procedure (Goldstone, 1994; Hout, Goldinger,
& Ferguson, 2013) quickly and efficiently provided similarity
data on all images from all participants. Image pairs with a
common dissimilarity score were then selected from each ob-
ject set. A pairwise similarity rating was then conducted on
these sample images. This cross-set standardization procedure
established a common scale of dissimilarity (DI) between the
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image pairs of each object set. Finally, we conducted a forced
choice recognition memory task (with corresponding targets
and lures) to validate our measures of dissimilarity. We used
the image pairs that were selected to fully represent the spec-
trum of dissimilarities, and observed a linear increase in mem-
ory performance with increasing dissimilarity between the
memory target and the lure. In addition, faster response times
were observed on more dissimilar target—lure trials. These
observations confirm that our DI is meaningful and predictive
of memory performance.

The spatial-arrangement method has been established as a
fast and effective method for collecting similarity information
(Hout et al., 2016; Hout et al., 2013). However, it has previ-
ously been criticized for limiting the number of dimensions on
which individuals can represent similarity (Verheyen,
Voorspoels, Vanpaemel, & Storms, 2016). First, it is doubtful
whether any of the current methods (e.g., spatial arrangement
or exhaustive pairwise comparison) completely avoid this lim-
itation (Hout & Goldinger, 2016). Maintaining a consistent
and reliable high-dimension approach to rating the similarity
of stimuli using an exhaustive pairwise rating system is highly
challenging. A lack of perspective for both the breadth of
similarity across a set and the nuance relationships within
the set would potentially produce ratings equally as noisy as
those from the spatial-arrangement method, if not more noisy.
Participant fatigue may also impact the accuracy of pairwise
ratings, due to the far longer experimentation time required to
complete pairwise rating than with the spatial-arrangement
method. These factors suggest that the spatial-arrangement
method is just as capable as the pairwise comparison method,
if not more so, of representing these high dimensions. This is
supported by the strong linear correlations between the simi-
larity indices produced by a spatial-arrangement method and
by the pairwise rating procedure (Migo et al., 2013).
Furthermore, Hout et al. (2013) demonstrated the same equiv-
alence by showing that higher-dimensional similarities could
easily arise from the averaging of similarity arrangements
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Fig.4 Results of the forced choice memory study. (A) This panel illustrates greater memory accuracy with decreasing levels of similarity. (B) This panel
illustrates that response time (RT) results were significantly shorter with lower levels of similarity.
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across participants who each focused on two different dimen-
sions. Moreover, Hout and Goldinger (2016) calculated that
upon consideration of the data collection time (and its associ-
ated factors, such as participant fatigue and disengagement),
the spatial-arrangement method was more capable of
explaining variance in response times on two same—different
classification tasks. Taken together, these comparisons illus-
trate that despite using computer displays restricted to two
dimensions, the spatial-arrangement method can effectively
represent similarity spanning multiple dimensions across a
set of participants.

Despite the efficacy of the spatial-arrangement method in
representing multiple dimensions, we further minimized un-
certainty regarding potentially unrepresented dimensions by
exclusively using grayscale images in SOLID. This essentially
eliminated one of the dimensions contributing to variations in
sorting. In addition, the images in SOLID are generally more
similar than those in previous iterations of similar object im-
age databases (Hout et al., 2014), and provide a finer scale on
which dissimilarity is measured. These differences reduce the
number of potential factors on which participants could ar-
range the images, thus reducing individual variability in the
dimensions prioritized during sorting. Lastly, the scaling of
dissimilarity and behavioral performance on the memory task
in the present study illustrates the clear success of our spatial-
arrangement procedure and subsequent standardization proce-
dures in representing meaningful image similarity.

Our database offers a wide range of everyday objects,
which vary in different ways. Multiple features distinguish
the images within each set. For example, some objects are
perceptually distinct (e.g., in terms of shape, feature, or orien-
tation), while others can be differentiated by a semantic label
(e.g., for types of car: manufacturer, model year, function).
This ensures that no single feature can distinguish between a
given target and the other possible foils. SOLID affords re-
searchers the ability to choose images (and image groups) on
the basis of a single feature or a combination of features, to
investigate perceptual versus semantic processing.
Researchers who are interested in characterizing memory pro-
cesses will find this particularly useful, in that it captures non-
systematic variation of the representations to be stored and
retrieved from memory. Consequently, these differences in
multiple image features preclude participants from using a
specific strategy to guide their memory decisions in
distinguishing between old and new representations.

The degree of similarity between items is also crucial for
studies investigating pattern separation and completion
(Bakker et al., 2008; Hunsaker & Kesner, 2013; Lacy et al.,
2011; Liu et al., 2016; Norman, 2012). Unlike existing data-
bases (Hout et al., 2014; Migo et al., 2013; Stark, Yassa, Lacy,
& Stark, 2013), SOLID allows researchers to systematically
create a parametric gradient of similarity between different
items (pairs, triplets, or quartets, up to even ten items).

Furthermore, systematic manipulation of item similarity could
be used to assess item generalization, the similarity threshold
at which an old item is judged as new, and whether that thresh-
old can be manipulated experimentally (Kahnt & Tobler,
2016; Motley & Kirwan, 2012). Finally, item similarity could
also be used to probe memory recollection and familiarity
using different testing formats (Migo et al., 2009; Migo
etal., 2014).

The ecological relevance of images of everyday objects is
another advantage of using SOLID. Our database enables the
investigation of multiple aspects of cognition with control
over both perceptual and semantic image features.
Furthermore, cognitive abilities, such as episodic memory,
can be assessed independently of language. This advantage
is especially beneficial for research examining clinical or de-
velopmental populations with diminished or incomplete lexi-
cal abilities. Deficits in language processing networks attenu-
ate the ability of current clinical assessments (such as the
Logical Memory subtest of the Wechsler Memory Scale;
Wechsler, 1987) to accurately and reliably determine memory
impairment. In spite of their limitations, these assessments are
used as inclusion and primary efficacy measures for clinical
trials of conditions such as Alzheimer’s disease (Chapman
et al., 2016). Similarly, clinical assessments not reliant on
language, such as the Doors and People task (Morris,
Abrahams, Baddeley, & Polkey, 1995), provide neither the
same breadth of realistic images nor the ability to carefully
titrate task difficulty according to memory function. The use
of SOLID to carry out clinically relevant memory assessments
could enable better early identification, classification, and
targeting of treatments in clinical populations.

The comparability of image pairs across object sets is a
key benefit of SOLID over existing databases. Critically,
this will allow for control of image pair similarity in future
experiments in which researchers wish to use stimuli from
different image sets (e.g., using equally similar pairs of
apples and keys). To provide researchers with easy access
to different object pairs (or triplets) of equal similarity, we
have created two Matlab (The MathWorks Inc., Natick,
MA) functions that are available here: https://github.com/
frdarya/SOLID. Previous attempts to develop a visual
object stimulus database with similarity information have
either not provided a common scale of similarity across
object sets (Hout et al., 2014) or not provided enough
stimuli to support paradigms requiring large numbers of
trials (Migo et al., 2013). Enabling this degree of control
over similarity is critical for high-level studies of memory
and cognition, and combining this strength with the option
to use it across many trials will allow research questions to
be addressed using neuroimaging techniques. In effectively
providing both of these characteristics, SOLID represents a
very valuable tool that will allow researchers to better in-
vestigate memory, cognition, and their neural bases.
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