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Abstract
Background: We report our experience of selecting tag SNPs in 35 genes involved in iron
metabolism in a cohort study seeking to discover genetic modifiers of hereditary
hemochromatosis.

Methods: We combined our own and publicly available resequencing data with HapMap to
maximise our coverage to select 384 SNPs in candidate genes suitable for typing on the Illumina
platform.

Results: Validation/design scores above 0.6 were not strongly correlated with SNP performance
as estimated by Gentrain score. We contrasted results from two tag SNP selection algorithms,
LDselect and Tagger. Varying r2 from 0.5 to 1.0 produced a near linear correlation with the number
of tag SNPs required. We examined the pattern of linkage disequilibrium of three levels of
resequencing coverage for the transferrin gene and found HapMap phase 1 tag SNPs capture 45%
of the ≥ 3% MAF SNPs found in SeattleSNPs where there is nearly complete resequencing.
Resequencing can reveal adjacent SNPs (within 60 bp) which may affect assay performance. We
report the number of SNPs present within the region of six of our larger candidate genes, for
different versions of stock genotyping assays.

Conclusion: A candidate gene approach should seek to maximise coverage, and this can be
improved by adding to HapMap data any available sequencing data. Tag SNP software must be fast
and flexible to data changes, since tag SNP selection involves iteration as investigators seek to
satisfy the competing demands of coverage within and between populations, and typability on the
technology platform chosen.
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Background
Single nucleotide polymorphisms (SNPs), changes in a
single base pair of the DNA sequence, are the most fre-
quently occurring form of variation in the human
genome. Many genes have a large number of SNPs, and it
is acknowledged that there are more than 10 million SNPs
across the human genome, making it impossible for cost-
effective genotyping of all of them in studies of disease,
even in very small samples. We can, however, reduce the
genotyping burden by exploiting the strong correlation
between some SNPs that are close together on the
genome. This is due to the phenomenon of linkage dise-
quilibrium (LD), or non-random association of SNP alle-
les at the population level, due to the sharing by multiple
individuals of ancestral chromosomal segments. These
segments, or haplotypes, are combinations of particular
SNP alleles on the same chromosome that tend to segre-
gate together. By choosing a subset of maximally inform-
ative SNPs, or "tag" SNPs, to represent these haplotypes,
the number of SNPs to be genotyped in a larger sample
can be reduced without losing the ability to capture most
of the variation, and in particular any association between
unmeasured "causal" alleles and the disease outcome
measured on individuals in the sample. This is an increas-
ingly common approach to genetic association studies,
since it reduces costs but retains much of the information
about linkage disequilibrium patterns across the human
genome. It is the underlying principle behind the Hap-
Map [1] project. An additional assumption behind this
approach is the idea of the common variant common dis-
ease hypothesis. It is assumed that the variant, and hence
its haplotype, are relatively common in the general popu-
lation and hence will be ascertained using this approach.
If, however, the disease is caused by a rare variant, this
approach may fail to detect association.

Many researchers are now turning to large, publicly avail-
able databases of SNPs, which provide a catalogue of
human genetic variation, in order to choose a set of
informative "tag" SNPs for genotyping in association
studies of disease. The International HapMap Project [2]
and the Seattle SNPs project are complemented by several
NIH initiatives including the National Institute of Envi-
ronmental Health Sciences Environmental Genome
Project (NIEHS EGP) and the National Heart Lung and
Blood Institute Resequencing and Genotyping Project.
The choice of tag SNPs is made more challenging when
study subjects are from multiple populations, since the
transferability of tag SNPs depends on similarity of link-
age disequilibrium patterns. It is also desirable to incorpo-
rate resequencing data from local case and control
samples generated during a "SNP discovery" phase. A fur-
ther complication is the need for the chosen tag SNPs to
have high probability of successfully being genotyped on

the high-throughput platform being used to process the
samples.

Iron is essential for life and consequently body iron levels
are tightly regulated in humans. There are disease states
associated with having either too little (iron deficiency) or
too much (iron overload) iron, the former usually due to
inadequate dietary iron or excessive iron loss and the lat-
ter usually associated with mutations in proteins that reg-
ulate intestinal iron absorption. About 90% of clinical
cases of iron overload (hemochromatosis) in populations
of northern European origin are homozygous for the 845
G → A mutation in the HFE gene responsible for the
C282Y substitution in the HFE protein [3]. Affected indi-
viduals are characterised by high transferrin saturation (a
measure of the amount of circulating iron), an increased
serum ferritin (a measure of iron storage) and the associ-
ated clinical symptoms of iron overload (fatigue, arthritis,
abnormal liver function and ultimately permanent tissue
damage). Despite the high prevalence of mutations in the
HFE gene, the phenotypic expression of hemochromato-
sis varies considerably and both environmental and
genetic factors appear to make important contributions to
this variation. The HealthIron Study seeks to find associa-
tions in Caucasian subjects between common polymor-
phisms in candidate genes of iron metabolism and
variations in the iron phenotype in HFE-associated hemo-
chromatosis.

Here we describe the methods used to select SNPs for gen-
otyping of samples from the HealthIron Study on the
basis of sequence data available from a number of differ-
ent sources, both public and proprietary, with particular
reference to iron homeostasis genes. The selected SNPs
were subsequently genotyped using the Illumina platform
which genotypes one to four multiples of 384 SNPs in a
multiplex reaction. A goal of this research was to identify
384 SNPs based on a consideration of 35 genes involved
in iron metabolism.

Methods
We used four data sources in order to obtain thorough
SNP coverage of the genes and to allow detection of either
direct association between iron phenotypes and a causal
variant or indirect association with a marker that is in
linkage disequilibrium (LD) with a causal variant. We
used a minor allele frequency (MAF) cut-off of ≥ 3% and
r2 (the square of the correlation between SNPs) of 0.8. The
MAF cut-off of ≥ 3% was chosen as a compromise between
power (i.e. sample size, 3% represents 6 heterozygotes
among 94 individuals sequenced) and detection of rare
alleles with large effect.

The four data sets used were:
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1. HealthIron: Resequencing of selected candidate genes
has been performed on two groups of individuals of
northern European descent (94 C282Y homozygotes and
94 chosen randomly without regard to HFE genotype)
from a large population-based cohort study [4]. We report
here only on the randomly chosen individuals who were
resequenced for six genes.

2. HEIRS ancillary study NHLBI: The Hemochromatosis
and Iron Overload Screening [5] (HEIRS), ancillary study
on iron deficiency carried out initial SNP identification
from 14 candidate genes by resequencing of five popula-
tions: 24 African American, 24 Yorubans (HapMap YRI),
47 Caucasian with north-west European ancestry (Hap-
Map CEU), 48 Hispanic descent, 45 Chinese (HapMap
CHB). This resequencing was completed by the Rese-
quencing and Genotyping Service of the National Heart
Lung and Blood Institute (NHLBI RS&G). Accession num-
bers are TFR2: DQ496110, TF: DQ525716, HFE2:
DQ309445, HCP1: DQ496103, TFRC: DQ496099,
PGRMC2: DQ496105, PGRMC1: DQ496104, IREB2:
DQ496102, HEPH: DQ496100, HAMP: DQ496109,
FTH1: DQ496108, FLVCR: DQ496107, CYBRD1:
DQ496101, and ACO1: DQ496106.

3. SeattleSNPs [6]: This is funded as part of the NHLBI
Programs for Genomic Applications (PGA). It aims to
investigate the associations between SNPs in candidate
genes and pathways that underlie inflammatory responses
in humans. Individual investigators can nominate candi-
date genes to be resequenced for SNP discovery. Three of
the genes of iron metabolism targeted by the HealthIron
and HEIRS ancillary projects have been resequenced by
SeattleSNPs (TF, HMOX1, TNFα all panel 1: 23 CEPH (9
are HapMap children), 24 African Americans – which are
the same as in the HEIRS ancillary study).

4. HapMap (publicly available [7]): The International
HapMap Project [2] is analyzing DNA from populations
with African, Asian, and European ancestry to generate a
catalogue of common SNPs across the whole genome in
humans.

Tag SNP selection programs
There are many algorithms and software packages
designed to select tag SNPs from large arrays of genotype
data. We review briefly the two packages that we used to
select a subset of SNPs for further genotyping in a larger
sample of individuals from our cohort study.

LDSelect
The LDselect algorithm [8,9] partitions the SNPs into
"bins", that is, each SNP is a member of one and only one
bin. In a given bin there is at least one SNP that has a pair-
wise r2 exceeding a user-specific threshold (e.g. 80%) with

each of the other SNPs in that same bin, where r2 is the
correlation between two SNPs calculated using the geno-
type data available from one of the data sources. There
may be several such tag SNPs in each bin, but not all SNPs
in each bin are necessarily tag SNPs for that bin; it is pos-
sible that some pairs of SNPs in the same bin have pair-
wise r2 values that do not exceed the threshold. Each of the
tag SNPs in a particular bin can be used to represent the
allelic variation of SNPs within each bin, and is a candi-
date for genotyping in a larger sample.

Tagger in Haploview
The Tagger software begins by using a tagging algorithm
similar to LDselect, where SNPs are captured by requiring
pairwise association with at least one of a series of single
tagging markers at a prescribed threshold value of the
pairwise correlation r2 (software available as part of Hap-
loview [10]). Tagger then seeks to further reduce the
number of tag SNPs by attempting to replace each tag with
a multi-marker predictor based on the remaining tag
SNPs. Any proposed multi-marker combination is
checked to ensure that it can capture the SNPs originally
represented by the replaced tag SNP with a value of r2

exceeding the prescribed threshold, and if not, the origi-
nal tag SNP is retained. Further details can be found in de
Bakker et al. [11] and Barrett et al. [10].

Challenge with Illumina platform – validation scores
The Illumina corporation use an algorithm (accessed via a
service provided free of charge to prospective clients) to
generate a validation score for a specified SNP. The valida-
tion score, which takes values between 0 and 1, is calcu-
lated from the 200 base pair genetic sequence
surrounding each SNP. It is an estimate of the likelihood
that an assay for that SNP will work successfully, i.e. gen-
otype most individuals accurately. If the SNP has previ-
ously been successfully genotyped on the Illumina
platform the SNP is given a validation score of 1.1 and it
becomes a so-called "Golden Gate" SNP. Illumina recom-
mends not using SNPs with validation scores below 0.6,
and including additional SNPs for redundancy to over-
come loss of information due to SNP failure even for SNPs
with high validation scores. SNPs within 60 bp of each
other and tri-allelic SNPs cannot be typed.

We attempted to satisfy the requirement of genotyping
only SNPs with high validation scores and to incorporate
redundancy by (i) selecting tag SNPs separately from each
dataset where sequence data for a gene was available from
more than one data source and (ii) selecting additional
tag SNPs to be genotyped in large bins in case the first tag
SNP failed. The selection of high validation score SNPs
should increase the genotyping rate and minimise the
chance of assay failure. It is straightforward to incorporate
these rules into the selection process when using LDselect
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which lists all the alternative tag SNPs for each bin. There-
fore it is necessary to run the program only once and
choose the highest validation score SNP from the nomi-
nated alternative tag SNPs (provided at least one tag SNP
has validation score > 0.6), since changing the selection of
one or more tag SNPs within a bin does not affect the
selection process of tag SNPs in the other bins. We also
took advantage of the alternate tagSNP listing from LDse-
lect to choose a second redundant tagSNP for large bins in
case the first tagSNP assay failed.

In contrast, this is not possible using Tagger, although
Tagger now has the ability to exclude SNPs from consider-
ation as tags, ensuring that all chosen tag SNPs have vali-
dation scores above 0.6. Tagger does not provide a list of
alternative tag SNPs (or combinations of tag SNPs) from
which one could choose those with the highest validation

score. It is possible that another selection of tag SNPs
would perform equally well in capturing allelic variation
in the gene at the given r2 threshold with uniformly better
validation scores. The only way one could check this is to
further exclude SNPs with lower validation scores, rerun
the program, and determine whether the next selection of
tag SNPs all have higher validation scores while still satis-
fying the r2 threshold. Clearly this has the potential to
affect the combination of tag SNPs selected and the
groups of SNPs represented by them.

Results
A total of 35 genes (see Table 1) were chosen for examina-
tion and genotyping in subjects from the HealthIron
study. This selection was based on prior biological evi-
dence for involvement in iron metabolism. Some of these
genes have strong historical evidence of involvement in

Table 1: HealthIron SNPs selected for typing by gene, incomplete cover means not all tag SNPs were included.

No. SNPs HUGO Full or other name(s) Chr

16 * ACO1 IRP1; IRE-binding protein; Aconitase 1 9p21.2
1 CALR Calreticulin 19p13.13
14 CD163 Hemoglobin scavenger receptor 12p13.31
25 CP Ceruloplasmin 3q25.1
29 CUBN Cubulin (incomplete cover) 10p13
27 * CYBRD1 Dcytb 2q31.1
6 DHCR7 Smith-Lemli-Opitz syndrome 11q13.4
3 EXOC6 SEC15 (incomplete cover) 10q23.33
16 FLVCR Feline leukemia virus subgroup C receptor 1q32.3
7 * FTH1 H-ferritin 11q12.3
1 FTL L-Ferritin 19q13.33
7 FXN Frataxin 9q21.11
2 GAST Gastrin 17q21.2
1 GSTP1 GSTP1 I105V 11q13.2
5 * HAMP Hepcidin 19q13.12
5 * HCP1 MGC9564, heme carrier protein 1 17q11.2
18 * HEPH Hephaestin Xq12
9 HEPHL1 Hephaestin-like 1; Eleutherin 11q21
7 HFE Hemochromatosis 6p22.2
4 * HFE2 Hemojuvelin 1q25
10 HMOX1 HO-1Hemoxygenase 1 22q12.3
2 HMOX2 HO-2 Hemoxygenase 2 16p13.3
2 HP Haptoglobin 16q22.2
6 HPX Hemopexin 11p15.4
18 * IREB2 IRP2 IRE-binding protein 2 15q24.1
1 * PGRMC1 Progesterone receptor membrane component 1 Xq24
3 * PGRMC2 Progesterone receptor membrane component 2 4q28.2
13 SLC11A2 Divalent metal-ion transporter 1; DCT1 12q13.12
20 SLC25A37 Frascati 8p21.2
12 SLC40A1 Ferroportin; IREG1; MTP1 2q32.2
11 STEAP3 nm1058 (incomplete cover) 2q14.2
45 * TF Transferrin 3q22.1
6 * TFR2 Transferrin receptor 2 7q22.1
30 * TFRC Transferrin receptor 1 3q29
2 TNF TNFalpha 6p21.33

384

* indicates genes where NHBLI RS&G Caucasian data was used.
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cellular iron uptake and storage (TF, TFRC, FTH1, FTL)
whereas others were chosen based on more recent evi-
dence (SLC40A1, SLC11A2, CP, TFR2, CYBRD1, IREB2,
HFE2, HEPH, HEPHL1, HAMP, HCP1, DHCR7, HP,
HMOX1). Several genes (CUBN, STEAP3 and EXOC6)
were not completely covered i.e. not all the required tag
SNPs were included as we had reached our total of 384
SNPs.

A substantial percentage of SNPs (41%) we submitted for
validation had scores below 0.6, and were excluded from
being selected as tag SNPs. This meant coverage of SNPs
was not complete, although in regions with high LD there
was usually an alternative SNP to tag those with low vali-
dation scores. A second round of genotyping on a differ-
ent platform will be performed for the HealthIron Study
to attempt to capture these low validation uncaptured
SNPs. Figure 1 shows that the relationship between vali-
dation scores for SNPs and "Gentrain" score (a measure of
SNP performance automatically calculated by the Illu-
mina BeadStudio software) is not strong. Half of the ten
"unscorable" SNPs were Golden Gate validated (previ-
ously successful), i.e. given scores of 1.1; overall 35% of
our selected SNPs had scores of 1.1. This suggests that val-
idation/design scores above 0.6 do not predict genotyping
performance, and that maximising average validation
score may not have a large effect on SNP success rate.

Table 2 displays, for each gene and for data on Caucasian
individuals only from each data source, a comparison of
the number of tag SNPs selected by LDselect versus Tagger
in Haploview where the r2 threshold for capturing SNPs
was set at 80%. The column labelled "difference" shows

the actual increase in efficiency by Tagger due to its ability
to replace some tag SNPs with multi-marker combina-
tions of other tag SNPs [11]. The ratio of the number of
tag SNPs to total number of variable SNPs (the last col-
umn of Table 2) is a reflection of the LD variation in iron
homeostasis genes. Table 3 examines the effect of varying
the r2 cutoff on the number of tagSNP for the six largest
genes that were resequenced. The result from Tagger can
vary betweens runs with identical settings so the lowest
result from 10 runs is reported.

Resequencing data versus HapMap
Table 4 compares the number of tag SNPs (using LDse-
lect) selected from NHLBI resequencing data and Hap-
Map (both Caucasian samples). Using a minor allele
frequency (MAF) ≥ 3%, there were two genes, HFE2 and
FTH1, for which there were no variable HapMap SNPs in
the CEU population. Averaged across all the genes (in
Table 4 the sum of NHLBI resequencing tag SNPs column
divided by sum of HapMap tag SNPs column) there were
2.8 times as many tag SNPs required for resequencing
cover than HapMap phase 1 due to the larger number of
SNPs, especially of low frequency.

Analysis of genotyping data for rs2239641 showed four
data clusters rather than the usual three (for minor allele
homozygotes, heterozygotes and major allele homozy-
gotes). Using the resequencing data we were able to show
that this inconsistency was due to a nearby (14 bp)
untyped SNP causing two heterozygote clusters. For
another pair of SNPs (TNFalpha rs1800630 and
rs1800610) there were no compound heterozygotes. This
may be due to an untyped SNP (rs1799724) 6 bp from

Scatter plot of SNP validation scores with Gentrain scoresFigure 1
Scatter plot of SNP validation scores with Gentrain scores. Previously successful SNPs are given a score of 1.1, design 
scores between 0 and 1 are calculated by a proprietary algorithm based on the surrounding 200 bp.
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rs1800630 causing the assay to fail when it is present. Illu-
mina specifies a distance of 60 bp to reject two adjacent
SNPs being included in the same OPA (oligo pool all).
Resequencing can thus provide an additional exclusion
criterion to avoid choosing as tagSNPs any SNP with
another common SNP within 60 bp.

Transferrin as an example of the effect of resequencing 
coverage for tagSNP selection
Here we present an empirical example of the effect of rese-
quencing coverage on the selection of tag SNPs. Figure 2
shows the coverage of the transferrin gene (TF) by the four
data sources. HealthIron resequencing data used only the
exons and small amounts of the surrounding introns (at
least 30 bp). The NHLBI RS&G data had a wider coverage
(green) and SeattleSNPs coverage was nearly complete
(black), with HapMap CEU SNPs in brown.

Table 2: Comparison of number of tag SNPs generated by LDselect and Tagger in Haploview using Caucasian datasets (HAPMAP, 
NHLBI, Seattle SNPs). A "test" in Tagger refers to a combination of one to three tag SNPs used to capture one or more SNPs. The 
number of tests is the number of tag SNPs combinations required to capture all SNPs with a minimum value of r2 of 80%. HapMap 
Phase 1 data was all that was available at the time of SNP selection.

No. SNPs Tagger LDselect Difference Tags/Total Tagger Tags/Total LDselect

Gene Data Source MAF > 3% Tags/Tests Tags

ACO1 HapMap 27 13/15 15 2 0.48 0.56
CP HapMap 11 8/8 8 0 0.73 0.73
CYBRD1 HapMap 10 5/5 5 0 0.50 0.50

NHLBI RS&G 62 14/14 16 2 0.23 0.26
FLVCR HapMap 17 6/8 8 2 0.35 0.47

NHLBI RS&G 99 16/19 17 1 0.16 0.17
FTH1 NHLBI RS&G 13 5/5 5 0 0.38 0.38
HAMP NHLBI RS&G 7 4/4 4 0 0.57 0.57
HCP1 NHLBI RS&G 6 3/3 3 0 0.50 0.50
HEPH HapMap 40 6/6 6 0 0.15 0.15
IREB2 HapMap 12 4/5 5 1 0.33 0.42
SLC11A2 HapMap 13 4/4 4 0 0.31 0.31
SLC40A1 HapMap 6 3/4 4 1 0.50 0.67
TF HapMap 11 7/7 7 0 0.64 0.64

NHLBI RS&G 43 17/20 20 3 0.40 0.47
SeattleSNPs 101 29/31 31 2 0.29 0.31

TFR2 NHLBI RS&G 6 4/4 4 0 0.67 0.67
TFRC HapMap 12 6/6 6 0 0.50 0.50

NHLBI RS&G 117 33/38 36 3 0.28 0.31

Table 3: Effect of varying r2 on number of tagSNPs selected using 
Tagger and MAF≥3% for six genes using NHLBI resequencing 
data. First number is tagSNPs using 2 and 3 multi-marker SNP 
tagging, second number is number of tests (the number of 
unique combinations of tag SNPs required to represent all 
SNPs).

r2 TF CYBRD1 ACO1 FLVCR IREB2 TFRC

0.50 10/10 9/9 19/21 8/8 10/11 22/22
0.55 10/10 10/10 20/21 9/9 11/11 22/22
0.60 11/11 12/14 21/23 10/10 11/11 25/25
0.65 12/13 14/16 22/23 10/11 11/11 26/26
0.70 14/16 15/15 22/23 11/12 11/11 27/28
0.75 16/18 15/15 23/25 13/14 12/12 29/29
0.80 17/19 15/15 23/26 15/17 12/12 33/36
0.85 19/20 16/16 26/27 16/18 12/12 37/38
0.90 19/21 18/21 27/32 17/18 12/12 42/43
0.95 22/23 21/25 31/35 19/20 13/13 46/51
1.00 23/36 21/25 34/37 22/27 14/15 50/52

Table 4: Number of tag SNPs from NHLBI resequencing versus 
HapMap data (Phase 1) for Europeans using MAF ≤ 3% and r2 

0.8.

Gene NHLBI RS&G HapMap Phase 1

ACO1 26 15
CYBRD1 16 5
FLVCR 17 8
FTH1 5 0
HAMP 4 1
HCP1 3 1
HEPH 13 6
HFE2 5 0
IREB2 11 5
PGRMC1 5 1
PGRMC2 2 2
TF 20 7
TFR2 4 2
TFRC 36 6
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Table 5 compares the number of SNPs with MAF ≥ 3%
identified in data from Caucasians, using the four data
sources (HealthIron, NHLBI RS&G, SeattleSNPS, and
HapMap). The 7 HapMap tag SNPs, chosen from the 11
HapMap SNPs with MAF ≥ 3% using Tagger, capture just
45 out of the 101 Seattle SNPs (45%) using an r2 thresh-
old of 80% (so only 45% of SNPs have an r2 of 0.80 or
more with at least one tag SNP). Increasing the minimum
MAF to 5% increases the capture of Seattle SNPs using
HapMap tag SNPs to 48/89 (55%). Decreasing the r2

threshold to 0.50 with minimum MAF still 3% only
improved capture of the Seattle SNPs to 63/101 (62%).
Approximately 55% of variant SNPs for transferrin in the
SeattleSNPs database were not captured well using only
HapMap phase 1 tag SNPs. In comparison HapMap Mar
2006 has 38 SNPs within the TF gene (MAF ≥ 3% in Cau-
casians), with 17 tag SNPs (pairwise using Tagger). Unfor-
tunately TF was the only gene for which we could make
this comparison, since it requires all the HapMap SNPs to
be within the regions for which resequencing data are
available. Figure 3 shows the minor allele frequency of the
captured and uncaptured SNPs, showing that there was an
even frequency distribution of SNPs not captured, not just
low frequency.

Figure 4 shows the additional detail that is available with
increasing coverage of the SNP data in the same genomic
region, from the coarse grain of the HapMap SNPs
through to the fine grain of SeattleSNPs which approaches

complete resequencing. While the major feature of a large
block of LD on the righthand side of the display is appar-
ent at all levels, there is much more detail with resequenc-
ing data and additional blocks of LD are revealed as more
SNPs are added.

Linkage disequilibrium patterns across five populations
Table 6 lists the number of tag SNP and total number of
SNPs with MAF ≥ 3% for 14 genes resequenced by NHLBI
across five population samples. The ratio of tag to total
SNPs is low for genes within which there is substantial LD
(e.g. FLVCR). The number of tag SNPs required is higher
for African populations due to both the higher total
number of SNPs and lower LD for most genes (as shown
by higher ratios of tag SNPs to total SNPs). The final col-
umn uses multiPopTagSelect [12] to choose a minimal
union of population-specific tag SNPs to capture SNP var-
iation across all five populations. Figure 5 shows the pat-
tern of linkage disequilibrium across five populations for
the six genes which had more than 40 SNPs in each pop-
ulation. There is substantial variation in LD patterns both
across genes and across populations which likely repre-
sents admixture variability throughout the genome.

We found the average capture rate of SNPs with MAF ≥ 3%
across 10 genes (TF, TFR2, CYBRD1, FTH1, HAMP, HFE2,
HCP1, IREB2, FLVCR and ACO1) in the Hispanic popula-
tion using European tags was 82.5% (using NHLBI data
i.e. 47 European descent, 48 Hispanic descent), and for

Table 5: The number of SNPs identified for the transferrin gene from the four different data sources with different coverage. Figure 1 
shows the coverage of each data set, N is the number of Caucasian individuals sequenced/typed.

Resequencing HapMap HapMap

HealthIron N = 188 NHLBI RS&G N = 47 SeattleSNPs N = 23 N = 30 trios Phase 1 N = 30 trios Mar 2006

Total No. SNPs 31 59 128 12 81
No. SNPs ≥ 3% MAF 17 43 101 11 38
Tag SNPs with Tagger 13 20 31 7 17

Regions sequenced in three resequencing Caucasian data sets: (i) HealthIron in red; (ii) NHLBI RS&G in green; (iii) SeattleSNPs in blackFigure 2
Regions sequenced in three resequencing Caucasian data sets: (i) HealthIron in red; (ii) NHLBI RS&G in green; 
(iii) SeattleSNPs in black. The HapMap Phase 1 Caucasian (European) SNPs with MAF ≥ 3% rs numbers are shown. The TF 
gene appears in blue with the exons shown as bars. The arrows indicated the direction of transcription.
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the African American sample using Yoruban tags 78.1%
(data not shown). However, there was one gene (FTH1)
whose capture rate was < 50% for both comparisons. The
capture rate of Yoruban SNPs using European tag SNPs
was poor, an average of 35% over 10 genes, range 14–60%
(data not shown).

Coverage of stock genotyping arrays
To compare our findings with the coverage that would be
achieved with the "standard" Affymetrix and Illumina
genotyping arrays, the number of SNPs appearing across
various genotyping arrays within the regions for which we
did partial resequencing are displayed in Table 7. While
this is not a direct comparison of true coverage, which
would require complete resequencing information, arrays
with less than the number of tagSNPs cannot meet our
coverage criteria of r2 ≥ 0.8 for SNP with MAF ≥ 3%. TFRC
needed a higher number of tagSNPs than the number of
SNPs present even on the latest array versions. HCP1 (pre-
viously known as MGC9564) has no SNPs on Affymetrix
arrays.

Discussion
We have reported on the challenges we faced in selecting
SNPs from candidate genes of iron metabolism for geno-
typing in an association study. At the time we were
required to make the SNP selection for the HealthIron
study, resequencing data from the same participants was
available for only 6 genes, and the coverage based on this
local sample included only the exons and immediate sur-
rounding genomic regions. We turned instead to several
public available databases, including the International

A graphical representation of linkage disequilibrium patterns for the transferrin gene from SNP data on Caucasian popula-tions: (a) HapMap (11 SNPs with MAF ≥ 3%); (b) HealthIron (12 SNPs); (c) NHLBI RS&G (43 SNPs); (d) SeattleSNPs (101 SNPs)Figure 4
A graphical representation of linkage disequilibrium 
patterns for the transferrin gene from SNP data on 
Caucasian populations: (a) HapMap (11 SNPs with 
MAF ≥ 3%); (b) HealthIron (12 SNPs); (c) NHLBI 
RS&G (43 SNPs); (d) SeattleSNPs (101 SNPs). These 
LD displays were generated using the default settings in Hap-
loView.

Frequency distribution of captured and uncaptured SNPs from Seattle resequencing of TF using HapMap tagSNPSFigure 3
Frequency distribution of captured and uncaptured 
SNPs from Seattle resequencing of TF using HapMap 
tagSNPS. The large number of captured SNPs in the 
40–45% range represents the strong block of LD which is 
captured by a single tagSNP.
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HapMap and Seattle SNPs projects, and the NHLBI RS&G
data analysed for the HEIRS ancillary study on iron defi-
ciency. Data from the NHLBI RS&G project identified
SNPs for 14 genes (asterisked in Table 1). There were 32
novel SNPs not in dbSNP (so without rs numbers)
included in the HealthIron tag SNP list.

The benefits of resequencing for genetic data include
detection of novel SNPs, a more detailed coverage of the
candidate genes, as indicated by the higher number of tag

SNPs generated from resequencing data in comparison to
the HapMap (2.8 times over 14 genes), and knowledge of
the precise pattern of LD in the population of interest. We
included some genes in our study that did not have any
variable SNPs in the HapMap phase 1 database.

The transferability of tag SNPs has received considerable
attention recently, with reports of good performance of
European (CEU) tag SNPs in populations from the United
Kingdom [13], Finland, Estonia [14]and the Pacific Rim

Pattern of linkage disequilibrium across six genes and five population samples using Haploview default settings (with blocks removed)Figure 5
Pattern of linkage disequilibrium across six genes and five population samples using Haploview default settings 
(with blocks removed).

Table 6: Number of tag SNPs/total SNPs with MAF ≥ 3% (ratio) in each of five populations using LDSelect with NHLBI resequencing 
data. The last column shows number of tag SNPs and total SNPs combined across the five populations using multiPopTagSelect.

Gene European N = 47 Hipanic N = 48 Chinese N = 47 African American N = 24 Yoruban N = 24 Multiple

ACO1 26/58 (0.45) 29/56 (0.52) 28/57 (0.49) 69/111 (0.62) 65/110 (0.59) 97/145 (0.67)
CYBRD1 15/62 (0.24) 20/58 (0.34) 17/62 (0.27) 28/57 (0.49) 34/65 (0.52) 46/85 (0.54)
FLVCR 17/99 (0.17) 11/75 (0.15) 8/83 (0.10) 18/82 (0.22) 18/91 (0.20) 27/114 (0.24)
FTH1 5/13 (0.38) 10/17 (0.59) 4/7 (0.57) 11/19 (0.58) 8/14 (0.57) 17/27 (0.63)
HAMP 4/7 (0.57) 4/7 (0.57) 7/10 (0.70) 8/10 (0.80) 9/11 (0.82) 11/15 (0.73)
HCP1 3/6 (0.50) 5/9 (0.56) 4/9 (0.44) 11/16 (0.69) 11/15 (0.73) 17/22 (0.77)
HEPH 13/38 (0.34) 10/36 (0.28) 9/10 (0.90) 16/58 (0.28) 21/53 (0.40) 49/95 (0.52)
HFE2 5/7 (0.71) 5/8 (0.63) 4/7 (0.57) 8/10 (0.80) 5/7 (0.71) 10/13 (0.77)
IREB2 11/52 (0.21) 11/47 (0.23) 15/63 (0.24) 21/94 (0.22) 18/95 (0.19) 42/134 (0.31)
PGRM1 5/10 (0.50) 2/2 (1.00) 0/0 8/11 (0.73) 10/13 (0.77) 15/19 (0.79)
PGRM2 2/4 (0.50) 4/8 (0.50) 7/9 (0.78) 10/13 (0.77) 11/17 (0.65) 16/22 (0.73)
TF 20/44 (0.45) 24/50 (0.48) 17/49 (0.35) 34/61 (0.56) 42/61 (0.69) 61/87 (0.70)
TFR2 4/6 (0.67) 3/5 (0.60) 5/7 (0.71) 5/5 (1.00) 6/7 (0.86) 8/9 (0.89)
TFRC 36/119 (0.30) 34/115 (0.30) 22/93 (0.24) 43/135 (0.32) 44/110 (0.40) 87/187 (0.47)
Av No. tags 11.9 12.3 10.5 20.7 21.6 35.9
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(in particular Japanese, Chinese, Hawaiian and Lat-
ino)[15]. We confirmed the finding of de Bakker et al.
[11] that European tag SNPs performed poorly in the Afri-
can population, capturing only an average of 35% of SNP
variation. Our results are also consistent with those of
Tantoso et al. [16], who found that the SNPs in the Hap-
Map capture only about 55% of untyped variants. For the
transferrin gene, using the SeattleSNPs database we found
45% of SNPs with MAF ≥ 3% were captured by HapMap
tag SNPs.

Although the cross-population tagging rate for the His-
panic population using European tags (83%) and African
American using Yoruban tags (78%) was high for nine of
the ten genes, there was one gene (FTH1) for which the
capture rate was less than 50%. For candidate gene/region
studies where there is strong a priori evidence of associa-
tion, an exhaustive SNP search is desirable and hence
using tag SNPs selected from a different population may
result in a failure to genotype any markers in strong LD
with a causative variant. This variability is likely to repre-
sent admixture variability throughout the genome. Some
of these population differences may reflect different selec-
tion history among populations due to diet or disease
prevalence that may be relevant in a genetic association
study.

A sensible approach to overcoming the problem in of
selecting tag SNPs in multi-ethnic cohort studies is to use
an optimal union of population-specific tag SNPs as
implemented in the program multiPopTagSelect [12].
Although this resulted in a three fold increase in the
number of tag SNPs required to capture all five popula-
tions in the NHLBI RS&G database compared to selected

tag SNPs in the European sub-population alone, it was a
still a substantial reduction compared to the additional
genotyping that would have been required if selection had
been performed independently within each population.
The algorithm proposed by Howie et al. (2006) leverages
the existing results of LDselect within separate population
samples, and can easily accommodate tag SNPs ranked by
a performance criterion such as the validation scores with
which we were provided for use with the Illumina geno-
typing platform. In contrast, it was time-consuming to
determine "manually" the set of tag SNPs with the highest
possible combined validation score using Tagger, since it
makes no use of these scores with the exception that SNPs
with validation scores below a threshold can be excluded
from consideration. In hindsight it would have been
quicker to use LDselect alone for this particular collection
of candidate genes, as the difference in tag SNPs selected
was small relative to the amount of time spent rerunning
Tagger. The previously reported increase in efficiency of
Tagger using two and three tag SNPs combinations [11]
also potentially requires more complex analysis than sin-
gle SNP associations. Tagger should be rerun several times
as the number of tagSNPs required may vary between runs
with identical settings.

Conclusion
When selecting SNPs for genotyping in association stud-
ies, the candidate gene approach is distinct from the
whole genome scanning approach which only examines
common SNPs. For candidate genes it is preferable to aug-
ment HapMap data with sequence data. This has the
advantage of aiding in the discovery and coverage of SNPs
with frequencies in the range of 1% to 5% which are
unlikely to appear in the HapMap database. Remaining

Table 7: Number of SNPs on different genotyping arrays within each gene region of NHLBI resequencing. Note that in all cases the 
entire region was not resequenced and so the first two columns are conservative and refer only to the sample of 47 people of European 
descent.

Gene NHLBI 
reseq total 

SNPs

NHLBI 
tagSNPs 

MAF≥3% r2 
0.8

Region 
included in 
basepairs

Affy 100K Affy 500K Affy GW5 Affy GW6 Illumina 
Humhap 

300

Illumina 
Humhap 

550

Illumina 
Human 1M

ACO1 276 26 69937 1 11 12 24 14 26 41
CYBRD1 139 16 39535 0 3 3 8 7 12 19
FLVCR 185 17 40442 4 6 6 15 11 12 18
HAMP 43 4 6314 0 2 2 3 1 1 4
HCP1 65 3 11169 0 0 0 0 1 2 7
HEPH 177 13 101478 1 11 10 32 5 7 21
HFE2 38 5 7437 0 1 1 2 0 1 5
IREB2 241 11 64450 1 15 11 21 3 7 24
PGRMC1 33 5 12051 0 0 0 1 1 1 7
PGRMC2 55 2 21640 0 1 1 4 2 3 9
TF 158 20 33189 0 23 18 37 8 11 23
TFR2 56 4 21649 0 0 0 1 3 3 13
TFRC 314 36 36402 2 4 4 10 7 8 14
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challenges in SNP selection within candidate genes
include developing methods for combining multiple
sources of information and incorporating redundancy to
overcome platform limitations.
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