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Abstract

Background: Microarray technology is a commonly used tool for assessing global gene expression. Many models for
estimation of target concentration based on observed microarray signal have been proposed, but, in general, these models
have been complex and platform-dependent.

Principal Findings: We introduce a universal Langmuir model for estimation of absolute target concentration from
microarray experiments. We find that this sequence-independent model, characterized by only three free parameters, yields
excellent predictions for four microarray platforms, including Affymetrix, Agilent, Illumina and a custom-printed microarray.
The model also accurately predicts concentration for the MAQC data sets. This approach significantly reduces the
computational complexity of quantitative target concentration estimates.

Conclusions: Using a simple form of the Langmuir isotherm model, with a minimum of parameters and assumptions, and
without explicit modeling of individual probe properties, we were able to recover absolute transcript concentrations with
high R2 on four different array platforms. The results obtained here suggest that with a ‘‘spiked-in’’ concentration series
targeting as few as 5–10 genes, reliable estimation of target concentration can be achieved for the entire microarray.
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Introduction

DNA microarrays [1] are a primary research tool for assessing

global gene expression. Structurally, a microarray is a solid surface

on which nucleic acid strands (probes) are attached. Functionally,

they operate on the principle of nucleic acid complementarity

between the attached probes and the components of the target

mixture (a mixture of labeled nucleic acids). The result is

formation of a stable duplex, from which a signal is detected at

each probe only if there is a complementary molecule present in

the labeled target mixture. This signal is then used in further

analysis and inference steps.

Models that attempt to estimate target concentrations on

microarrays can be, generally, divided into two main categories:

The first includes models that rely on the Langmuir isotherm

[2,3,4,5]. The Langmuir equation describes the equilibrium

between a solute and a functionalized surface. In the microarray

context, it is generally formulated as a hyperbolic function:

Ij~a
cj

bzcj

zd ð1Þ

where I is the signal intensity from a given microarray probe at

target concentration c, and a, b and d are the model fitting

parameters. The fitting parameter a is the saturation intensity

(assuming d = 0), b is the target concentration that saturates half of

the probes, and d is the background component [2]. Some of the

models in this category predict these parameters from probe

sequence composition [2] or probe/target and target/target

binding energy [3,5]. Other models [4] fit the data to the

Langmuir isotherm and obtain a, b and d for each probe using a

non-linear minimization approach. In all of these models, each

probe is characterized by its own a, b and d. If a microarray has n

probes or probesets, then there are 3n parameters. Once the three

parameters are determined, target concentration is predicted by

inverting the isotherm.

A second category of models depends on competitive hybrid-

ization chemistry [6,7,8] to predict probe signal intensity, which is

translated either to expression level or absolute target concentra-

tion. Those models are based on the thermodynamics of

hybridization, and parameterized based on in-solution DNA

hybridization behavior [9,10]. They rely on individual probe

properties and consequently are prone to over-parameterization.

We have developed a simple probe-property-independent

model, the global average model (GLAM), which we have used to

predict absolute target concentration on different microarray

platforms, including Affymetrix, Agilent, Illumina and a locally

developed custom microarray. In the GLAM model, the three

parameters of the Langmuir isotherm are fit to all of the data from

each microarray. Instead of characterizing each probe or probeset

with its own a, b and d, we characterize a group of experiments

with one a, b and d, thus reducing the number of free parameters

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e14464



to three for each microarray. The GLAM model has the

advantage that, unlike other models [4,6,11], it can be fit with

spike-in dose-response data from a small number of genes and

subsequently can be used to make predictions for the entire

microarray. Unlike most other currently available models

[7,12,13], GLAM is applicable to microarrays that don’t have

multiple probes per probeset, and as a result, we are able to test its

performance across multiple array platforms. Our predictions of

target concentration on these microarray platforms equal or

outperform those made using models that rely on individual free

parameters for each probe.

Analysis
We tested the performance of GLAM on control datasets from

each of the most popular microarray platforms, as well as on the

Microarray Quality Control (MAQC) data sets.

The Langmuir isotherm
The Langmuir isotherm is a hyperbolic response function (Eq.

1) where Ij is the signal intensity from the probes at target

concentration j. a, b and d are the model fitting parameters, and c is

the target jth concentration in pM. This model has three free

parameters (a, b and d) fitted to different concentrations,

depending on the dataset used. The fitting parameter a is the

saturation intensity (if there is no cross-hybridization, i.e. d = 0), b

is the target concentration that saturates half of the probes, and d is

the background component [2]. The model was fitted using the nls

function of R [14]. In contrast with commonly used approaches,

the three parameters were obtained by fitting the model to data

from a number of probes (training probes) and not specifically to

individual probes.

Estimation of target concentration
To estimate target concentration (x̂x), we used the approach

described by Burden et al. [15] with a slight modification:

x̂x~

X , if Ijwazd

b(Ij{d)

(azd{Ij )
, if dvIjvazd

Y , if Ijvd

8>><
>>:

ð2Þ

where a, b and d are the fitted parameters of equation 1 above. X is

an arbitrarily chosen large concentration, assigned when the probe

has signal intensity above the Langmuir saturation limit. Y is an

arbitrarily chosen small concentration, assigned when the probe

has signal intensity below the predicted background limit. X and Y

were set above the largest target concentration and below the

smallest target concentration in each dataset, respectively.

In this report we divide spike-ins into three categories: low,

medium and high, following McCall et al. [16]. These concentra-

tion ranges are meaningful in the context of the experiment. The

medium range corresponds to the linear range of the experiment.

The ‘‘low’’ concentration range refers to the range where signal is

indistinguishable from background, and the ‘‘high’’ concentration

range includes concentrations that are outside the linear range of

the experiment at the high end, where saturation occurs. In

Figures 1, 2, and 3, we do not estimate target concentrations for

spike-ins in the low concentration category. These data are

included for comparison in Figure S3, where it can be seen that all

the models interpret the values as corresponding to zero

concentration.

Datasets
Five datasets were used to evaluate the performance of the

GLAM model. The first three datasets (the Affymetrix HGU133A

GeneChip Latin Square dataset, the Agilent 4x44K Whole Human

Genome Oligo Microarray control dataset, and Illumina’s Human-

6 v2 Beadchip control dataset) were generated for the External

RNA Control Consortium [17]. Full descriptions of those datasets,

along with the raw data, can be found here [16] and in references

Figure 1. Estimation of transcript concentrations on the Affymetrix platform: Comparison to hybridization model-based approach.
Estimations of 19 transcripts chosen by Li et al. (A) Results obtained from a training set of three probesets for GLAM (red) and those obtained from Li
et al. approach (black). Error bars are standard deviations. The solid line is the identity line (x = y). (B) Comparison of error bar lengths for each
concentration for our approach (red) and the Li et al. approach (black).
doi:10.1371/journal.pone.0014464.g001

Langmuir Model for Microarrays
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therein. The fourth dataset is an ArrayIt 50-mer control dataset

spotted on a standard epoxysilane-coated glass slide substrate,

described previously in [18]. The final dataset used to test the model

is the MAQC dataset. In this dataset, four samples of universal

human reference RNA (Sample A), human brain total RNA

(Sample B), 3:1 mixture of A and B (sample C) and 1:3 mixture of A

and B (sample D) were hybridized to different microarray platforms

(Applied Biosystems, Affymetrix, Agilent, Eppendorf, GE Health

care, Illumina and NCI Operon) and also validated using three

alternative gene expression quantitation approaches (TaqMan

Assays, QuantiGene Assays and StaRT-PCR Assays) [19]. For

each sample, we used the raw intensities and averaged over

technical replicates and test sites. The quantifications of StaRT-

PCR (Standardized Reverse Transcriptase PCR) [20], in terms of

number of molecules of each gene present in each sample, were used

as the gold standard to which the predictions of GLAM were

compared. There are 205 genes quantified in the MAQC assay,

from which we used 86 genes, chosen because they are present on

each of the Affymetrix, Agilent one-color and Illumina platforms.

Genes interrogated by probes used for training GLAM were

omitted from the comparisons shown in Table 1.

Estimation of target concentration on the Affymetrix
platform

The Affymetrix U133A Latin square control dataset has 42

transcripts spiked in at concentration range of 0.125–512 pM in a

Latin square design [16,21]. We apply the GLAM model

presented in equation 1 to this dataset. We obtained a, b and d

by fitting the model to a training set composed of three randomly

chosen probesets (Fig. 1A and 2A; red symbols). Figures 1 and 2

show that GLAM is able to recover absolute target concentrations

with R2 of 0.99.

Comparison of GLAM performance to established models
To evaluate the consequences of ignoring probe specific effects

we compared the performance of GLAM on the Affymetrix U133

dataset to that of other models. The two models chosen are the

top-performing models in each of the categories described in the

introduction. The Li et al. model is the best-performing previously

published model that depends on modeling competitive hybrid-

ization chemistry, while the Abdueva et al. model is the best-

performing previously published model that uses a Langmuir

isotherm based approach.

In Figure 1A we compare GLAM target concentration estimates

to estimates from Li et al. [6]. Their approach depends on

competitive hybridization chemistry, and target concentration is

determined by the following equation [6]:

T̂T~
�SS

A
z

kdc

Ap=�SS{kd=kb{1
ð3Þ

where T̂T is the predicted target concentration, �SS is the observed

signal intensity after scanner bias and background subtraction, A is

the detection coefficient of fluorescence, kd is the probe affinity

coefficient, c is a cross-hybridization factor, p is the total number of

probes in molar concentration units and kb is the binding rate

constant for target molecules [6].

The estimates generated by Li et al. in [6] are based on a subset

of 19 transcripts, which were selected based on target sequence

alignment matching and probe signal intensity, and sorted based

on probe thermodynamic properties. We estimated transcript

concentrations for these 19 transcripts using GLAM, choosing

three randomly selected probesets as a training set (Fig. 1).

Our results show that both approaches are able to recover target

concentration with high R2 (0.998 for GLAM and 0.983 for Li

et al. [6]). Absolute target concentrations obtained using our

approach have a slope of 0.958, and those obtained using the

approach of Li et al. [6] have a slope of 1.045. The slope value

describes the accuracy of the predictions [21]; a value of 1 is

considered to be the perfect score. Values below or above 1

indicate underestimation or overestimation, respectively. Although

the Li et al. model attempts to control for factors that might

Figure 2. Estimation of transcript concentrations on the Affymetrix platform: Comparison to probe-property-dependent Langmuir
fitting approach. (A) Results obtained from a training set of three probesets for GLAM (red) and those obtained using the Abdueva et al. approach
(black). Error bars are standard deviations. The solid line is the identity line (x = y). (B) Comparison of error bar lengths for each concentration for our
approach (red) and the Abdueva et al. approach (black).
doi:10.1371/journal.pone.0014464.g002

Langmuir Model for Microarrays
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increase error (such as scanner bias), the errors between the two

approaches are comparable (Fig. 1B) with GLAM having slightly

higher errors for target concentrations less than 4 pM, but much

lower errors for target concentrations .4 pM.

Abdueva et al., [4] developed a Langmuir isotherm model based

approach similar to GLAM. The main difference between the two

is in the way they treat individual probe effects. In the Abdueva

et al. [4] approach, a, b and d are estimated for each probe, and the

final transcript concentration is calibrated based on log predicted

saturation intensity and log non-specific intensity of the probe.

Those two values are predicted from probe thermodynamic

properties, based on sequence content. In GLAM, a, b and d are

global, based only on a training set. The training set is chosen from

within the same experimental context but does not overlap the test

set for which predictions are being made. We applied both

approaches to the U133A Affymetrix control dataset, and

Figure 3. Estimation of transcript concentrations on the Agilent platform (A and B), Illumina platform (C and D) and pin-spotted
platform (E and F). The first column shows results obtained from a comprehensive leave-one-out procedure. Error bars are the standard deviations
of the ten transcripts. The solid line is the identity line (x = y). The second column shows box plots of R2 for the ten (Agilent), thirty three (Illumina) and
ten (pin-spotted) estimations of leave-one-out procedure and R2 for five estimations of leave-nine-out (Agilent), leave-33-out (Illumina) and leave-
nine-out (pin-spotted) procedures.
doi:10.1371/journal.pone.0014464.g003

Langmuir Model for Microarrays
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estimated the absolute concentrations of the 42 transcripts. The

results are presented in Figure 2. Both approaches perform well

(Fig. 2A) but GLAM has a slightly higher R2 (0.998) than the

Abdueva et al. approach (0.990) despite using significantly fewer

free parameters. Examining the slope of the predicted target

concentrations shows that GLAM predictions have a slope of

0.997, while the Abdueva et al. [4] predictions’ slope is 1.007. Both

approaches have similar error values, as shown in Figure 2B.

The Abdueva et al. [4] predictions are based on normalized

signal intensities, while ours are based on raw signal intensities. To

explore how normalization would affect the performance of the

two models, we predicted target concentrations using GLAM, but

beginning with the quantile normalized signal intensities used by

Abdueva et al. [4] (Figure S1). Similar results are obtained, with

slight differences in the length of error bars and a slope of 0.994 for

GLAM. The use of normalization does not appear to affect results

significantly.

We also compared the performance of GLAM to the model of

Abdueva et al. [4], but applied the Abdueva model without

calibrating the final transcript concentration using the data

transformation based on probe thermodynamic properties. When

the calibration step in the Abdueva et al. approach is not used, the

only difference between the two approaches is that GLAM has a

single set of parameters for a, b and d while Abdueva et al. model

each probe individually. Removing the thermodynamics-based

calibration model of probe properties causes the performance of

the Abdueva et al. model [4] to degrade; its R2 dropped to 0.843

and slope dropped to 0.53. GLAM was, by its nature, unaffected

by lack of probe-specific data (Figure S2).

While our method yielded excellent predictions of absolute

transcript concentration, we did not predict concentration for all

transcripts in the low concentration category (Fig. 1 and 2). This is

because there is a poor correlation between signal intensity and

target concentration at the low end [16], and because the signal

obtained from these targets can’t be differentiated from back-

ground noise in the low concentration milieu [22]. Also,

microarray scanner nonlinearity is at its worst at low intensity

[6,23]. For comparison, we show the results of predicting the full

range of concentrations in Figure S3. All three models examined

show a decrease in terms of R2 and slope values when low

concentration transcripts are considered, and all three models

have the same difficulty predicting low target concentrations.

Alternate model implementation and data manipulation
The source code and data for the Abdueva et al. [4] and Li et al.

[6] models were obtained from the authors. Signal intensities were

normalized using quantile normalization [24] for the Abdueva et

al. procedure and all the 42 probesets were used (including

Affymetrix control probesets). For Li et al., signal intensities were

used without normalization and prepared according to the

author’s instructions [6]. Briefly, the raw signal intensities from

355 probes corresponding to 19 transcripts fitted the authors

filtering procedure and were used for estimating target concen-

tration. Probe intensity was taken as the average across technical

replicates. For our model, all signal intensities were used without

normalization (unless indicated). The signal intensity of each probe

was taken as the average signal across technical replicates.

The MAQC datasets were obtained from the MAQC website

(http://edkb.fda.gov/MAQC/MainStudy/upload/). We used the

raw signal intensities and averaged over technical replicates and

test sites. R2 and slope values presented here were calculated using

the lm function of R [14] using the default settings, except that the

intercept term was omitted, following Irizarry et al. [25]and others

[5].

Estimation of target concentration on the Agilent
platform

A key difference between GLAM and the Abdueva et al. [4] and

Li et al. [6] models is that, due to its simplicity, GLAM can

straightforwardly be applied to data types other than Affymetrix

data without special modifications to the model. We tested the

applicability of GLAM to the Agilent platform, which has different

probe and surface properties than the Affymetrix platform. A

publically available Agilent control dataset is composed of ten

transcripts spiked in at ten concentrations [16]. We predicted

transcript concentrations using GLAM, again without taking

individual probe effects into consideration. Figure 3A shows the

results, using a summary of leave-one-out procedures, where every

nine probes in turn were used as a training set and the resulting a,

b and d were used to estimate the concentration of the remaining

tenth transcript. The average estimated concentrations agree well

Table 1. Summary of GLAM predictions on the MAQC
datasets.

Sample y x R2 Slope

A ILM GEX 0.9 0.94

AG1 GEX 0.94 1.08

AFX GEX 0.95 0.98

B ILM GEX 0.87 0.84

AG1 GEX 0.88 1.05

AFX GEX 0.92 0.92

C ILM GEX 0.9 0.94

AG1 GEX 0.92 1.05

AFX GEX 0.94 0.95

D ILM GEX 0.9 0.89

AG1 GEX 0.91 1.07

AFX GEX 0.94 0.93

ALL ILM GEX 0.9 0.91

AG1 GEX 0.91 1.07

AFX GEX 0.94 0.95

A ILM AFX 0.94 0.96

AG1 AFX 0.93 1.07

AG1 ILM 0.91 1.08

B ILM AFX 0.9 0.9

AG1 AFX 0.88 1.1

AG1 ILM 0.88 1.16

C ILM AFX 0.95 0.99

AG1 AFX 0.91 1.07

AG1 ILM 0.92 1.06

D ILM AFX 0.94 0.95

AG1 AFX 0.92 1.12

AG1 ILM 0.91 1.14

ALL ILM AFX 0.93 0.95

AG1 AFX 0.91 1.09

AG1 ILM 0.9 1.1

Results are presented in terms of R2 and slope for fitting the model y = mx,
where y and x are indicated on the header of the table. ILM: GLAM predictions
for Illumina, AG1: GLAM predictions for Agilent one-color, AFX: GLAM
predictions for Affymetrix and GEX: StaRT-PCR quantifications.
doi:10.1371/journal.pone.0014464.t001
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with the reported nominal concentrations with an R2 of 0.999 and

a slope of 0.997.

This result was obtained by training GLAM on nine probes and

predicting the remaining tenth transcript, which raised the

possibility of overfitting. We then tested the effect of changing

the fraction of total available data that we included in the training

set, since a spike-in control procedure would be most useful if it

could be trained on a small fraction of the array data. Figure 3B

shows box plots of R2 for the ten estimations of the leave-one-out

procedure described above, and R2 for five estimations of a leave-

nine-out procedure. In the leave-nine-out procedure, a, b and d are

estimated from a training set of one probe and used to predict the

concentrations of the remaining nine transcripts. The leave-nine-

out procedure uses a small training set that is highly sensitive to the

choice of probe for training. Probes showing non-Langmuir-like

behavior can be avoided without explicit modeling and knowledge

of their sequence, so five probes returning negative values for

either a, b and d were not included in the training set. Transcript

concentration estimation with parameters obtained from well-

behaved single probes show excellent R2 with a minimum of 0.992,

depending on which probe was used for parameter estimation.

Estimation of target concentration on the Illumina
platform

We next tested GLAM on an Illumina control dataset composed

of 34 transcripts spiked at 11 different concentrations [16]. We

follow the same procedures as with the Agilent platform, and the

results are shown in Figure 3C–D. Application of a comprehensive

leave-one-out procedure (Fig. 3C) shows that our approach to

estimating transcript concentration performs well on the Illumina

platform; the average estimated concentrations show an R2 of

0.992 and a slope of 1.165. The R2 values obtained from 34 trials

of the comprehensive leave-one-out procedure are shown in

Figure 3D. Out of 34 probes, 18 probes returned negative values

for one of the Langmuir parameters and therefore were not used

to train the model for target concentration prediction. We were

able to use the remaining 16 probes in a leave-33-out procedure

with excellent results, and the R2 values are shown in Figure 3D.

It is clear from Figure 3C that GLAM underestimates transcript

concentrations of 0.1 and 0.3 pM and overestimates transcript

concentrations of 300 and 1000 pM on the Illumina platform.

However, the regression slope values reported by McCall et al. [16]

for this platform suggest that there is simply poor agreement

between signal intensity and nominal spike-in concentration in

those ranges, which may mean that the linear range of this

platform is relatively small.

Estimation of target concentration on a pin-spotted
platform

Finally, we examined the performance of GLAM on a pin-

spotted array control data set. The pin-spotted array is a custom

50 mer array that was developed in our laboratory and described

in [18]. The platform is similar to many custom microarrays,

where probes are contact-spotted using a robot. The platform

differs from commercially available platforms in the attachment

chemistry. The control experiment that uses this array has ten

targets spiked at eight different concentrations. We follow the same

steps used for the above datasets and we estimate target

concentrations for this dataset by obtaining a, b and d using either

a leave-one-out or leave-nine-out procedure. Figure 3E shows the

averaged predicted target concentrations for a leave-one-out

procedure with an R2 of 0.992 and a slope of 0.969. A leave-

nine-out procedure (Fig. 3F) shows that even one probe was

sufficient to retain R2$0.95. Of the ten probes, one returned

unphysical values for one of the parameters and was not used for

estimating target concentration.

Although the R2 and slope were lowest for this dataset, the

model was able to produce acceptable target estimates. We believe

the slight difference in model behavior for this platform was due to

the different attachment chemistry, and to the presence of

competing mismatch probes for each target in this dataset.

Consequences of choosing different GLAM training sets
For the purpose of determining the values of a, b and d, GLAM

requires a training set of known spike-ins. In this report we follow a

standard N choose K, where N is the total number of spike-ins and K

is the number of probes or probesets included in the training set. K

has a value between one and N minus one. To illustrate, consider

Figure 4, which shows the results on Affymetrix U133A control

dataset. In this dataset there are 42 spike-ins, thus K (x axis of Fig. 4)

has a range from 1 to 41. When there are more than 42 possible

combinations, we choose 42 at random and we take them as a

representative for all possible combinations. Therefore the box

plot in Figure 4 represents all the 42 combinations of 42 choose 1.

We call this leave-41-out, which means that GLAM was trained on

one probeset and predicted the remaining 41 spike-ins. The

second box plot is for 42 choose 2, since there are 861 different

combinations, we shuffle the list of all the 42 probesets, then we

choose two probesets at random and run the model, we repeat this

process 42 times, thus each box plot in Figure 4 has 42 data points.

The last box plot is for 42 choose 41, we call this leave-one-out, which

means that the GLAM was trained on 41 probesets and predicted

the concentration of the remaining spike-in. We examined the

effect on GLAM performance of varying the number of probes, or

probesets, included in the training set. We considered all the

possible numbers of training probes (or probesets). The predictive

performance of GLAM under different training conditions is

shown in terms of R2 (Figure 4) for the Affymetrix U133A Latin

square control dataset.

The results summarized in Figure 4 demonstrate that five

probesets are enough for GLAM to return reliable results. The

effect of training set size on the performance of GLAM for the

other three datasets is shown in Figure 5A–C.

Estimation of target concentration on the MAQC dataset
To demonstrate GLAM performance on a control dataset that

more closely resembles a real-world microarray experiment, we

predicted target concentration for the MicroArray Quality

Control (MAQC) datasets [19], on Affymetrix, Agilent one-color

and Illumina platforms. The MAQC datasets were collected in

microarray experiments followed by extensive independent

quantification of targets using a StaRT-PCR (Standardized

Reverse Transcription PCR) approach. The MAQC datasets

provide a group of independently quantified genes that can be

used to estimate a, b and d for GLAM. The MAQC set is an

excellent proxy problem for a real-world microarray experiment in

which researchers would predict transcript concentrations based

on a spike-in calibration mixture. Assuming a worst-case scenario,

we used one probe per probeset (selected randomly) for the

purpose of estimating GLAM parameters a, b and d. X and Y (for

equation 3) were set to values greater than the largest number of

molecules (based on StaRT-PCR quantification) of the selected

gene and less than the smallest number of molecules (based on

StaRT-PCR quantification) of the selected gene, respectively. The

results of GLAM prediction are summarized in Table 1.

We assessed three types of comparisons. First, we compared

GLAM predictions and StaRT-PCR quantifications for each

Langmuir Model for Microarrays
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sample separately, to assess the performance of the model at the

sample level. We then compared the GLAM predictions for each

platform at the sample level, to demonstrate the consistency of the

predictions across different platforms. Finally, we constructed a

global comparison between GLAM predictions and StaRT-PCR

quantifications among sample groups from each of the three

platforms. This is done to assess the model performance in a

situation similar to a real microarray experiment where multiple

samples are used (i.e. samples from different tissues or a time series

experiment).

Table 1 shows these results in terms of R2 and slope for the

model y = mx for each comparison. For example, the first row of

Table 1 reports R2 and slope for the model y = mx, where y is the

GLAM predictions for Sample A on the Illumina platform and x is

the StaRT-PCR values for the same sample. Generally, there is

good agreement between GLAM predictions and StaRT-PCR

quantifications at the sample level, with 0.87#R2#0.95 and

0.84#slope#1.08. Applying the GLAM model to predict target

concentrations on the Affymetrix platform gave the best overall

results.

Agreement between the three different platforms was assessed

by pairwise comparisons of model performance on each platform.

GLAM predictions using Affymetrix, Agilent one-color and

Illumina show 0.88#R2#0.95 and 0.9#slope#1.1. GLAM

predictions for the Affymetrix and Illumina platforms were in

closer agreement than GLAM predictions for either of these two

platforms and the Agilent one-color platform (Table 1).

GLAM predictions using the Affymetrix platform had an R2 of

0.94 with StaRT-PCR quantifications, Agilent one-color, R2 of

0.91 and Illumina, R2 of 0.9. Predictions on Affymetrix and

Illumina were in good agreement with each other (R2 = 0.93).

Affymetrix and Agilent one-color and Illumina and Agilent one-

color are still in good agreement but with R2 of 0.91 and 0.9,

respectively.

All the reported values for the model y = mx in Table 1 were

statistically significant. This is shown in the last column of Table 1,

where the p-values for testing the null hypothesis that the slope (the

term m) is equal to zero are reported.

Discussion

Many approaches have been used to relate microarray probe

properties to hybridization signal intensity [26]. In this report, we

show that a simple physical model that employs average array-

wide binding parameters is comparable in performance to models

that use per-probe parameters. We compared results from our

GLAM approach to the results of two methods [4,6] that have

been demonstrated to be the best-performing of the Langmuir-

based and hybridization chemistry-based model approaches. Our

results show that, despite the differences in probe design and

sequence, probe effects average out and may be modeled globally

to recover specific transcript concentrations.

Obtaining a, b and d for a training set of probes, then using

those values to predict the behavior of other probes, implies that

all probes have the same a, b and d. We know from past studies

that each probe has its own a, b and d and that these values are

generally dependent on sequence composition [2]. So why, then,

does an average Langmuir model perform as well as, or better

than, sequence specific models? If we stipulate that state of the art

microarray probe design procedures usually require that all probes

have similar GC content, resulting in very similar hybridization

profiles[27], on a well-designed array global a, b and d may

adequately represent the individual probe properties. Many

commonly-used, commercially available microarray platforms

have been refined to the point that most of the probes used have

similar, and close to idealized, hybridization properties [28,29,30].

Exceptions can generally be predicted and excluded from analysis

based on our understanding of the physics of microarray

hybridization [31,32]. Fine-tuning of the parameters to reflect

the differences of each probe based on its sequence composition

and thermodynamic properties, or based on the observed response

of each probe, may be unnecessary.

What we find to be important to the success of the GLAM

model is that we estimate a, b and d from probes that have a

Langmuir-like response to varying target concentration. As we

have shown, this should be enough to ensure reliable results

(Figure 4 and 5). The number of probes or probesets used in the

Figure 4. Effect of varying the number of probesets included in the training set on the performance of GLAM. Each Box plot shows the
R2 (y axis) for 42 choose K (x axis) of the estimated target concentrations using the Affymetrix U133A control dataset. Each box plot has 42 data
points.
doi:10.1371/journal.pone.0014464.g004
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training set does not seem to affect the performance of our model,

as long as the probes included in the training set show Langmuir-

like response, or if the number of training probes used is sufficient

to average the effect of other probes that do not follow Langmuir-

like response. Using probes that do not follow Langmuir-like

behavior to estimate a, b and d (i.e. probes that have negative

values for any of these parameters) will degrade the performance

of GLAM. This can be avoided by including more probesets in the

GLAM training set, or by using a set of control probes that are

known to have a Langmuir-like response. In the relatively small

Figure 5. Effect of varying training set size on performance of GLAM for the (A) Agilent platform (B), Illumina platform (C) and pin-
spotted platform. Each Box plot shows the R2 (y axis) for 10 choose K (x axis) (A), 34 choose K (x axis) (B) and 10 choose K (x axis) (C) of the
estimated target concentrations.
doi:10.1371/journal.pone.0014464.g005
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data sets examined in this study, we were not able to identify a

sequence-dependent predictor for non-Langmuir behavior. How-

ever, there are many other possible factors. Manufacturing

conditions, slide chemistry or processing chemistry may not have

an equal impact on all probes, and this is certainly a subject for

further experiment. A recent study suggests that not all probes

behave according to the Langmuir model, and our results are

consistent with that observation [33]. The authors of [33] observe

a higher frequency of non-Langmuir behavior, but their results are

somewhat difficult to generalize or to compare with our results, as

they have used a very short probe and a highly structured, very

long rRNA target. They also observe very different outcomes

depending on the slide chemistry. For one manufacturer Langmuir

behavior was observed frequently, and for the other it was not.

However, in the control and MAQC data sets examined in this

study, Langmuir behavior is sufficiently widespread to provide a

training set of Langmuir-conforming probes, and the model can

then accurately predict the remainder of the data whether

Langmuir-conforming or not.

Applying the model to the MAQC datasets showed that our

model predictions are in good agreement with StaRT-PCR

quantification (Table 1), with R2$0.90. Inter-platform predictions

of our model demonstrate consistency of predictions across the

three different platforms used (Affymetrix, Agilent one-color and

Illumina) with R2$0.90. This is in agreement with the finding of

the MAQC consortium [19].

Using a simple form of the Langmuir isotherm model, with a

minimum of parameters and assumptions and without explicit

modeling of individual probe properties, we were able to recover

absolute transcript concentrations with high R2 on four different

array platforms. To our knowledge, this is the first report to

produce a working model that is equally valid for four of the most

frequently used microarray formats. Given the choice of models

with equivalent performance, Occam’s razor dictates that the

model with the fewest free parameters is to be preferred. Our

results therefore suggest that, despite considerable efforts by the

bioinformatics community [4,6,26,34], the additional complexity

introduced by models that attempt to use individual probe

characteristics to improve estimates of absolute concentration is

not justified by a corresponding increase in performance. Given

consistent concentration-dependent behavior, it should be possible

to project target concentration from intensity with an accuracy

equivalent to or better than sequence-specific models on any of

these platforms, based on a spike-in calibration mixture containing

only a few probes.

Code and Data
Instructions for running GLAM are included as File S1. The

code and data used in this study are available as an R package and

can be downloaded from http://gibas-research.uncc.edu/glam/

index.html, and are also included as File S2.

Supporting Information

Figure S1 Estimation of transcript concentrations on Affymetrix

platform using quantile normalized signal intensities. (A) Results

obtained using a training set of three probesets with GLAM are

shown in red and those obtained using the Abdueva et al.

approach are shown in black. Error bars are the standard

deviations of the 42 transcripts. The solid line is the identity line

(x = y). (B) Comparison of error bar lengths for each concentration

for GLAM (red) and the Abdueva et al. approach (black).

Found at: doi:10.1371/journal.pone.0014464.s001 (0.01 MB EPS)

Figure S2 Performance comparison between GLAM and probe-

property-dependent approach. Results were obtained using a

training set of three randomly chosen probesets for GLAM. Error

bars are the standard deviations of the 42 transcripts. The dashed

line is the identity line (x = y); solid lines are the regression lines. R2

and slope values are colored coded according to the schema above

and indicated on the graph.

Found at: doi:10.1371/journal.pone.0014464.s002 (0.01 MB EPS)

Figure S3 Estimation of transcript concentrations on Affymetrix

platform using the full range of concentrations (14 total

concentrations). Results were obtained using a training set of

three randomly chosen probesets. Results for GLAM are shown as

red circles. Abdueva et al. approach results are shown as black

squares and Li et al. approach results are shown as blue triangles.

Error bars are the standard deviations of the 42 transcripts in the

case of GLAM and Abdueva et al. approach and 19 transcripts in

the case of Li et al. approach. The solid line is the identity line

(x = y). R2 and slope values are colored coded according to the

schema above and indicated on the graph.

Found at: doi:10.1371/journal.pone.0014464.s003 (0.01 MB EPS)

File S1 GLAM procedure outline. This file describes the

procedure for constructing GLAM input and applying GLAM

to the Affymetrix U133A data set.

Found at: doi:10.1371/journal.pone.0014464.s004 (0.03 MB

DOC)

File S2 GLAM code and data archive.

Found at: doi:10.1371/journal.pone.0014464.s005 (0.04 MB GZ)
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