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Owing to the role of H2S in various biochemical processes and diseases, its accurate

detection is a major research goal. Three artificial fluorescent probes based on

9-anthracenecarboxaldehyde derivatives were designed and synthesized. Their anion

binding capacity was assessed by UV-Vis titration, fluorescence spectroscopy, HRMS,
1HNMR titration, and theoretical investigations. Although the anion-binding ability of

compound 1 was insignificant, two compounds 2 and 3, containing benzene rings, were

highly sensitive fluorescent probes for HS− among the various anions studied (HS−, F−,

Cl−, Br−, I−, AcO−, H2PO
−

4 , SO
2−
3 , Cys, GSH, and Hcy). This may be explained by the

nucleophilic reaction between HS− and the electron-poor C=C double bond. Due to

the presence of a nitro group, compound 3, with a nitrobenzene ring, showed stronger

anion binding ability than that of compound 2. In addition, compound 1 had a proliferative

effect on cells, and compounds 2 and 3 showed low cytotoxicity against MCF-7 cells in

the concentration range of 0–150 µg·mL−1. Thus, compounds 2 and 3 can be used as

biosensors for the detection of H2S in vivo and may be valuable for future applications.

Keywords: fluorescent probe, hydrogen sulfide, 9-anthracenecarboxaldehyde, nucleophilic substitution,

cytotoxicity

INTRODUCTION

Hydrogen sulfide (H2S) is a toxic gas with smell resembling rotten eggs. It is a bioactive gaseous
signalingmolecule, along with nitrous oxide (NO) and carbonmonoxide (CO) (Kimura et al., 2012;
Lisjak et al., 2013; Kimura, 2015; Mishanina et al., 2015). CO and NO are reactive oxygen species,
whereas H2S gas is a scavenger of reactive oxygen species. Under certain pressure conditions, H2S
can modulate mitochondria in mammalian cells. It also participates in many biochemical processes
such as inflammation, blood pressure control, neuro-transmission, and ischemia reperfusion (Fu
et al., 2012; Andreadou et al., 2015; Li F. et al., 2015;Wallace et al., 2015). H2S is also a relaxing agent
that can act on smooth muscle and can serve as a modulator of cardiac function in cardiovascular
therapy (Polhemus and Lefer, 2014; Barr et al., 2015; Chai et al., 2015; Holwerda et al., 2015). In
addition, abnormal levels of H2S are associated with many diseases, oxygen sensing, and even death
(Olson et al., 2006; Pandey et al., 2012). Therefore, the construction of fluorescent probe to detect
H2S has important practical applications.
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Traditional methods for determining the concentration of
H2S in biological samples include colorimetric, electrochemical,
chromatographic, metal-induced vulcanization, and fluorescence
analyses (Tangerman, 2009; Shen et al., 2011). Fluorescent
molecular probes are commonly used for detection tool in
various fields, including in biological samples owing to their
ability to convert chemical information into light signals with
high sensitivity and selectivity. Hence, the development of
fluorescent probes for the detection of H2S has attracted
substantial research attention (Jiménez et al., 2003; Choi et al.,
2009; Yu et al., 2012, 2014).

However, a few reports have focused on the development
of fluorescent probes based on the binuclear character of H2S
(Asthana et al., 2016; Das et al., 2016). Therefore, we used this
approach to synthesize highly selective and sensitive fluorescent
probes that can detect H2S. Under physiological conditions,
hydrogen sulfides exist as 30% H2S in a non-resolving state
and 70% residual HS−. Thus, HS− detection can serve as a
proxy for H2S. In this study, we designed and synthesized novel
anthracene derivatives in which a -C=C- bond served as an
interaction site (Scheme 1). The abilities of these compounds to
bind to various anions (HS−, (n-C4H9)4NF (F−), (n-C4H9)4NCl
(Cl−), (n-C4H9)4NBr (Br−), (n-C4H9)4NI (I−), (n-C4H9)4NAcO
(AcO−), (n-C4H9)4NH2PO4 (H2PO

−

4 ), Na2SO3 (SO
2−
3 ), cysteine

(Cys), glutathione(GSH), and homocysteine (Hcy) were assessed

SCHEME 1 | Synthesis routes of compounds 1, 2, and 3.

through UV-Vis titration, fluorescence spectroscopy, HRMS and
1HNMR titration for HS− sensitivity and selectivity. These
compounds were also investigated for cytotoxicity to MCF-7
cells.

MATERIALS AND METHODS

Most of the starting materials were obtained commercially.
All reagents and solvents were of analytical grade. Sodium
hydrosulfide, all anions, in the form of tetrabutylammonium
salts such as (n-C4H9)4NF, (n-C4H9)4NCl, (n-C4H9)4NBr,
(n-C4H9)4NI, (n-C4H9)4NAcO, and (n-C4H9)4NH2PO4, and
amino acids (Cys, GSH, and Hcy) were purchased from
Aladdin (Shanghai, People’s Republic of China), stored in a
vacuum desiccator containing self-indicating silica, and used
without further purification. Tetrabutylammonium salts were
dried for 24 h under a vacuum with P2O5 at 333K before
use. Dimethyl sulfoxide was distilled in vacuo after being dried
with CaH2. 1H NMR spectra were recorded using a Varian
Unity Plus 400 MHz spectrometer. ESI-HRMS was performed
using a Mariner apparatus. UV-Vis spectroscopy titration was
performed using a Shimadzu UV2550 spectrophotometer at
289K. Fluorometric titration was performed using an Eclipse
fluorescence spectrophotometer (Agilent, Santa Clara, CA, USA)
at 298K. IR spectroscopy was performed using an IRTracer-100
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instrument. The binding constants (Ks) were obtained by the
non-linear least-squares method for data fitting.

Cells in logarithmic growth phase were seeded in 96-well
plates at a density of 2.0 × 104 cells per well and cultured
for 24 h. The culture medium was then replaced with 200
µL of Roswell Park Memorial Institute (RPMI) 1640 medium
containing various concentrations of the compound, and the
cells were further incubated for 24 h. Next, the cells were washed
with phosphate buffered saline (PBS) three times, and 100 µL
of culture medium and 20 µL of MTT solution were added to
each well. After further incubation (4 h), the absorbance of each
well was detected at 490 nm using a microplate reader (Thermo
Multiskan MK3, Thermo Fisher Scientific, MA, USA). Plain cell
culture medium was used as the control.

Compound 1 was synthesized according to previous methods
(Ding et al., 2013). 9-Anthracenecarboxaldehyde (82.4mg, 0.4
mmol) and acetone (35mg, 0.6 mmol) were dissolved in ethanol
(50mL). Then, under stirring, an aqueous sodium hydroxide
solution (2mL, 0.04 mol·L−1) was slowly added to the reaction
flask. The mixture was stirred at room temperature for 6 h and
adjusted to pH 5–6 with dilute hydrochloric acid (0.1 mol·L−1)
until the reaction was complete. The reaction was monitored by
thin-layer chromatography. Typically, a precipitate formed and
was collected by filtration. The solid was washed with high purity
water and ethanol, and dried under a vacuum. Yield: 87%. 1H-
NMR (400 MHz, CDCl3, 298K) δ 8.84 (d, J = 16.2Hz, 1H), 8.52
(s, 1H), 8.38 (d, J = 8.3Hz, 2H), 8.07 (d, J = 7.9Hz, 2H), 7.69–
7.47 (m, J= 88Hz, 4H). 13CNMR (101MHz, CDCl3) δ 194.10, δ
147.53, δ 141.15, δ 135.40, δ 134.28, δ 129.71, δ 128.98, δ 128.60, δ
126.54, δ125.35. IR spectrum, ν cm −1: 1668 (C=O); 1628 (C=C);
1593 (Ar-C=C); 999 (C=C-H). ESI-HRMS (m/z): 457.2 (M +

Na)+.
Compound 2 and 3 were synthesized according to the above

procedure.
Compound 2: 1H NMR (400 MHz, CDCl3, 298K) δ 8.83 (d,

J = 15.8Hz, 1H), 8.52 (s, 1H), 8.40–8.27 (m, J = 52Hz, 2H),
8.18–8.00 (m, J = 72Hz, 4H), 7.68–7.60 (m, 2H), 7.60–7.48 (m,
6H). 13C NMR (101 MHz, DMSO) δ 191.24,δ 140.88,δ 139.87,δ
137.75,δ 131.15,δ 129.15,δ 128.52,δ 127.32,δ 126.53,δ 125.50. IR
spectrum, ν cm −1: 3050 (Ar C-H); 1730 (C=O); 1560 (C=C);
720 (C=C-H). ESI-HRMS (m/z): 309.1 (M + H)+, 331.1 (M +

Na)+.
Compound 3: 1H NMR (400 MHz, CDCl3, 298K) δ 8.92 (d,

J = 15.8Hz, 1H), 8.92 (d, J = 15.8Hz, 1H), 8.55 (s, 1H), 8.47
(s, 1H), 8.51–8.36 (m, J = 60.0Hz, 3H), 8.42–8.22 (m, 6H), 8.28
(dd, J= 23.9Hz, 8.3Hz, 4H), 8.16–8.05 (m, J= 44Hz, 2H), 8.15–
8.04 (m, J = 44Hz, 2H), 7.62–7.52 (m, J = 40Hz, 4H), 7.65–7.52
(m, J = 52Hz, 4H), 7.28 (s, 3H). 13C NMR (101 MHz, DMSO)
δ 188.64,δ 150.36,δ 142.55,δ 131.59,δ 131.32,δ 129.47,δ 127.43,δ
126.15,δ 125.55,δ 124.41. IR spectrum, ν cm−1: 1750 (C=O); 1590
(C=C); 1520 (N-O); 880 (C=N). ESI-HRMS (m/z): 376.1 (M +

Na)+.

RESULTS AND DISCUSSION

UV-Vis Spectral Titration
UV-Vis titration was performed in dimethyl sulfoxide by
the stepwise addition of sodium hydrosulfide (Figure 1). For

compound 1, the presence of HS− resulted in an increase in the
absorption intensity at 315 nm, but the spectral changes were
very small. Furthermore, the addition of F−, Cl−, Br−, I−, AcO−,
H2PO

−

4 , SO
2−
3 , Cys, GSH, or Hcy resulted in very weak spectral

changes for compound 1, and the binding capacity was negligible.
For compound 2, the intensity of the absorption peak

increased at 312 nm after the addition of sodium hydrosulfide.
A hyperchromic effect was observed during the host-guest
interaction process. The change in the UV-Vis spectrum was due
to the interaction between sodium hydrosulfide and the electron-
deficient C=C double bond (Zhao et al., 2012). However, the
addition of F−, Cl−, Br−, I−, AcO−, or H2PO

−

4 did not cause
a substantial spectral response for compound 2 (Figure S1),
suggesting that the host-guest interaction was weak (Shao et al.,
2009; Shang et al., 2013, 2015a). For compound 3, the intensity
of the absorption peak at 336 nm increased, and the absorption
band was enhanced after HS− addition. However, the addition
of F−, Cl−, Br−, I−, AcO−, H2PO

−

4 , SO
2−
3 , Cys, GSH, or Hcy

resulted in a very weak spectral response, indicating that the
host-guest interaction was negligible. These results suggested that
compounds 2 and 3 both showed high sensitivity and selectivity
for HS−.

Fluorescence Response
The photophysical responses of the three probes to various
anions were examined. As shown in Figure 2, compound 1

showed an emission peak centered at 582 nm. After the addition
of HS− to a solution of compound 1, the spectral response of
compound 1 was very weak, indicating that the binding ability
was negligible.

For compound 2, emission peaks were centered at 382 and
404 nm. After the addition of HS−, the fluorescence emission
was significantly quenched. No significant spectral changes were
observed after titration of F−, Cl−, Br−, I−, H2PO

−

4 , AcO
−,

SO2−
3 , Cys, GSH, or Hcy, indicating that compound 2 had an

insignificant binding capacity for these anions (Figure S2A).
For compound 3, there was almost no fluorescence response.

After the addition of HS−, a new emission peak at approximately
420 nm appeared, which was gradually accompanied by two
shoulders centered at 402 and 440 nm. This fluorescence
enhancement may be resulted from two possible signal
transduction mechanisms: the inhibition of photo-electron
transfer and binding induced by the guest’s host molecules
(Watanabe et al., 1998; Lee et al., 2002; Lin et al., 2006). However,
no significant spectral changes were observed when compound 3

was titrated with F−, Cl−, Br−, I−, H2PO
−

4 , AcO
−, SO2−

3 , Cys,
GSH, or Hcy, indicating that compound 3 did not significantly
bind to these anions (Figure S2B). The fluorescence calibration
curve for compound 3 after the addition of HS− indicated that
the emission intensity was non-linear when various quantities of
HS− were added to a solution with a certain concentration of
compound 3 (Shang et al., 2012a).

Binding Constant
The spectral responses of compound 1 after the addition of
anions were very weak; hence, the binding constant could not
be calculated. The UV-Vis spectral changes for compounds
2 and 3 were ascribed to the formation of host-guest (1:2)
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FIGURE 1 | UV-vis spectral changes of compounds 1, 2, and 3 after the addition of HS−. (A) compound 1: 6.90 × 10−5 mol·L−1, HS−: (0–76) × 10−5 mol·L−1;

(B) compound 2: 1.46 × 10−4 mol·L−1, HS−: (0–2) × 10−3 mol·L−1; (C) compound 3: 1.1 × 10−4 mol·L−1, HS−: (0–16) × 10−4 mol·L−1.

FIGURE 2 | Changes in the emission spectra of the three compounds in the presence of HS−: (A) compound 1: 6.9 × 10−5 mol·L−1, HS−: 0–20.7 × 10−5

mol·L−1, λex = 442 nm; (B) compound 2: 1.46 × 10−4 mol·L−1, HS−: 0–50.1 × 10−4 mol·L−1, λex = 324 nm; (C) compound 3: 1.1 × 10−4 mol·L−1, HS−: 0–7.7

× 10−4 mol·L−1, λex = 368 nm.
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complexes; when the absorbance intensity was greatest, the ratio
of [H]/([H]+[G]) was approximately 0.3, according to a Job-
plot (Figure S3). The binding constants were calculated by the
non-linear least-squares method according to the UV-Vis data
provided in Table 1 (Bourson et al., 1993; Liu et al., 2001, 2004).
It was shown that, the spectra changed little for compound 1, and
compounds 2 and 3 showed the strongest binding ability for HS−

among the various anions tested. The anion binding abilities were
in decreasing order: HS− >> SO2−

3 ∼Cys∼GSH∼Hcy∼ F− ∼

Cl− ∼ Br− ∼ I− ∼AcO− ∼H2PO
−

4 . The standard deviations for
the binding constants were R3 = 0.9941 and R2 = 0.9945. Among
the three compounds, the standard deviation for compound
1 was not statistically significant, and those for compounds 2

and 3 were significant (compound 2, S = 31.6011, compound
3, S = 159.3298) (Figure S6). The anion binding ability could
be attributed to the host-guest interactions and the match in
space structures. It means that HS− ions strongly bound to these
compounds, according to their binding constants (Shang et al.,
2012b).

Compound 3 showed a stronger binding ability toward HS−

ions than that of compound 2, owing to the presence of a
nitro group. The nitro group served as an electron-withdrawing
group that enhanced the binding ability between the C=C double
bond in compound 3 and HS−. According to the HRMS data,
the observed negative ion peak (418.0577) was the MS peak of
the 3-HS− complex (theoretical value: 418.0572) (Figure S4). In
addition, there was no peak of –CH2- in the 1HNMR titration
results, suggesting that the C=C double bond was broken during
the interaction between compound 3 and HS− (Figure S5).
Therefore, a possible host-guest binding mechanism was as
follows. The first step was the Michael addition reaction of the
conjugated system (Li J. et al., 2015). The first HS− ion was
added to the C=C moiety as a nucleophile. Then, the second

TABLE 1 | Binding constants of the three compounds with various anions.

Aniona Ks (1) Ks (2) Ks (3)

HS− NDb (4.77 ± 0.77) × 105 (1.07 ± 0.45) × 106

F−, Cl−, Br−, I−,

AcO−, H2PO
−

4 , SO2−
3 ,

Cys, GSH, Hcy

ND ND ND

aAnions was added in the form of sodium sulfide or tetra-n-butylammonium salts.
bThe spectra changed little, and the binding constant could not be determined (ND).

HS− ion attacked the active hydrogen atom (alpha-H) as an
electrophile moiety, forming the final structure as shown in
Scheme 2. The final structure was verified by mass spectrometry.
The reaction of compound 3 with HS− was conducted in a
simulated physiological environment, and the reaction product
was subjected to a fluorescence analysis. A large increase in the
fluorescence spectrum was observed.

Cytotoxicity Assessment
The cytotoxicity of the three compounds against MCF-7 cells
was evaluated by MTT assays (Vibet et al., 2008; Jiang et al.,
2014; Alemany et al., 2015; Jouvin et al., 2015; Moustakim
et al., 2017) (Figure 3). Compound 1 had a proliferative effect
on the cells, and compounds 2 and 3 in the range of 0–
150 µg·mL−1 showed very low cytotoxicity. Cell viability was
minimally affected (80% cell viability), when the concentrations
of compounds 2 and 3 were increased to 150 µg·mL−1. In
agreement with the determined binding constants, compounds
2 and 3 each showed a high binding capacity and low cytotoxicity
and thus can be used to detect HS− in vivo (Gao et al., 2015;
Shang et al., 2017). Compared with previous estimates in the
literature (Zou et al., 2013; Lin et al., 2015), the cytotoxicity of the
synthesized compounds was relatively low. Hence, these probes
are favorable candidates for in vitro hydrogen sulfide detection.

FIGURE 3 | Cell viability values (%), as estimated from MTT proliferation

assays, vs. incubation concentrations of fluorescent probe.

SCHEME 2 | The possible interaction mechanism between compound 3 and HS−.
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Theoretical Investigation
Among the three synthesized compounds, compound 3 showed
the highest sensitivity and selectivity for HS− according to the
binding constants. Consequently, the geometries were optimized
for compound 3 and the combination product 3-HS (Figure 4)
based on the density functional theory method and the level of
B3LYP/3-21G. The calculation was implemented in Gaussian03
(Frisch et al., 2003; Gao et al., 2017). As shown in Figure 4,
the distance of the intramolecular hydrogen bond in compound
3 was 2.390 Å between the hydrogen atom of the interaction
site (-HC=CH-) and the oxygen atom of the carbonyl group.
According to previous studies (Ni et al., 2012; Maity et al.,
2014), the existence of intramolecular hydrogen bonding and

an electron-withdrawing group (-NO2) increases the sensitivity.
Hence, the stronger the electron-withdrawing effect is, the
higher sensitivity for HS− this compound gets. The combination
between compound 3 and HS− was also optimized. Our
results indicated that the spatial structure of the host may
change, as a result of the host-guest interaction. Therefore,
the combination product (3-HS) existed in resonance form.
The distance of the hydrogen bond (2.006 Å) indicated that
a stable six-cycle was formed containing a sulfur atom and a
hydrogen atom in a hydroxyl group (the resonance form of
ketone) after compound 3 interacted with HS−. These results
also explained the strong ability of compound 3 to bind to
HS−.

FIGURE 4 | Optimized geometries of compound 3 and the combination product 3-HS.

FIGURE 5 | The selected molecular frontier orbitals HOMO (a) and LUMO (b).
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In addition, the molecular frontier orbitals were introduced to
explore the hyperchromic effect (by UV-Vis titration as described
above). This effect was observed in the host-guest interaction
process by the electron transition of the frontier orbital. The
selected frontier orbitals for compound 3 and the host-guest
complex are shown in Figure 5. An orbital analysis revealed
that the highest occupied molecular orbital (HOMO) density in
compound 3 was mainly localized on the anthracene moiety,
whereas the lowest unoccupied molecular orbital (LUMO)
density was localized on the nitrophenyl and ketone group
moieties (Shang et al., 2015b). These results indicated that
the electron transition of the highest HOMO resulted in a
hyperchromic effect in the UV-Vis spectra.

CONCLUSIONS

In conclusion, three compounds were synthesized, and their
abilities to bind to various anions were detected by UV-Vis
titration, fluorescence spectroscopy, HRMS, 1HNMR titration
and theoretical investigations. Compounds 2 and 3 showed
selectivity and sensitivity for HS−. Notably, compound 3 showed
the strongest sensing ability for HS− among the synthesized
compounds. The mechanism underlying this interaction was the
nucleophilic reaction between HS− and the electron-poor C=C
double bond. Theoretical investigations also elucidated the role
of molecular frontier orbitals in the hyperchromic effect. In
addition, compounds 2 and 3 showed low cytotoxicity against
MCF-7 cells in the concentration range of 0–150 µg·mL−1 and
can be subsequently used as fluorescent probes to detect H2S,
HS−, or S2− species in vivo. These results provide a probe with
a novel sensing mechanism for hydrogen sulfide, based on the

amphipolar character of the S atom of the new compounds to
be used in practical applications to detect H2S. Our finding
establishes a basis for further applications of molecular probes.
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