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Abstract: Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different
types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for
bone regeneration in tissue engineering. The present study aimed to design and develop a fluid
flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs.
We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of
hMSCs and found that the cultured cells retained their stemness potential. We also evaluated
the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under
different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell
growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other
conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate.
Enhanced mineralization and alkaline phosphatase activity were also observed under different
perfusion conditions compared to the static conditions, indicating that the applied conditions play
important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the
expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen
type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static
conditions and found that they were significantly affected by the applied conditions. Furthermore,
the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in
the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition
for osteogenic differentiation. Taken together, the findings of this study reveal that the developed
cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used
in the field of tissue engineering.

Keywords: cartridge device; perfusion; mesenchymal stem cells; gene expression

1. Introduction

The incidence of bone-related diseases, such as infections, osteoporosis, arthritis, and
spinal disorders, is increasing due to the complex lifestyles of people. Autologous bone
grafts are commonly used to treat major structural defects; however, their applications
are restricted owing to donor-site morbidity and limited availability of graft materials [1].
Allotransplantion has also been applied to treat various damaged organs; however, the
rejection of allografts or transmission of pathogens via these grafts have been reported
in some cases [2]. Therefore, effective alternative approaches are required to treat such
bone-related diseases. Tissue engineering is considered to be an alternative approach for
the treatment and replacement of damaged organs, in which cells are cultivated outside
the body and then transplanted into the host to regenerate the desired tissues or organs [3].
Despite several advantages of this method, heterogeneous cell death occurs at the center of
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thick, voluminous grafts in the static culture microenvironment due to the restriction of
passive transport. Passive transport is limited to a short distance (100–200 µm), leading to
the inappropriate supply and transport of nutrients, gases, metabolites, wastes, and, conse-
quently, decreasing the cell viability [4–7]. Additionally, the native condition of the static
system does not resemble that of most tissues. Microenvironments play important roles in
the proliferation and differentiation of cells. It has been observed that mesenchymal stem
cells (MSCs) facilitated osteoclastogenesis by producing the osteoclastogenic cytokines,
macrophage colony-stimulating factor (M-CSF), and receptor activator for nuclear fac-
tor kappa B ligand (RANKL) under physiological conditions. However, MSCs inhibited
the osteoclastogenesis by the secretion of the anti-osteoclastogenic factor osteoprotegerin
(OPG) during inflammation [8]. The co-culture of MSCs with nucleus pulposus (NP) cells
obtained from degenerated or non-degenerated human NP tissue indicated that the direct
cellular interactions among MSCs and degenerated NPs cells triggered the differentiation
of MSCs into NP-like phenotype and increased the endogenous NP cell populations [9].
A decrease in cancer tumorigenicity has been earlier reported in the co-culture of MSCs
with ovarian cancer cells [10]. Cancer-associated MSCs (CA-MSCs) trigger tumor growth
and angiogenesis by directly interacting with tumor cells or releasing cytokines, growth
factors, and exosomes. The loss in the osteogenic and adipogenic differentiation potentials
of MSCs has also been reported cultured within ovarian cancer cells, and co-cultured
cells demonstrated CA-MSCs properties [11]. Other factors, such as pH, shear stress, and
dissolved gas also influence the proliferation and differentiation of cells [12].

Different techniques, including the use of bioreactors, have been applied to generate an
optimal cellular microenvironment. It is possible to control the different physicochemical
factors, such as temperature, pH, humidity, pressure, shear stress, dissolved oxygen, and
carbon dioxide, in the bioreactor [13–15]. The perfused media facilitate the continuous sup-
ply of nutrients as well as the removal of cellular wastes. Thus, bioreactors are considered
as attractive and effective tools for use in tissue-engineering applications [16–18]. Bioreac-
tors are utilized to culture different cells, including stem cells, osteoblasts, keratinocytes,
cardiomyocytes, and myofibroblasts, for various applications [19]. Mechanostimulation
(shear stress) is known to influence the maturation of cells by increasing the transportation
of nutrients and waste [4,20–23]. Mechanostimulation has also been reported to enhance
the construction of the extracellular matrix (ECM) as well as the secretion of cytokines
and growth factors [24,25]. Furthermore, oxygen levels and shear stress, which triggers
the expression of biological signals, play vital roles in cell proliferation and differentiation.
Improved proliferation and differentiation of stem cells have been reported more under
low oxygen conditions (2–5% O2) than at normal oxygen levels. Therefore, controlling the
shear stress and oxygen levels is important for achieving better cellular activity [15,26].

The present study reported the proliferation and osteogenic differentiation potential
of human mesenchymal stem cells (hMSCs) under fluid flow and static conditions in
a novel cartridge device for tissue engineering. Several approaches have been utilized
for the proliferation and osteogenic differentiation of hMSCs; however, the suitability of
these approaches for tissue engineering remains unclear. An enhancement in cell viability,
mineralization, and alkaline phosphatase activity was observed in the developed cartridge
device at the appropriate shear stress (1.018 × 10−6 Pa). Upregulation of osteogenic
transcription factors occurred more under fluid flow conditions than the static conditions
in the developed device. Therefore, mechanical stimulation plays significant roles in the
proliferation and osteogenic differentiation of hMSCs, and the developed device may be
applied to promote the regeneration of bone tissues.

2. Experiment Section
2.1. Materials

Sodium phosphate, paraformaldehyde, alizarin red S (ARS), alcian blue, oil red O
dye, Nissl stain (all purchased from Sigma-Aldrich, Burlington, MA, USA), bovine serum
albumin (BSA) (ICN Biomedicals, Aurora, OH, USA), antibodies (BD Biosciences, San Jose,
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CA, USA), osteogenic, chondrogenic, adipogenic, and neurogenic differentiation media
(Gibco BRL), water-soluble tetrazolium salt 1 (WST-1) assay (EZ-Cytox Cell Viability Assay
Kit, Daeillab Service Co., LTD., Cheongwon-gun, Korea), ALP kit (AnaApec, Fremont, CA,
USA), TRIzol reagent (Thermo Fischer Scientific, Waltham, MA, USA), reverse transcriptase
(Superscript II RTase, Invitrogen, Gaithersburg, MD, USA), and SYBR Green Master Mix
(Bio-Rad, Hercule, CA, USA) were used as received from the supplier without further
purification.

2.2. Development of Bioreactor Device

The fabricated system was composed of a mini chamber device (40 × 40 × 30 mm3)
with inlets and outlets for the transport of media. A precision flowmeter was applied to the
photographs of the developed system Figure 1a–d. The culture media was passed through
a Tygon R3603 tube whose inner and outer diameters were 1.59 and 3.20 mm, respectively.
A peristaltic pump (400 low-flow pump; Watson-Marlow Bredel Pump, Republic of Korea)
was used to flow the cultured media. The fluid flow rate was adjusted to 0.035, 0.21, and
0.35 mL/min to achieve the shear stress of 1.018× 10−6, 6.018× 10−6, and 1.018 × 10−5 Pa,
respectively. Static conditions were considered as the controls. The advantages of using
the Tygon R3603 tube include its autoclavable and gas-permeable potential. An autoclave
steam sterilizer was also used to sterilize the system (DAIHAN-Sci., Wonju, Republic of
Korea). The rubber band (O-ring) and others were sterilized with 70% ethanol, followed by
treatment with ultraviolet (UV) light. Different components of the developed system were
assembled in a cell culture hood to avoid contamination.

Figure 1. Photographs of the developed device at different conditions: (a) different parts of the
developed device in open condition (b) in assembled condition (c) developed device in CO2 incubator
connected with tube (d) images of used CO2 incubator with media reservoir and other controllers.

2.3. Cell Culture

The hMSCs were collected from the Intellectual Biointerface Engineering Center, Den-
tal Research Institute, College of Dentistry, Seoul National University, Seoul, Republic of Ko-
rea. The cells were then treated with an α-minimum essential medium containing 10% fetal
bovine serum (FBS) (Welgene Inc., Gyeongsan-si, Korea), 10 mM ascorbic acid (L-ascorbic
acid), antibiotics, and sodium bicarbonate at 37 ◦C in a humidified atmosphere of 5% carbon
dioxide (CO2). The old media was replaced with fresh media every day. After confluency
was reached, the cells were separated with 1 mL trypsin-ethylenediaminetetraacetic acid
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(trypsin-EDTA) solution, followed by counting and passaging. Five passage cells were
used in this study.

2.4. Flow Cytometric Analysis

Flow cytometric analysis was performed to examine the stemness potential of the
cultured hMSCs. In brief, 1.0 × 104 cells were fixed with a 3.7% paraformaldehyde (PFA)
solution for 10 min, followed by resuspension in phosphate-buffered saline (PBS) with
1% BSA for 30 min to block the non-targeted antibody binding sites. The cells were then
treated with specific antibodies against cluster of differentiation (CD)-34, CD13, CD90, or
CD146 at 4 ◦C for 60 min, followed by treatment with fluorescent secondary antibodies at
room temperature for 60 min. A FACSCalibur flow cytometer (Becton Dickinson Immuno-
cytometry Systems, CA, USA) was used to analyze the percentages of CD34-negative and
CD13-, CD90-, and CD-146-positive cells.

2.5. Multi-Differentiation Potential of hMSCs

The multi-differentiation potential of hMSCs was monitored in different differenti-
ation media as previously reported [14]. Briefly, the cells were cultured in osteogenic,
chondrogenic, adipogenic, and neurogenic differentiation media for the desired periods
to assess the osteogenic, chondrogenic, adipogenic, and neurogenic abilities of hMSCs,
respectively. The cells were then treated with 2% ARS stain (pH 4.2), 1% Alcian blue, 0.3%
Oil Red O dye, and Nissl stain to examine the deposited calcified matrix, proteoglycans,
fat vacuoles, and Nissl bodies as markers of osteogenic, chondrogenic, adipogenic, and
neurogenic differentiation, respectively. An inverted light microscope (Olympus U-SPT;
Olympus) was used to capture the images of the stained cells.

2.6. Cell Viability and Mineralization

The WST-1 assay was used to analyze the viabilities of hMSCs in the developed sys-
tems after 3 days of cultivation under different shear stress conditions. The groups without
shear stress were considered to be static (control). The cells were cultured for the desired
periods and treated with WST-1 dye to form soluble formazan. A spectrophotometer
(Victor 3; Perkin Elmer, Waltham, MA, USA) was then used to measure the absorbance of
the formazan produced at 460 nm.

The mineralization potentials of hMSCs were measured via ARS staining after 7 and
21 days of treatment under different shear conditions. The groups without shear stress
were used as controls. In brief, 4 × 106 cells were seeded on the surface of the plate and
cultured for the chosen periods. After that, the cells were washed with PBS and fixed
with 4% PFA solution at room temperature for 20 min, washed with distilled water, and
stained with ARS media. After 30 min, the stained cells were rinsed with distilled water,
and images were taken using an optical microscope. Quantification of the formed mineral
was performed by treating the stained cells with the de-staining solution containing 10%
cetylpyridinium chloride and 10 nM sodium phosphate, and absorbance was measured at
562 nm. All experiments were performed in triplicate (n = 3), and the data are presented as
the mean optical density (OD) ± standard deviation (SD). Statistical significance was set at
* p < 0.05.

2.7. Alkaline Phosphatase (ALP) Activity and Osteogenic Differentiation

The ALP activities of hMSCs were measured using a SensolyteTM ALP kit (AnaApec,
USA) according to the manufacturer’s guidelines. The obtained cell suspension was
centrifuged at 2500× g at 4 ◦C for 10 min, followed by the measurement of the absorbance
of the yellow p-nitrophenol product at 405 nm with a spectrophotometer. * p < 0.05 was
considered to be a significant difference.

The expression levels of the osteogenesis-related genes in hMSCs were determined
via real-time polymerase chain reaction (RT-PCR) after 14 days of incubation. For this,
4 × 106 cells were cultured in the developed bioreactor under different shear stress con-
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ditions for the desired periods. The groups without shear stress were used as controls.
RNA extraction was performed using the TRIzol reagent according to the manufacturer’s
guidelines. Before cDNA synthesis, the purity and concentration of the extracted RNA were
determined using a spectrophotometer. cDNA was synthesized using reverse transcriptase
and SYBR Green Master Mix. The Bio-Rad Real-Time PCR (CFX96TM Maestro Real-Time
Systems; Bio-Rad, Hercules, CA, USA) instrument was used to determine the mRNA-
expression levels. This study involved 43 cycles of denaturation at 95 ◦C for 15 s and
amplification at 60 ◦C for 1 min. All experiments were performed in triplicate (n = 3) and
normalized to the housekeeping gene, hypoxanthine-guanine phosphoribosyl transferase
(HPRT). The primer sets used in this study are listed in Table 1. For fluorescence staining,
4 × 104 cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% Triton-X
100, followed by blocking with 1% BSA for 60 min. After that, the cells were incubated
with mouse anti-human OPN antibody (Santa Cruz Biotech, Santa Cruz, CA; USA) for
60 min, followed by incubation with AF/555 conjugated secondary antibody (Thermo
Fischer Scientific, Waltham, MA, USA) for 60 min. Next, the cytoskeleton was stained with
AF/488 conjugated F-actin probe (Thermo Fischer Scientific, USA) for 30 min. The cells
were washed with PBS, and nuclei were stained with DAPI (Sigma-Aldrich, USA). The cells
were mounted with Prolong Antifade mounting media, and cells were visualized with con-
focal microscope (LSM Zeiss,Zeiss, Oberkochen,Germany). The osteogenic differentiation
medium was used for the mineralization, ALP activity, and osteogenic gene-expression
experiments.

Table 1. The primer sequences applied in this study.

Gene Accession No. Sequences

HPRT NM_000194 5′-GCGCAAGTACTCTGTGTGGA-3′

5′-ACATCTGCTGGAAGGTGGAC-3′

Runx2 NM_001146038 5′-GGACATGCAGTACGAGCTGA-3′

5′-GCAGTGAAGGGCTTCTTGTC-3′

Col1 NM007742 5′-TGACCTTCCTGCGCCTGATGTCC-3′

5′-CTGGGGCACCAACGTCCAAGGG-3′

OCN AL135927 5′-GTGCAGAGTCCAGCAAAGGT-3′

5′-TCAGCCAACTCGTCACAGTC-3′

OPN J04765 5′-GAAACGAGTCAGCTGGATG-3′

5′-TGAAATTCATGGCTGTGGAA-3′

2.8. Statistical Analysis

Statistical analysis was performed with one-way analysis of variance (ANOVA) using
OriginPro v.9.0 (OriginLab, Northampton, MA, USA). All results are presented as the
mean ± standard deviation. Statistical analyses were performed for the control and treated
groups. Statistical significance was set at * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results and Discussion
3.1. Bioreactor Setup

The developed system was designed using the computer-aided design (CAD) software,
and the drawing views are shown in Figure 2. The side sketches of the designed system are
shown in Figure 2a,b. The highlighted sections of the sketch indicate the flow of the culture
media, and the direction of the culture media is from top to bottom. The top drawing
views of the designed system with cover are shown in Figure 2c,d. The dimensions of the
cover were 40 mm × 40 mm × 30 mm3. The developed system was connected to inlet and
outlet ports associated with an external peristaltic pump to achieve proper mechanical
stimulation. The streamline flow and velocity magnitude (m/s) of the cultured media in
the developed system are shown in Figure 2e,f. Computational fluid dynamics (CFD) was
used to calculate the shear stress that occurred on cells through the culture media. In this
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study, three flow intensities, 0.035, 0.21, and 0.35 mL/min, were considered, for which
the shear stress value was 1.018 × 10−6, 6.108 × 10−6, and 1.018 × 10−5 Pa, respectively.
The velocity magnitude was maximum at the inlet and outlet sections of the system and
minimum at the center of the developed system.

(b)(a)

(d)(c)

(f)(e)

Figure 2.

Figure 2. Computer-Aided Design (CAD) design of the developed device: (a,b) side drawing views
(c,d) top drawing views with covers and (e,f) velocity magnitude (m/s) and streamlines for the
media flow.

3.2. Stemness Potential of Cultured hMSCs

The stemness ability of the cultured hMSCs was analyzed using the fluorescence-
activated cell-sorting (FACS) method, and the results are presented in Figure 3a. The
cells cultured without perfusion conditions were taken for the stemness analysis. The
cultured cells expressed enhanced (>90%) stem-cell-associated CD13, CD90, and CD146
markers and a decreased appearance of CD34 (~12%), demonstrating their stemness ability.
Multi-differentiation and self-renewal are important characteristics of stem cells [27]. The
loss of stemness ability of stem cells restricts its broad applicability. The multi-lineage
differentiation ability of cultured hMSCs at different periods is shown in Figure 3b. The
appearance of mineralized nodules, proteoglycans, fat vacuoles, and Nissl bodies after
7 days of culture confirmed the osteogenic, chondrogenic, adipogenic, and neurogenic
differentiation of hMSCs, whose intensity increased after 14 and 21 days, showing the
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enhanced multi-lineage differentiation ability of hMSCs. Mesenchymal stem cells are
commonly utilized in tissue engineering and regenerative medicine owing to their multi-
lineage differentiation ability, high expansion, and good availability [28]. The stemness
and multi-lineage differentiation abilities of stem cells are profoundly influenced by the
surrounding microenvironment, cell–cell interactions, and others [29].

Figure 3. Stemness potential analysis of Human mesenchymal stem cells (hMSCs) in the developed
device (a) The cell surface antigen profile of hMSCs was confirmed by flow cytometry (b) The
multi-differentiation potential of hMSCs grown in the developed device.

3.3. Cell Viability and Morphology

To validate the design of the developed system, we performed a comparative cell-
viability study between the conventional culture system (5% CO2 incubator) and the
developed bioreactor after 3 days of treatment, and the results are given in Figure S1. The
cell-growth rate was similar in both conditions, indicating that the developed bioreactor
has no adverse effects on hMSCs and is optimized. The viability of the cultured hMSCs was
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measured by WST-1 assay after 3 days of treatment in the developed system under different
shear stress conditions, and the results are shown in Figure 4a. Enhanced cell viability
was observed under shear stress conditions compared to the static condition, and this was
a more significant inflow rate of 0.035 mL/min (1.018 × 10−6 Pa) than the other stress
conditions, suggesting the ideal stress for cellular activity. The enhancement in cell viability
under shear stress conditions is attributed to the enhancement of collagen deposition,
nutrient transport, and uptake, facilitating the upregulation of cellular activities. Shear
stress plays a significant role in the cell shape and intracellular signaling pathways. Shear
stress-induced alignment of different types of cells has been previously reported via the
reorganization of the cytoskeleton [30,31]. Furthermore, decreased cell viability occurred
with increasing magnitude of shear stress due to stress-induced cell death. Therefore,
it is important to maintain stress levels to improve cellular activity. Additionally, the
microstructures of the material used for the cell culture also influence cellular activity [32].

Figure 4. (a) Viability of the cultured hMSCs in the developed device at different shear stresses after
three days interval Statistical analyses were performed for the control and treated groups. Statistical
significance was set at * p < 0.05, (b) the morphologies of the cultured hMSCs in the developed device
at indicated conditions.

The morphologies of the cultured cells were examined using a light microscope, and
the morphologies are shown in Figure 4b. The cultured cells were adequately attached
to the substrate and elongated in shape. The cells were healthy and covered the entire
culture surface. The cell densities were higher under shear stress conditions compared to
the static condition, and this was higher in the 1.018 × 10−6 Pa condition than in the others,
indicating a suitable condition for cell growth, as observed in the cell viability results.
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3.4. Effects of Shear Stress on Mineralization and ALP Activity

Bone tissues are enriched with calcium content, and the detection of the deposited
minerals in the osteogenic media provides essential information about cellular activity. The
deposited minerals are the primary indication of osteogenesis [33]. The optical microscopic
images of the ARS stain-treated hMSCs under different shear stress conditions after 7 and
21 days of culture are shown in Figure 5a. The groups without shear stress treatment were
used as controls. The shear stress-treated groups exhibited more red spots than the control
after 7 d of culture, showing a positive effect on mineralization. The intensities of the
generated red spots were further enhanced in the stress-treated groups after 21 days of
treatment, demonstrating improved mineralization ability. Among these (1.018 × 10−6,
6.108 × 10−6, and 1.018 × 10−5 Pa), the 1.018 × 10−6 Pa stress-treated groups exhibited
greater mineralization potential than the others due to the better cellular activity conditions.
The quantitative values of the formed nodules were measured using a spectrophotometer
after 21 d of incubation, and the values are presented in Figure 5b. The mineralized values
were higher in the shear stress-treated groups than in the control, indicating the positive
effects of shear stress on the mineralization of hMSCs. This value was more prominent in
the 1.018 × 10−6 Pa stress-treated groups than in the other groups because of the better
cellular activity at this shear stress.

Figure 5. (a) The qualitative analysis of the mineralization potential of hMSCs in the developed
device under different shear stress conditions at indicated time periods (b) the quantitative values of
the formed minerals in the developed device under different shear stress conditions after 21 days of
time periods, and (c) the ALP activity of hMSCs in the developed device after 14 days of incubation.
Statistical analyses were performed for the control and treated groups. Statistical significance was set
at * p < 0.05, ** p < 0.01, and *** p < 0.001.
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The ALP activity of cultured hMSCs was also measured under different shear con-
ditions after 14 d of incubation, and the results are presented in Figure 5c. The groups
without any shear stress were considered as the control (static). ALP activity also provides
useful information on osteogenesis. ALP activity was prominently upregulated in shear
stress-mediated groups compared to the control, showing positive effects of shear stress
on osteogenesis of hMSCs. This was more up-regulated in the 1.018 × 10−6 Pa stress-
treated groups than in the other groups. ALP is an ectoenzyme that triggers mineralization
by involving the degradation of inorganic pyrophosphates. These degraded inorganic
phosphates act as templates for mineralization [34].

3.5. Shear Stress-Induced Osteogenic Differentiation of hMSCs

The osteogenic differentiation capabilities of hMSCs cultured in the developed system
under different shear stress conditions were analyzed by RT-PCR, and the results are
presented in Figure 6a–d. The improved expression levels of the osteogenesis-related genes
(runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin
(OCN)) in hMSCs were observed under different shear stress conditions compared to the
control, indicating the accelerating effects of shear stress on osteogenic differentiation. It
was more significant in the 1.018 × 10−6 Pa stress-treated groups than the other groups
due to the favorable conditions for enhanced cellular activities. Runx2 is an important
osteogenic gene marker, and it is expressed at an early stage of cell differentiation. It
plays a crucial role in osteogenic differentiation. Col1 is an early osteogenic transcription
factor, and its expression indicates the presence of bone cells [35–38]. OCN is consid-
ered one of the most important late osteogenesis-associated gene markers, which are
found during mineralization and assembled in mineralized bones. OPN is also known
as secreted phosphoprotein 1 (SPP1), and its expression is upregulated during osteogenic
differentiation. Different factors, such as stimuli, cultured microenvironment, and the pres-
ence of scaffolds/nanomaterials, directly influence the osteogenic potentials of the stem
cells [39,40]. Mechanical stimuli are classified into material properties, ECM, and different
stresses. The appropriate mechanical stimuli can alter the properties of ECM, leading to
improved bone growth and regeneration. The change in cell morphology, motility, and
function was previously reported with mechanical stimulation due to the stretching of
the actin cytoskeleton [41,42]. Enhanced expression of myogenic factors was observed
with low-frequency periodic mechanical stimulation in C2C12 myoblasts by increasing the
microRNA content and facilitating the myogenic differentiation. It was observed that the
mineralization was significantly higher compared to the expression of osteogenic-related
markers under the shear stress conditions. This can be attributed to the improved cellular
activity, which stimulated the matrix vesicle (MV)-assisted mineralization, followed by
collagen-assisted mineralization. The MV-mediated mineralization led to the formation of
the apatite moieties within the matrix vesicles and transportation outside the cells. This
preformed apatite deposited into the collagenous extracellular matrix (ECM), causing the
mineralization through different processes [43]. The enhanced cell proliferation under
the shear-stress conditions facilitates greater mineralization [14]. It has been observed
that beta-catenin plays an important role in the flow-induced osteogenic differentiation of
MSCs [44].

The morphologies of hMSCs cultured in the developed systems as determined by confo-
cal laser scanning microscopy are presented in Figure 7. Here, we chose the 1.018 × 10−6 Pa
shear stress to express OPN marker due to the improved osteogenic differentiation under
these conditions. The groups without any stress were used as controls. Shear stress-treated
cells exhibited higher expression levels of OPN gene marker compared to the control.
Moreover, the cells were properly aligned and adhered to the surfaces. The limitation of
our study is that the approach of mechano-transduction in hMSCs used in this study was
not explored under different shear stress conditions. However, we demonstrated that shear
stress plays important roles in the proliferation and differentiation of cells. We believe that
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the nutrients and surrounding ECM changes might be crucial factors that affect the shear
stress in cultured cells.

Figure 6. The expression of osteogenic associated gene markers in hMSCs in the developed device
after 14 days of cultivation (a) the relative expression of Col1 (b) Col1 (c) OCN (d) OPN after 14 days
of cultivation. Statistical analyses were performed for the control and treated groups. Statistical
significance was set at * p < 0.05.

Figure 7. ICC results. The expression of osteogenic-related gene marker at indicated conditions in
the developed device.

4. Conclusions

The bioreactor is a vital tool for culturing various types of cells for applications in
tissue engineering. In this study, we designed and developed a perfusion flow bioreactor
system and evaluated its tissue-engineering potential. We found that the cells cultured
under the developed bioreactor system without perfusion exhibited a similar trend of
cell growth as the conventional cell-culture system (5% CO2 incubator). No significant
differences in the cellular morphology were observed in the developed bioreactor (with
perfusions), and static condition indicated the potential of the designed and developed
bioreactor. Furthermore, the cell viability rate was significantly higher (12%) under per-
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fusion conditions than static conditions, which was significantly affected by shear stress.
We also found that lower shear stress conditions facilitated increased cell growth, mineral-
ization, and differentiation of osteocytes compared to high-stress conditions. Moreover,
the morphologies of the cultured cells can be monitored and captured using a microscope.
Therefore, the perfusion bioreactor system designed and developed in this study can
potentially be used for the rapid growth of cells in various tissue-engineering applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12080927/s1, Figure S1: Comparative study of hMSCs viability between the conventional
method (incubated at 5% CO2 incubator), and the developed system (static condition) after 3 days.
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