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REVIEW

The attributes of plakins in cancer 
and disease: perspectives on ovarian cancer 
progression, chemoresistance and recurrence
Tamsin Wesley1,2, Stuart Berzins1,2, George Kannourakis1,2 and Nuzhat Ahmed1,2,3,4*   

Abstract 

The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, 
especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal 
integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes 
mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress 
response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle 
and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer 
progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and 
envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin 
family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight 
potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and 
discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately 
recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian 
tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites micro-
environment, which may contribute to the sustenance and progression of the disease. In this review, attempts have 
been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovar-
ian cancer.
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Background
The plakins are a large versatile family of proteins pre-
sent in different tissues of the body that are well known 
for their roles in providing cytoskeletal integrity and 
organizational support to cellular adhesion complexes 
[1]. They provide strength to cells exposed to mechani-
cal stress, such as muscle and skin, linking intermediate 
filaments that form the cell cytoskeleton and mediate 

cadherin associated cell–cell junctions to provide tissue 
integrity [1, 2]. Plakins also connect hemidesmosome 
junction complexes to the plasma membrane, nucleus 
and mitochondria of human cells and play a crucial role 
in maintaining cytoskeletal stability while at the same 
time act as adaptors for signalling proteins that regulate 
cell-extracellular matrix connections, cell–cell connec-
tion, cell migration and invasion, differentiation, and in 
some cases stress responses. The participation of plakins 
in intracellular signalling, cellular migration and differen-
tiation makes this family of proteins an intriguing subject 
for cancer research [3].
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Mammalian plakins are evolutionarily conserved and 
have a similar cellular organization in different tissues [2]. 
However, they have multiple binding sites and isomeric 
variations that provide them with additional roles across 
a range of tissues [2]. Their varied composition and bind-
ing patterns with hemidesmosomes and intermediate fil-
aments affect tissue integrity in genetic and autoimmune 
diseases [2]. The most known plakins are plectin (PLEC) 
and desmoplakin (DSP). The remainder are envoplakin 
(EVPL), periplakin (PPL) and Epiplakin (EPPK1). Their 
cousins are the spectraplakins, microtubule-actin cross-
linking factor (MACF1 also known as ACF7) and bullous 
pemphigus antigen 1 (BPAG1). Often the epithelial and 
neuronal isoforms, BPAG1e and BPAG1n are grouped 
with the plakins, while BPAG1a and 1b are grouped with 
the spectraplakins, the division being based on their sim-
ilar characteristics to spectrin family proteins [2].

Most of our current knowledge on the role of plakins 
in humans comes from studies of mammalian tissues 
such as skin and skeletal muscles [1]. However, very little 
is known about how the assembly of plakins that incor-
porates intermediate filaments and adaptor proteins 
changes with cellular transformation associated with 
neoplastic transformation. As a result, the molecular 
mechanisms that maintains plakin assembly with other 
adaptor and scaffolding proteins to provide cytoskeletal 
stability in cancer cells remains vague. In this review, we 
summarize our knowledge of plakins in skin and skeletal 
muscle biology, give an overview of recent findings about 
plakin biology in cancer, and discuss these findings in the 
setting of ovarian cancer progression and recurrence.

Structure of common plakins
Plakins are large multidomain versatile proteins that the 
shape the cytoskeleton of cells by linking to different 
microfilaments, intermediate filaments or microtubules 
[4]. They also connect different cytoskeletal networks 
within the cells and are also involved with linking the 
cytoskeletal networks to different sites on the plasma 
membrane, nuclear membranes or different organelles 
within various tissues [2]. All conventional plakins share 
a common structural design which comprises of a NH2-
terminal head region (plakin domain), a central coiled 
rod domain and a COOH-terminal tail domain [5]. The 
plakin domain dominates the head region of these pro-
teins, which is shared by mammalian plakin members [3]. 
In the case of EVPL, PPL and DSP the head domain also 
consists of a number of spectrin repeats and a Src homol-
ogy 3 domain (SH3) [3]. The N-terminal end of plakins 
enables protein–protein interactions, for example, PPL, 
which interacts with PLEC and kazrin [6, 7], while DSP 
at the N termini interacts with plakoglobin, also known 
as γ-catenin [8]. The plakin domain in the N-terminal 

end also connects cell adhesion complexes and cytoskel-
etal networks essential for sustaining cellular architec-
ture and maintaining tissue integrity and stability under 
stress conditions [3, 9, 10]. The central coiled region is 
involved with protein–protein dimerization, which pro-
vides strength to cytoskeleton and cell junctions, while 
the C-terminal region consists of a few plakin repeat 
domains that interact with intermediate filaments [3, 11] 
The structural components of the plakins are illustrated 
in Fig. 1.

Common plakin members: their structure 
and function in normal cell biology
Desmoplakin (DSP)
DSP has two isotypes. The first (DSPI) is about 330 kDa 
in size and is predominantly found in cardiac muscle 
whereas the second (DSPII) is about 250–260 kDa, with a 
shorter rod domain than DSPI. The N terminal domain of 
DSP is where the interaction with the desmosomal pro-
teins, including cadherins and armadillo proteins occurs. 
The C-terminus connects to intermediate filaments such 
as desmin, vimentin and keratins [8, 12, 13].

DSP is the major protein involved with desmosome for-
mation and cell–cell adhesion [10, 14]. It has been estab-
lished that DSP can be degraded by the 26 s proteasome, 
thus modulating DSP expression and signalling [15]. The 
protein p53, known for its control of the cell cycle and 
apoptosis, and the related p63 are involved in the regula-
tion of the structure and function of desmosomes. Both 
p53 and p63 regulate the expression of many desmo-
somal proteins, including DSP [16]. The tumour sup-
pressor function of the p53 family also modulates DSP 
expression [16].

Envoplakin (EVPL)
EVPL is often studied in association with PPL. Both pro-
teins were discovered through study of the skin-blistering 
disease, paraneoplastic pemphigus (PNP), which accom-
panies both benign and malignant neoplasia, diagnosed 
by the production of autoantibodies against proteins 
in the cells of skin and mucus membranes that breaks 
cell–cell communication resulting in skin erosion and 
blistering [3]. In addition, EVPL is found in a range of 
epithelial cells of various tissues and links intermediate 
filaments (IFs) and desmosomes to the cornified envelope 
of mature cells of stratified squamous epithelium [4]. In 
skin cells that have not yet formed a cornified envelope, 
EVPL and PPL are found near DSP at desmosomes, in an 
inter-desmosomal network at the cell membrane associ-
ated with keratin filaments [4, 5]. EVPL has a p63 specific 
response element and its expression in the skin of mice 
was shown to be severely reduced in the absence of p63 
protein [17]. EVPL is predicted to form heterodimers 
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with PPL due to its rod domain sequence. The binding 
sites for intermediate filaments, including vimentin, are 
found in its single plakin repeat domain [5, 18].

Periplakin (PPL)
PPL is a 195 kDa protein with similar structure and func-
tion as EVPL. It acts as a cytolinker between interme-
diate filaments and cytoskeletal proteins and forms an 
integral part of desmosomal plaques with cadherins and 
other members of the plakin family such as DSP, PLEC 
and EVPL [19]. In addition, PPL interacts with other 
non-desmosomal proteins at the plasma membrane to 
regulate the signalling pathways including, AKT [20], 
Annexin 9 [21], CD64 [22] and melanin concentrating 
hormone receptor 1 (MCHR1) [23]. PPL’s intermediate 
filament binding domain is at its COOH terminus end, 
where it specifically binds vimentin and keratin 8 [5, 24]. 
Similar to other plakins, both PPL and EVPL associate 
with the plasma membrane through the NH2 terminus 
end [5]. In the cornified envelope of stratified squamous 
epithelial cells PPL crosslinks intermediate filaments and 
desmosomes and forms a heterodimer with EVPL [4, 24].

PPL is found in a wider range of human tissues, 
especially in tissues that are continuously exposed to 
mechanical dynamics such as heart, skeletal muscle and 
lungs. It is strongly expressed in both proximal and dis-
tal airway epithelium of lungs [25], and a recent study 
has shown that PPL expression is downregulated in the 

lung especially in the alveolar epithelial cells as a result 
of bleomycin-induced injury in a mouse model [26]. In 
the same study it was shown that deletion of PPL gene 
in mice improved survival from bleomycin-induced lung 
injury due to enhanced expression of anti-inflammatory 
cytokines, reduced expression of pro-fibrotic mediators 
and diminished response to TGFβ signalling [26], sug-
gesting that the expression of PPL may have a role in ini-
tiating a anti-inflammatory response in lungs.

Epiplakin (EPPK1)
EPPK1 is a 550–700  kDa protein [27] and is found as 
a single chain structure due to its lack of a dimeriza-
tion motif. It has been identified in the oesophagus and 
mucous epithelial cells of the colon and stomach and is 
present in the epidermis and glandular cells of parotid 
and sweat glands [28]. In the epidermis, EPPK1 co-local-
ises with tight junctions (zonulae occludens or occlud-
ing junctions), specifically with ZO-1, a tight junction 
marker. ZO-1 is an intracytoplasmic protein that binds 
to junction adhesion molecules, occludin and claudin. 
EPPK1 is mostly concentrated in the upper layers of the 
epidermis, but not the granular layer whereas tight junc-
tions are found in both the granular and upper layers. 
The resistance of the upper layers to shrinkage is assisted 
by EPPK1 [29].

EPPK1 binds to intermediate filaments, particularly 
keratin 8 and 18. It may be involved in intermediate 

Fig. 1  Examples of plakin and spectraplakin structure, not to scale (T Wesley unpublished) [2, 11, 48, 180]
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filament phosphorylation, or binding of focal adhesion 
molecules, such as tyrosine-protein kinase Src, to inter-
mediate filaments [29]. During wound healing, EPPK1 
has been shown to aid keratinocyte migration [30]. 
Silencing of EPPK1 upsets the intermediate filament net-
work in keratinocytes, due to its role in lateral bundling 
of keratins [2]. In EPPK1-null mice, the corneal epithe-
lium showed fragility against mechanical intervention 
and increased migration-dependent wound healing, with 
decrease in cell proliferation and E-cadherin expression 
[30]. In the liver, after stress or injury, EPPK1 is suggested 
to have a chaperon role to re-organise keratin networks. 
Similarly, EPPK1 may potentially protect against, and 
respond to, stress in the pancreas [31].

Plectin (PLEC)
PLEC, a 500  kDa protein is expressed in a large variety 
of cell types [2]. The protein constitutes of a number of 
domains organized in three major segments [11]. The 
N-terminal region consists of an actin-binding domain 
(ABD), formed by two calponin homology domains, 
trailed by a plakin domain [11]. The actin binding domain 
binds to integrin α6β4, nesprin, F-actin and dystrophin 
[5, 32]. The central rod domain homodimerizes to form 
coiled-coil interactions. However, most of the rod domain 
is absent in a natural rod-less splice variant which retains 
the PLEC protein functions [3]. The C-terminal domain 
consists of six plakin repeat domains which includes 
nine spectrin repeats (SR1-SR9) and a SH3 domain [32]. 
The C-terminal domain of plakin mediates binding to 
intermediate filaments such as vimentin [32], while the 
plakin domain harbours interaction with integrin α6β4 
[33] and BPAG2 (or type XV11 collagen) [11]. In muscle 
cells, PLEC can bind β-dystroglycan [34] and intermedi-
ate filament β-synemin [35], and the kinase Fer [36] in 
fibroblasts. The binding sites of these proteins are yet to 
be identified.

PLEC is a major intermediate filament cytolinker, 
which stabilises the cell cytoskeleton through keratin 
rearrangement, maintains actin filament dynamics and 
serves as a scaffolding base for signalling molecules [37]. 
It also links the nuclear envelope and centrosomes, while 
its long rod enable cells to maintain specific localisa-
tion of interacting molecules [32]. The actin and tubu-
lin (microtubule) networks interact and crosstalk with 
the intermediate filament network via the actin binding 
domain (ABD) of PLEC1c [2, 37]. The phosphorylation 
sites of PLEC occur mainly at its C-terminus end [37]. 
Across the plakin family, the phosphorylation pathways 
are still being investigated, but so far, associations with 
differentiation, cell mitosis and migration have been 
revealed [2].

PLEC has many isoforms, arising from more than 
twelve first exon alternatives, giving N-termini variations, 
affecting binding sites and cellular location [11, 37]. In 
cells of mesenchymal origin, plectin1 (PLEC1) is a sig-
nificant isoform included in connective and vascular tis-
sues, eye lens and white blood cells [37]. In muscle cells, 
PLEC1 is responsible for linking the nuclear and endo-
plasmic reticulum membrane to the intermediate fila-
ment network. This may be through nesprin-3, an outer 
nuclear membrane protein and its binding partner torsin 
A linking to PLEC1 [37]. In comparison, in connective 
tissues and others, isoform PLEC1b specifically targets 
mitochondria and potentially forms a signalling platform 
and manages the organelle shape through its linking to 
the intermediate filament network [38].

PLEC appears to be associated with several cell-sig-
nalling axes, particularly its association with the keratin 
organisation of cytoskeleton modulates mitogen-acti-
vated protein kinase/extracellular signal regulated 
kinases (MARK/Erk) pathway. PLEC deficient keratino-
cytes, with no links between keratins and integrin α6β4, 
have increased potential for migration [39]. Deletion 
of PLEC enables its disassociation with integrin α6β4, 
which trigger Erk activation with a resultant migratory 
behaviour [39, 40].

PLEC has been shown to interact with RACK1 (recep-
tor for activated kinase C), thus modulating the protein 
kinase C (PKC) signals and influencing the MAPK/Erk 
pathway [40]. In the absence of PLEC, RACK1 has been 
shown to move to the plasma membrane, from the peri-
nucleus, where it affects PKC and also c-Src signalling, 
similar to that of fibroblasts and keratinocytes stimu-
lated via external signals such as epidermal growth fac-
tor (EGF) [37] resulting in increased migration potential 
[39].

PLEC has also been associated with binding and modu-
lating the proto-oncogene tyrosine-protein kinase FER 
and the energy-controlling AMP-activated protein kinase 
[36, 40]. It also has influence on the Rho/Rac/cdc42 fam-
ily of small GTPases through its binding and rearrange-
ment of actin filaments [41]. If apoptosis is induced by 
CD95 or tumour necrosis factor (TNF), PLEC is an early 
substrate of caspase 8 [42]. PLEC through its interac-
tion with different signalling partners affects cellular 
behaviour such as proliferation, migration and invasion 
[43–45].

In a murine model, PLEC1 (mesenchymal isotype only) 
deficient T cells isolated from lymph nodes of PLEC1 
null mice have reduced chemotactic migration in  vitro 
and reduced leucocyte infiltration during wound heal-
ing in  vivo [46]. These PLEC1 null mice have a normal 
lifespan, compared with the total PLEC null mice (no 
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isotypes) which do not survive after birth due to skin 
blistering [46].

Spectraplakins
The spectraplakins are a complex family with important 
cytolinker roles similar to both plakin and spectrin fami-
lies. It is agreed that the spectraplakins distinctly include 
MACF1a and 1b, microtubule-actin cross linking factor 
1, also known as actin cross-linking factor 7 (ACF7), and 
BPAG1a and 1b, bullous pemphigoid antigen 1 (from 
the disease where it was first identified), also known as 
BP230, often called dystonin (DST). They share simi-
lar features to BPAG1e (epithelial), BPAG1n (a neuronal 
isoform) and PLEC. The major function of the spec-
traplakins is their ability to bind any of actin filaments, 
intermediate filaments and microtubules [3, 47, 48].

Diversity in spectraplakin structure is generated by 
three to four alternative first coding exons. Their N-ter-
minal actin-binding domain, comprised of two calponin 
homology domains, is also present in PLEC and neu-
ronal BPAG1n. This is subsequently followed by a protein 
binding plakin domain present in all plakins and spec-
traplakins, except EPPK1. MACF1b and BPAG1b have 
a centrally located intermediate filament binding in the 
PLEC repeat domain (sometimes referred to as plakin 
repeat domain, PRD). PLEC, BPAG1e and BPAG1n have 
this PLEC repeat domain at their C–terminus, as does 
DSP and EVPL. All spectraplakins have a large quantity 
of alpha-helical ‘spectrin repeats’ which form a large rod 
and contribute to their bulk. They also all have a cal-
cium binding site, two alpha helices linked by a short 
loop region, called an EF hand domain, due to its simi-
larity to the third (E to F) calcium binding site in parval-
bumin [49]. This is followed by a growth-arrest-specific 
2-related (GAS2) domain and C-terminus that makes up 
their microtubule binding capacity [2, 3, 48].

Despite their multiple binding sites, spectraplakins 
appear to crosslink just one element of the cytoskeleton 
most of the time, but when necessary, such as in axon 
growth, binding of actin and microtubules occurs simul-
taneously. Loss of spectraplakins creates chaos in the 
cytoskeletal networks, which affect many cellular func-
tions such as adhesion, polarisation, stabilisation and 
positioning of the nucleus and organelles and even inter-
rupting intracellular transport [3, 48].

Plakins in non‑cancerous disease
The plakins are linked to several diseases, mostly involv-
ing the skin, muscle and the neurons. Many of the plakins 
were first described from investigation of the autoim-
mune conditions, paraneoplastic pemphigus (blistering, 
inflamed skin and mucosa with co-presenting neoplasm) 
and bullous pemphigoid (large, sub-epidermal blistering). 

Changes in protein expression or function through 
genetic changes often leads to the skin condition epi-
dermolysis bullosa simplex (EBS), a skin blistering con-
dition with hyperkeratosis of hands and feet. MACF1 is 
not associated with diseases in humans, but studies in 
mice have found an absence of MACF1 results in embryo 
death during gastrulation [47]. Generally, genetic dele-
tions of plakin proteins results in abnormal immune 
responses leading to diseases that results from the devel-
opment of autoantibodies against plakins [2, 3]. Table 1 
demonstrates a list of the currently known genetic and 
autoimmune pathologies resulting from loss or damage 
of the plakin proteins.

Plakins in cancer
Role of DSP in cancer
DSP is a desmosomal protein involved in cell–cell adhe-
sion [50]. Reduced expression of DSP has been noted to 
increase invasion and metastasis in several cancers [51, 
52]. These changes in DSP expression occurs following 
epithelial-mesenchymal transition (EMT), an essential 
biological process observed during embryogenesis and 
wound healing [53]. However, EMT in cancer involves 
downregulation of the expression of desmosomal, adhe-
rens/tight junction and cytolinker proteins such as 
E-cadherin, occludens, claudins, EpCAM, α6β4 integ-
rin, different cytokeratins, DSP, PPL. The process also 
involves simultaneous upregulation of the expression of 
intermediate filament and extracellular matrix (ECM) 
associated proteins such as vimentin, fibronectin, N-cad-
herin, β1, β3 and β5 integrins and matrix metallopro-
teases (MMPs). These changes in desmosomal, adherens/
tight junction, cytolinker and ECM proteins is necessary 
for the transformed cells to undergo epithelial-mesen-
chymal morphological changes to facilitate motility for 
dissemination [54].

Reduced expression of DSP, plakoglobin and plako-
philin desmosomal proteins was noted in triple nega-
tive breast and other epithelial cancers [16, 55, 56]. 
This occurred concurrently with enhanced expression 
of EMT-inducing transcription factors such as Slug, 
Sip1/ZEB2 (zinc finger E-box-binding homeobox  2)
[16, 55, 56]. In addition, reduced expression of DSP 
and tight junction proteins was also noted in pancre-
atic tumour cell lines, which had undergone EMT [52]. 
Down-regulation of DSP and E-cadherin was induced 
in prostate cancer cell line PC3, in response to upregu-
lation in microRNA (331-3p) that concurrently upregu-
lated EMT markers, such as N-cadherin, vimentin and 
Snail, suggesting that DSP loss occurs with the initia-
tion of an EMT process in transformed cells [57]. Simi-
larly, increased expression of EMT markers, N-cadherin 
and fibronectin in response to greater activity of EMT 
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promoters Slug and Snail, concurrent with reduced lev-
els of DSP and occludin was observed in highly migra-
tory human pancreatic cancer cell lines compared to less 
aggressive cell lines [58].

Further to the above studies, alteration in the expres-
sion of DSP has been observed with the differentiation of 
oral pharyngeal carcinomas, where the expression of DSP 
in differentiated tumours that produced distant meta-
static tumours within 3 years of follow up was markedly 
higher than in undifferentiated tumours [59]. Consistent 
with that, loss of DSP expression in head and neck squa-
mous cell carcinoma (HNSCC) correlated with the loss 
of differentiation of primary tumour cells and presence 
of lymph node metastases [59, 60]. In addition, investiga-
tion of pre-cancerous dysplastic oral epithelium detected 
changes in DSP immunoreactivity, suggesting that des-
mosomal adhesion disruption is an early event in the 
progression of oral squamous cell carcinoma [59, 60]. 
Similarly, exploration of the progression of squamous 
intra-epithelial lesions to squamous cell carcinoma of 
the cervix, demonstrated increasing levels of DSP inhi-
bition with increasing severity of disease [61, 62]. Using 
genetically modified mice in pancreatic neuroendocrine 
tumours changes in DSP and other desmosomal protein 
expression is an early event in the tumourigenic process 
and preludes changes in the expression of adheren junc-
tion proteins and tumour cell invasion [52].

DSP expression levels have shown to vary across a 
range of lung cancers [51, 63, 64]. In adenocarcinoma 
and adenosquamous carcinoma of lung minimal expres-
sion of DSP was noted [63]. Consistent with that, using 
an induced overexpressing DSP model of non-small cell 
lung cancer (NSCLC), the tumour-suppressive function 
of DSP behaviour was demonstrated through the inhibi-
tion of the Wnt/β-catenin/TCF/LEF (transcription fac-
tor) pathway [51]. In that context, epigenetic silencing of 
DSP was observed in primary lung tumours and cell lines 
[51]. Contrary to that, increased DSP expression was 
observed in lung squamous cell carcinoma, a subset of 
NSCLC, which displayed increased expression and dis-
tinct distribution of other desmosomal proteins includ-
ing integrin β4. DSP expression was highest in the centre 
of the tumours, where the most differentiated cells were 
found [64].

Estrogen (E2) is suggested to have a role in modulat-
ing desmosomal protein expression and desmosome for-
mation. Exposure of normal and malignant mammary 
cells to estrogen for prolonged periods resulted in an 
increased expression of desmosomal proteins including 
DSP [65]. However, a reduction in DSP expression was 
observed after partial inhibition of the estrogen receptor 
α [65]. Silencing of DSP expression by siRNA resulted in 
the prevention of E2-dependent cell adhesion, indicating 

there is a functional relationship between estrogen recep-
tors, DSP and desmosome formation and thus cell adhe-
sion. The modulation of desmosomes by estrogen and its 
receptor could help maintain epithelial tissue integrity 
and explain the lower invasiveness seen in ERα positive 
breast tumours [65].

The above studies indicate that DSP may have a tumour 
suppressive role in cancers and its expression may be 
reduced by the induction of EMT at an early stage of can-
cer progression. However, the tumour suppressive role of 
DSP in cell context dependent and relies on the differen-
tiation status of the tumour, as enhanced expression of 
DSP is observed in differentiated tumours [63, 64, 66].

Role of EVPL, PPL in cancer
EVPL, PPL and involucrin null mice showed skin fragil-
ity but also a significant resistance to developing skin 
tumours when challenged with tumour-stimulating TPA 
(12-o-tetradecanoylphorbol-13-acetate) [67]. These mice  
responded with increased levels of chemokines and 
cytokines (type 2, type 17) resulting in the recruitment 
of mast cells, granulocytes and CD4 + T cells which may 
lead to immune editing of tumour cells. The tumour pro-
tective mechanisms in these null mice also involved sig-
nalling between Rae-1 expressing keratinocytes and the 
natural killer cells having 2D receptor (NKG2D) [68]. 
These results suggests that absence of ENVPL, PPL and 
involution may activate the immune system through reg-
ulation of certain cytokines/chemokines.

In cancer, reduced expression of PPL and EVPL have 
been observed in oesophageal cancers [69], and the cel-
lular localisation of PPL was noted to change with disease 
progression. Using immunohistochemistry, PPL expres-
sion was observed at cell–cell boundaries of normal 
oesophageal epithelium and dysplastic lesions, whereas 
it relocated to the cytoplasm in early cancers and was 
scarcely expressed in advanced tumours [69]. In patients 
with a history of smoking and who present with hyper-
methylation of oesophageal mucosa, DNA methylation of 
PPL promoter sequences leads to reduced expression of 
PPL and have been linked to the development of oesoph-
ageal squamous cell carcinoma [70], suggesting that loss 
of PPL may be one of the early events in the progression 
of oesophageal cancer.

Consistent with oesophageal cancer, in urothelial car-
cinoma of the urinary bladder, the expression of PPL 
was reduced with increasing pathological stages [71, 
72]. Serum PPL studies of urothelial carcinoma patients 
indicated higher levels of PPL in muscle-invasive carci-
noma, than non-muscle invasive carcinoma. However, 
both types of carcinoma had lower serum PPL levels 
than healthy controls, contributing to the pre-operative 
evaluation of these conditions [72]. These observations 
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are consistent with the downregulation of PPL expression 
in colon carcinomas (which undergo EMT) compared to 
normal and para-carcinoma tissues [73].

PPL also plays a role in the metastasis of triple-negative 
breast cancer (TNBC) into the brain [74]. Reduced PPL 
expression has been observed in brain metastatic lesions 
of TNBC patients. In TNBC cell lines, reduced expres-
sion of PPL by siRNA, resulted in reduced cell migra-
tion and invasion, but had increased cell growth in soft 
agar, suggesting that reduced expression of PPL in brain 
metastasis may be important for the growth of tumours 
in TNBC patients [74].

In vitro experiments on cancer cell lines have shown 
that, the expression of PPL have varied results on cellu-
lar functions. The absence of PPL expression hinders col-
lective migration and wound closures in epithelial cancer 
cells grown as monolayers as PPL facilitates the reorgan-
ization of keratin filaments at the edge of wounds [75]. 
Consistent with that, downregulation of PPL expression 
in  vitro resulted in reduced cellular proliferation, adhe-
sion and movement, linked to G0/G1 cell cycle arrest and 
loss of activation of PAktSer473 kinase via the PI3 kinase 
pathway in pharyngeal squamous cell carcinomas [76]. 
On the contrary, in a colon cancer cell line model (HT29), 
increased proliferation, migration, invasion and EMT 
initiating ability was noted in response to PPL knock-
down [73]. However, the process was reversed in terms of 
decreased proliferation, migration and EMT ability when 
PPL was overexpressed in the same cell line, strongly sug-
gesting an inverse relationship of PPL expression and 
induction of EMT in colon cancer cells [73]. Decreased 
proliferation in response to PPL overexpression was due 
to higher rate of G1/G0 cell cycle arrest resulting from 
increased expression of CDK inhibitors p21, p27kip and 
p-Rb [73]. PPL knockdown in that model partly reversed 
the G0/G1 cell cycle arrest induced by PPL overexpres-
sion. These observations suggest that the effect of PPL 
expression on the function of cancer cells varies and is 
tumour context dependent, regulated by autocrine or 
paracrine factors that modulates cell cycle properties.

Role of EPPK1 in cancer
Both PLEC and EPPK1 are expressed in duct cells and 
centroacinar cells of the mature pancreas, with increas-
ing expression of both in pre-cursor lesions and pan-
creatic ductal adenocarcinoma [2]. EPPK1 expression 
is increased in early pancreatic intraepithelial neopla-
sia (PanIN) but decreased levels were noted in more 
developed disease [77]. EPPK1 has a potential role in 
the EGF (epidermal growth factor) signalling pathway 
as its binds to the EGF receptor [78]. The participation 
of EPPK1 in EGF signalling was reported in pancreatic 
development and carcinogenesis [77, 79]. Activation 

of fluorescent-labelled EPPK1 in HeLa cells, originally 
of cervical cancer origin [29], demonstrated dynamic 
movement of EPPK1 protein, from one side of the cell 
membrane to another during migration. In HeLa cells 
increased migration was observed when EPPK1 expres-
sion was suppressed by knockdown while decreased 
migration was noted in EPPK1 overexpressed cells [29]. 
In 3D cell spheroids, EPPK1 was expressed in the outer-
most cell layer and barely detected in the interior of the 
spheroids, suggesting a role of EPPK1 in epithelial cell 
polarisation and spatial organisation [29]. However, in 2D 
cultures EPPK1 stabilised the keratin networks via colo-
calization with zonula occludens-1 (ZO-1), a marker of 
tight junctions, and inhibited the motility of cells by reor-
ganizing the actin filaments [29].

Role of PLEC in cancer
Plectin expression was significantly higher in the SW480 
colon cancer cell line than the lower grade HT29 colon 
cancer cell line [80]. In SW480 cells, in vitro suppression 
of PLEC by siRNA inhibited actin dynamics at scratch 
wound edges and reduced invasion, migration and adhe-
sion of these cells [80]. Re-introduction of only the actin-
binding domain of PLEC was sufficient to re-instigate 
the actin assembly at the scratch wound edge [80]. Stud-
ies have also shown that increased PLEC and vimen-
tin expression, through PLEC complex regulation of 
vimentin assembly, correlate with invasive phenotypes in 
bladder cancer and invasion and metastasis in androgen-
independent prostate cancer [43, 81]. PLEC1 expression 
is upregulated in oesophageal squamous cell carcinoma 
(SCC) and is a likely biomarker in this disease [82]. High 
PLEC expression has been noted in head and neck squa-
mous cell carcinomas (HNSCC) and has been associated 
with increased recurrence and decreased survival rates 
in patients [45]. Decreased expression of PLEC by siRNA 
suppressed the invasion, migration and proliferation of 
HNSCC cells and downregulation of the Erk1/2 path-
way [45]. It has been postulated that PLEC may contrib-
ute to cell migration, proliferation and invasion through 
its association with integrin β4 subunit, resulting in the 
Erk1/2 activation [2, 45].

PLEC biology has been studied significantly in pancre-
atic cancers [83, 84]. PLEC1 has been identified as a bio-
marker of sufficient sensitivity and specificity for cystic 
fluid analysis in the early diagnosis of intra-ductal pap-
illary mucinous neoplasms (IPMN), a group of lesions 
with different metastatic potential, detected by computed 
tomography (CT) scan [83]. PLEC1 expression enhances 
during the development of pancreatic intraepithelial neo-
plasia, PanIN stage II to PanIN stage III, precursor lesions 
of invasive and metastatic pancreatic ductal adenocar-
cinoma (PDAC) [83–85]. Later in disease progression, 
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PLEC expression changes from its cell membrane locali-
sation to a diffuse cytosolic distribution [84].

PDAC cells produce exosomes, which produce pre-
metastatic niche environments in other tissues, such as 
liver [85]. These exosomes are enriched with PLEC and 
integrin β4, which is necessary for PLEC inclusion [85]. 
Incubating PLEC-rich exosomes with cell lines devoid 
of cell-surface PLEC can induce abnormal cell-surface 
expression of PLEC [86]. Additionally, in non-PDAC cell 
lines, induced over expression of PLEC1a and 1f resulted 
in these isoforms being located on the cell surface [86]. 
Normal keratinocytes, even though expressing PLEC1a, 
1f and integrin β4, do not produce exosomes [86]. In 
PDAC, suppression of PLEC results in reduced prolif-
eration, invasion and migration, and inhibits exosome 
formation. It is however, unclear whether exosome for-
mation is stimulated by intracellular or exosomal PLEC 
[86].

PLEC is down regulated in hepatocellular carcinoma 
[44, 87]. Further to that, in hepatocellular carcinoma 
(HCC) cell lines, PLEC deficiency results in irregular 
loosened bundles of intermediate filaments leading to 
observable pleomorphism [87, 88]. Induced PLEC defi-
ciency in healthy hepatocytes also showed augmented 
cytoskeletons, through the altered expression and rear-
rangement of cytokeratin 18 (CK18). PLEC’s role in the 
spatial organisation and anchorage of the cytoskeleton is 
phosphorylation-dependent, as PLEC’s coordination of 
lamin B and vimentin is modulated by protein kinase A 
and protein kinase C [35]. In addition, the breast cancer 
susceptibility protein, BRCA2, interacts with PLEC [89], 
where the BRCA2/PLEC complex is involved in nuclear 
duplication and centrosome formation. During the M 
cycle, cyclin dependent kinase 1/cyclin B kinase (CDK1/
CycB) actively phosphorylates PLEC, interrupting its 
binding of intermediate filaments and initiating network 
disassembly [90]. This is followed by centrosome move-
ment resulting in perinuclear localisation potentially due 
to PLEC/BRCA2 complex interaction with the centro-
some [89, 90].

Ovarian cancer
Ovarian cancer is an aggressive and progressive gynaeco-
logical neoplasm and carries a poor prognosis [91]. It is 
the fifth most prominent cause of cancer-related deaths 
amongst women worldwide [92]. At diagnosis, in major-
ity of the cases, the cancer is manifested by an extensive 
intra-abdominal spread that involves peritoneum and the 
surrounding organs [93]. Even though extra-abdominal 
metastasis at diagnosis is rare, in sporadic cases that may 
involve metastasis to thyroid, bone, heart, breast, colon 
and brain [93–95]. However, mortality from ovarian 

cancer occurs mainly from intra-abdominal spread and 
death from distant metastasis is uncommon [93–95].

Despite recent advances in conventional and targeted 
chemotherapy, precision with debulking surgery, and the 
search for the elusive and reliable early diagnostic test, 
the five-year mortality rate of ovarian cancer patients still 
remains as high as 60–70% [96]. To make this challenge 
more complex, recent findings have classified ovarian 
cancer not as a single disease but as a mix of genetically 
different ovarian neoplasms [97]. Histologically, three 
main types of ovarian neoplasms have been shown to 
persist; cancer arising from epithelial cells or germ cells 
or sex cord stromal cells (hormone secreting, support-
ing, stromal cells within ovary) [98]. The most aggressive 
and common (~ 90%) of these neoplasms is the epithelial 
ovarian cancer which is further divided into four histo-
logical sub-types commonly known as mucinous, endo-
metrioid, clear cell and serous carcinomas [97]. Among 
these cancers, the serous subtype constitutes nearly 80% 
of epithelial ovarian cancers [97].

Traditionally the ovarian surface epithelium (OSE), a 
single layer of epithelial cells lining the ovary, was con-
sidered as the cell of origin for serous ovarian tumours 
[99]. These tumours were shown to arise from OSE, 
which are damaged by the inflammatory cytokines and 
reactive oxygen species generated during the ovulation 
process [100]. Most of the damaged OSE is repaired 
during the ovulation cycle before the commencement 
of the next cycle [101]. However, some damaged cells 
persist and accumulation of these over time may lead 
to malignant transformation in these cells [102, 103]. It 
has been postulated that under the ovulation-induced 
inflammatory conditions, the damaged unrepaired OSE 
cells may become entrapped in cyst-like structures com-
monly known as ‘cortical inclusion cysts’ (CIC) which 
are thought to be the origin of ovarian cancer [101]. This 
OSE-CIC theory relating to the origin of epithelial ovar-
ian cancer is consistent with epidemiological data, which 
associates low risks of ovarian cancer in women who 
undergo less number of ovulatory cycles (due to preg-
nancy, lactation or intake of contraceptive pills) [104]. 
However, the theory lacks explanation for the presence 
of genetically diverse peritoneal carcinomas, which does 
not justify a CIC origin [97].

In the last fifteen years, extensive immunohisto-
chemical analysis of the Fallopian tubes obtained dur-
ing salpingo-oophorectomy from women with inherited 
mutation in germline breast cancer susceptibility pro-
teins type 1,2 (BRCA 1,2) have shown that the fimbriae 
end of the Fallopian tube that expresses serous tubal 
intraepithelial carcinoma (STIC) lesions, to be a poten-
tial source of high-grade serous ovarian tumours [105, 
106]. Women with BRCA1,2 mutations are predisposed 
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to breast/ovarian cancer syndrome and carry a lifetime 
risk of 60–80% for breast cancer and 40–50% ovarian 
cancer respectively [107]. They develop dedifferentiated, 
aggressive and invasive triple negative breast cancer and 
high-grade serous ovarian cancer, which carry a poor 
prognosis [108]. The cells within STICs have a high pro-
liferative index (indicated by high Ki67 expression) and a 
‘p53 signature’ (mutated, non-functional p53) and exhibit 
the DNA damage marker γ-H2AX [109] indicating dam-
aged DNA double strand breaks [110]. Later clinical 
studies have shown that 38% of this signature persists in 
women with BRCA1,2 mutations and 80% of that occurs 
in STICs located at the fimbriae end of the Fallopian 
tube, potentially identifying the Fallopian tube as the ori-
gin of high-grade serous ovarian cancers [111, 112].

Initiation and progression of ovarian cancer
The pathophysiological mechanisms of intra-abdominal 
spread in ovarian cancer involves a few critical steps 
and has been studied extensively in the last few years 
[113]. Metastasizing tumour cells from solid tumours 
may directly invade the adjacent intra-abdominal organs 
or may disaggregate from solid tumours and accumu-
late in ascites (tumour fluid) [114]. In cases of direct 
intra-abdominal spread these disaggregated cells float-
ing in nutrient enriched ascites survive, either as single 
cells, or mostly by clustering as multicellular aggregates 
of cells commonly called ‘spheroids’ [114, 115]. Malig-
nant ascites with free-floating single tumour cells, sphe-
roids, immune, endothelial and stromal cells are often 
observed in ovarian cancer patients at diagnosis and 
are a common scenario in most recurring patients [96]. 
Increased vascular permeability and blockage of perito-
neal lymphatic drainage by the disseminated cancer cells 
in the peritoneum is a common known cause of ascites 
formation [96]. Recent research indicates that the inter-
action between disseminated tumour cells and the peri-
toneal mesothelial cells play a critical role in ovarian 
cancer dissemination [116]. In that scenario, the shear 
and compressional pressure induced by ascites alters the 
mesothelial cell lining of the peritoneum by initiating the 
formation of ‘tunnelling nanotubes’ (TNT) on the surface 
of peritoneal mesothelial cells, which facilitate the trans-
fer of mitochondria from mesothelial cells to ovarian 
cancer cells [117]. The growth factors and other soluble 
molecules in ascites also induce EMT in mesothelial cells 
by a process commonly known as mesothelial mesenchy-
mal transition (MMT) which may retract the peritoneal 
mesothelial lining to promote the implantation of tumour 
cells into the peritoneal stroma [116]. However, a recent 
study has shown that the mesothelial cells lining the peri-
toneum remain intact but undergo senescence due to loss 
of adherent junction proteins (connexion 43, E-cadherin, 

occludens, desmoglein) that fosters invasion of cancer 
cells through the mesothelial lining to the sub-mesothe-
lial matrix of the peritoneum to form secondary lesions 
[116, 118]. This cross talk between the invading cancer 
cells and the peritoneal mesothelial cells is facilitated by 
TNTs that support the transport of mitochondria from 
peritoneal cells to cancer cells to promote cancer cell 
growth [116]. Previous studies have shown that envi-
ronmental stress facilitates the formation of TNT in dif-
ferent types of cancer cells to reprogram metabolism in 
stressed cells for increased production of ATP to stimu-
late survival [119, 120]. In addition, TNT-induced trans-
fer of mitochondria from bone-marrow stromal cells to 
myeloid leukemic cells or endothelial cells to cancer cells 
during chemotherapy treatment has been shown to pro-
mote survival of resistant cancer cells [121, 122]. These 
observations suggests a unique role of ascites-induced 
compressive pressure in promoting intra-abdominal 
metastasis in ovarian cancer.

Epithelial mesenchymal transition (EMT) and mesenchymal 
to epithelial transition (MET) in ovarian cancer progression
It has been postulated that EMT may initiate the early 
precursor lesions for high-grade serous ovarian can-
cer. The presence of TGFβ and inflammatory cytokines/
growth factors in the follicular fluid released during the 
ovulation may initiate EMT in the secretory cells of Fal-
lopian tubes or the cells lining the CICs of OSE [102]. An 
association between BRCA1 and EMT has been estab-
lished in breast cancer [123]. A loss of BRCA1 in mam-
mary epithelial cells results in dedifferentiation of these 
cells with upregulation of CD44high/CD24low cancer 
stem cell (CSC) phenotype and induction of EMT [124] 
However, the status of BRCA mutation and EMT remains 
unexplored in ovarian cancer.

The EMT process has been associated with perito-
neal metastasis, progression-free and overall survival 
in ovarian cancer, suggesting that EMT is intricately 
involved with ovarian cancer dissemination and therapy 
resistance [125]. A recent study of 174 primary ovarian 
and 34 metastatic tumours suggested EMT was a poor 
prognostic indicator for ovarian cancer by associat-
ing low E-cadherin and high Snail expression with high 
peritoneal dissemination, low overall and progression-
free survival in patients [126]. Ascites-derived tumour 
cells obtained from ovarian cancer patients were shown 
to undergo EMT during aggregation into spheroids, and 
this phenomenon was reversed when these cells were 
allowed to adhere on substratum in monolayer cultures 
[127]. E-cadherin expression was significantly reduced 
in aggregating spheroids compared to adherent cells in 
association with significant upregulation of transcription 
factors such as Snail, Twist and Zeb2 [127]. Studies have 
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also suggested that spheroids have heterogeneous cad-
herin expression and enhanced E-cadherin expression is 
observed in established, cohesive and spherical spheroids 
which are difficult to disaggregate [128, 129]. These sphe-
roids tend to preserve their free-floating abilities in the 
ascites microenvironment, and metastatic dissemination 
only occurs if a gain in N-cadherin expression is attained 
through EMT process. The process of EMT is induced 
by the hypoxic ascites microenvironment which activate 
hypoxia-induced factor 1-alpha (HIF1α) with consequent 
increase in the transcription of Snail resulting in EMT, 
increased cell motility and invasion on the sub-mesothe-
lial layer of the peritoneum [130, 131]. However, once the 
cells have migrated and colonization has occurred the 
process of EMT is reversed through MET for the second-
ary lesions to establish at a distant site [103, 132]. This 
continued transitional dynamics of ovarian cells between 
EMT and MET contributes to the metastasis and inva-
sion of cancerous cells from primary tumours to sec-
ondary sites, and in rare cases dissemination via blood, 
lymph, and then invasion into other tissues [133, 134].

Recent studies indicate that ovarian cancer cells can 
exist in an intermediate ‘partial or hybrid EMT (E/M)’ 
state with characteristics of both epithelial and mes-
enchymal cells [132, 135]. Cells in E/M state possess a 
superior advantage for survival and metastasis compared 
to cells in either epithelial or mesenchymal state as they 
can readily differentiate towards either epithelial or mes-
enchymal state depending on the stimulus received from 
the tumour microenvironment [136]. Hence, E/M cells 
are more adaptable to migration, colonization at distant 
sites and are enriched in therapy-resistant CSCs, which 
retains the capacity for self-renewal as well as produc-
tion of differentiated progenies to generate the bulk of 
tumours at metastatic sites or as recurrent/relapsed 
tumours after therapeutic treatments [137]. It is postu-
lated that the alterations in E/M or EMT/MET phenom-
enon in intraperitoneal ovarian tumour cells is not due 
to any genetic mutation but is likely due to the origin of 
ovarian cancer itself which arises either from ovarian sur-
face epithelium or differentiated columnar epithelial cells 
both of which contain epithelial and mesenchymal traits. 
It may also result from the external stimuli received by 
the cancer cells in the ascites microenvironment [138]. 
Ascites contain substantial amounts of growth factors 
such as lysophosphatic acid (LPA), transforming growth 
factor-β (TGFβ), epidermal growth factor (EGF), hepato-
cyte growth factor (HGF), interleukins (IL)1β, IL-6, IL-8, 
chemokine ligand 5 (CCL-5) and chemokine receptors 
(CCR)-1/3/5, CCL-19/21 and CCR-7 [139], with known 
EMT initiating roles in ovarian cancer [114, 140].

In a recent study, immunostaining of ovarian can-
cer cell lines showed heterogeneous mixture of cells 

containing hybrid Ecad + /Ncad + clones or homogenous 
only Ecad + or Ncad + clones [128]. However, the hybrid 
Ecad + /Ncad + clones showed greater proliferation than 
homogenous Ecad + or Ncad + clones, indicating once 
again the greater role of a E/M phenotype in facilitat-
ing ovarian cancer growth [128]. In addition, E/M cells 
involved with collective migration are enriched in the 
outer layer of multicellular spheroids [138], coincided 
with a recent study which showed KRT14 + leader cells 
enriching the outer edge of multicellular spheroids and 
collectively producing actin-rich invapodia to displace 
mesothelial cells for peritoneal invasion [141]. Loss of 
KRT14+ cells diminished the invasive capacity of ovar-
ian cancer spheroids, suggesting a potential role of E/M 
KRT14 + cells in peritoneal invasion [142].

Drug resistance, recurrence and CSCs in ovarian cancer
Current treatment for ovarian cancer consist of sur-
gery to remove the tumour (debulking) and any associ-
ated ascites, followed by chemotherapy. This usually 
results in significant reduction of tumour burden, but 
subsequent recurrence of tumour growth is common. 
Responsiveness of tumours to chemotherapy can be 
linked to tumour grade [143]. Low-grade tumours tend 
to be slower growing and less responsive to current 
chemotherapy, but potentially react to hormone-based 
treatments [143]. The high-grade tumours are more 
responsive to chemotherapy initially, but not hormones, 
with increasing lack of response to chemotherapy lead-
ing to chemo-resistant recurrent disease [143]. Current 
chemotherapies for ovarian cancer patients include a 
combination of platinum based (DNA cross-linking) and 
taxane based (microtubule/mitosis interference) drugs, 
to induce apoptosis in the bulk of cancer cells within the 
tumour [144]. However, a small population of resistant 
cells with properties of CSCs evade cancer treatments 
and they reinitiate cancer regrowth [145–147]. Chemo-
therapy has limited effectiveness against CSCs, due to 
the slow replication potential of these cells, high expres-
sion of efflux channels such as the ATP-binding cassette 
(ABC) transporters, high response to DNA damage and 
repair and their ability to avoid host immune system [148, 
149]. These essential plastic properties of CSCs are cru-
cial for tumour relapse and progression and are critical 
for the development of CSC-specific strategies in combi-
nation with standard chemotherapies [144, 149, 150].

In ovarian cancer identification of CSCs have proved 
challenging as CSC markers identified in other tumours 
such as CD44, CD117, EpCAM, ALDH1, CD28 and 
OCT4 [148, 149, 151, 152] are not consistently identifi-
able in all ovarian tumours. These markers are not uni-
formly displayed [153], and this plasticity is influenced 
by the evolving tumour microenvironment [154]. In this 
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context, it has been shown that each population of CSCs 
carries inherent functions within the tumour and differ-
ent pools of CSCs have varied functions, which are not 
consistently expressed within the tumours [154]. Adding 
to this complexity, patients have multiple pools of CSCs 
within each tumour expressing different markers making 
specific targeting of CSCs difficult [154]. In addition, the 
process of EMT collaborates with CSCs, and treatment 
with platinum-based chemotherapy can induce EMT 
and CSCs in chemotherapy-treated residual cancer cells 
[150, 155]. Several signalling pathways can facilitate the 
initiation of CSCs in ovarian cancer [154]. Among these 
PI3 kinase/Akt/PTEN [156, 157], Jak2/Stat3 [155], NFκB 
[158], Wnt [159], Notch [160] and Hedgehog [161] have 
been shown to facilitate tumour progression and chem-
otherapy resistance in ovarian cancer. Inhibiting these 
pathways in in  vitro cultures has shown suppression of 
tumourigenesis and chemosensitivity in cell line and ani-
mal models [154, 155].

Breaks in double strand DNA occur in normal cells 
and in response to environmental factors such as ion-
ising radiation [162]. Repairs to double strand breaks 
(DSB) are challenging for cells, with ineffective or incor-
rect repair leading to genomic instability [162, 163]. The 
BRCA1, 2 genes are involved in DSB repair, with inher-
ited mutations in these genes causing specific defects 
in the DNA repair capacity of the cell [163]. Poly (ADP 
ribose) polymerase 1 (PARP1) is involved in the repair of 
single strand DNA repair. Inhibition of PARP1 can trigger 
‘synthetic lethality’ in cells with BRCA1/2 mutations (and 
other faulty DSB repair mechanisms) [163]. The use of 
PARP inhibitors has been successful in ovarian cancers in 
both BRCA1/2 mutated and non-mutated patients [163–
165]. This has resulted in increased progression-free sur-
vival in platinum resistant as well as sensitive patients 
who generally are liable to recurrence within the first few 
months of first line chemotherapy [163]. However, some 
patients undergo resistance to PARP inhibitors and ongo-
ing genomic studies are in progress to understand that 
phenomenon [166]. A recent in  vitro and in  vivo study 
in ovarian cancer has demonstrated that resistance in 
PARP inhibitor is accrued through enrichment of CD117 
and CD133 CSCs [167]. PARP inhibitor treated residual 
cells undergo G2-M phase cell cycle arrest, but enhance 
γH2AX, RAD15 and DMC1 foci leading to accelerated 
DNA repair mechanism [167]. Other studies in colorec-
tal cancer [168] have shown that combination of PARP 
inhibitors with radiotherapy and chemotherapy sensitises 
CSCs to the effect of given therapy. Recent clinical tri-
als in ovarian cancer, which includes PARP inhibitors in 
combination with Bevacizumab or chemotherapy, have 
shown promising results in terms of overall all survival 
and progression-free survival [164, 169–171].

Plakins in epithelial ovarian cancer
Very little is known about the plakin biology in ovar-
ian cancer. In terms of ovarian cancers, the influence of 
estrogen on DSP and desmosomes [65] correlates with 
metastasis and PPL expression [74]. As described above, 
even though the role of EMT has been studied exten-
sively in ovarian cancer, the implication of plakin biology, 
intimately involved with EMT and metastasis remains 
unknown.

In this review, we demonstrate that plakins (PLEC, PPL 
and EVPL) are expressed in benign, Type I (low-grade) 
and Type II (high-grade) ovarian tumours. In benign and 
Type I tumours, the expression of plakins are confined to 
the epithelial lining of the tumours (indicated by positive 
CA125 staining) (Fig.  2). However, in Type II tumours, 
the epithelial boundary is lost and the expression of plak-
ins are distributed throughout the tumours, confined to 
the cluster of epithelial cells (indicated by positive CA125 
staining) within the tumours (Fig. 2).

Our interest in the involvement of plakins in ovarian 
cancer was heightened by proteomics analysis of tumour 
cells derived from the ascites of chemonaïve (CN) and 
recurrent (CR) samples [172]. The CN samples were col-
lected from ovarian cancer patients at diagnosis while the 
CR samples were collected where the disease progressed 
post chemotherapy treatment, between 6–20  months 
after first line of treatment. The tumour cells from these 
samples were isolated using a novel culturing technique 
(developed in our laboratory) without the contaminat-
ing stromal and immune cells [173]. The members of the 
plakin family that were differentially expressed between 
the CN and CR samples were PLEC, EVPL, PPL and 
EPPK1. Graphical representation of plakins and related 
desmosomal and hemidesmosomal associated proteins 
differentially expressed between CN and CR ascites-
derived tumour cells [172] is provided in Fig. 3.

The study suggests that the expression of major plak-
ins is lower in CR ascites-derived tumour cells compared 
to CN cells. The reason for the downregulation of plak-
ins in CR versus CN samples is still unknown. However, 
it can be postulated that this may be due to long-term 
sustenance of the CR ascites-derived floating spheroids 
compared to CN spheroids. Long-term sustenance in 
the floating state may make proteins required for ECM 
attachment redundant. Our previous study has shown 
that longer maintenance of spheroids in in  vitro cul-
tures resulted in the downregulation of the expression 
of major integrins [174], consistent with the loss of α6 
and β4 integrin subunits in CR spheroids compared to 
CN spheroids observed in the proteomics study [172]. In 
addition, ascites is enriched in cytokines like TGFβ and 
IL-6 capable of inducing mesenchymal features in sphe-
roids [95, 175, 176]. In this context, we have previously 
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described the role of PPL in the induction of EMT in dif-
ferent cancers.

In this review we present a proof of concept data, 
Fig.  4, demonstrating that the expression of PPL, PLEC 
and EVPL was enhanced in a recurrent HEY ovar-
ian cancer cell line derived mouse xenografts described 
previously [177]. In this experiment, three groups of 
immune incompetent nude mice were used. Each group 
was injected intraperitoneally with human HEY ovarian 
cancer cell line (5 × 106 cells/mouse). The first group was 
an untreated control, while the second (group 1) and the 
third group (group 2) of mice received intraperitoneal 
injection of paclitaxel (15  mg/kg body weight) weekly. 
Treatment in groups 1 and 2 continued until the endpoint 

of control untreated mice at which point mice in control 
and group 1 (paclitaxel-treated) were euthanised. At this 
point, tumours in groups 1 and 2 reduced to 50% of the 
size of control tumours. Even though treatment in-group 
2 was concluded at the same time, the mice in this group, 
with 50% reduced tumours compared to control, were 
kept alive until the experimental end-point (paclitaxel-
recurrent). These mice survived 2  weeks longer than 
control untreated and paclitaxel-treated group 1 mice 
[177]. Since tumours in group 2 mice, reduced in size on 
paclitaxel treatment but regained regrowth when they 
were left untreated, the mice in this group can be treated 
clinically as a recurrent group. Significant elevation in 
PPL and PLEC staining in recurrent group 2 compared 

Fig. 2  Representative immunohistochemical staining of PPL, EVPL, PLEC and CA125 on formalin fixed paraffin embedded (FFPE) serous ovarian 
benign, Type I (low grade) and Type II (high-grade) ovarian tumours. Immunohistochemistry images of FFPE sections representing staining of PPL, 
PLEC, EVPL and CA125 of benign, Type I (low-grade) and Type II (high-grade) ovarian tumours. Samples were obtained from patients diagnosed 
with ovarian cancer before surgery under protocols approved by the Human Research and Ethics Committee (Ethics approval #09/09) of the Royal 
Women’s Hospital, Melbourne, Australia after gaining patient’s consent. Immunohistochemistry was performed as described previously [150, 155]. 
Sections were assessed microscopically for positive DAB (brown), haematoxylin (blue) counterstain staining. Magnification (40×), scale bar = 50um
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to group 1 (paclitaxel-treated and culled at the same time 
as control) and the control group (Fig.  4) was observed 
by immunohistochemistry, suggesting a potential link 
between PPL and PLEC expression, paclitaxel resistance 
and subsequent recurrence in ovarian cancer.

Our previous studies have also shown a sustained loss 
of PLEC and vimentin in an OCT4A knockdown HEY 
ovarian cancer cell line [152]. OCT4 is a transcription 
factor, with the OCT4A variant being required to main-
tain the self-renewal properties of stem cells and is a 
nuclear marker of embryonic and CSCs [178]. We have 
previously shown that stable knockdown of OCT4A in 
HEY ovarian cancer cells resulted in decreased prolifera-
tion, migration and increased chemosensitivity to cispl-
atin in  vitro [179]. Intraperitoneal injection of OCT4A 
knockdown cells in nude mice significantly reduced the 
tumour burden with decreased tumour size and inva-
siveness in peritoneal organs [179]. This resulted in sig-
nificant elevation in mice survival compared to mice 
injected with control cells [179]. In a later proteomics 
study, we identified and validated that stable knockdown 
of OCT4A in HEY ovarian cancer cell line and the asso-
ciated xenografts showed a loss of PLEC and vimentin 
expression [152]. As PLEC is linked to the intermediate 
filament vimentin through cytoplasmic organelles, and 

links to nuclear envelope and centrosomes, this result 
was not unexpected [32]. In the same study, we showed 
enhanced expression of PLEC and vimentin in ovar-
ian cancer cell lines after treatments with paclitaxel or 
cisplatin, which was consistent with increased expres-
sion of OCT4A in these cells [152]. These findings links 
novel aspects of plakin regulation connecting key ECM 
proteins and embryonic transcription factors (OCT4A) 
in the context of chemoresistance, which is profound 
in ovarian cancer patients, and the major cause of poor 
treatment outcomes.

Conclusions
This review summarises the current understanding 
about the structure and function of plakins and their 
roles in normal and diseased (including cancer) biol-
ogy. Although plakins are important in maintaining the 
cell–cell, cell desmosome interactions and modulating 
signalling pathways [2, 11, 48] their role in ovarian can-
cer remains unexplored. Our observation that plakins 
are expressed in the epithelial tumour cells of benign, 
Type I and Type II ovarian tumours but with distinctly 
different expression patterns suggest a specific role of 
plakins in ovarian cancer biology. Previously we have 
shown that plakins (PPL, DSP, PLEC, EVPL) expressed 

Fig. 3  Proteomic based spectral counts of PLEC, PPL, EVPL, DSP, EPPK1, junction plakoglobin (JUP) and plectin-associated α6 and β4 integrin 
subunits in CN and CR ascites-derived ovarian cancer cells (± SEM, n = 4 for both CN and CR) previously described in proteomics study [172]. 
Statistical significance was determined by a Chi-square test and is indicated by *p < 0.05; ****p < 0.0001; ns, not significant
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Fig. 4  Representative expression of PPL, EVPL and PLEC by immunohistochemistry staining on FFPE tumour xenografts described previously [177]. 
Animal experiment was performed in accordance with the recommendations in the Guide for the Care and Use of the Laboratory Animals of the 
National Health and Medical Research Council of Australia. The experimental protocol was approved by the University of Melbourne’s Animal Ethics 
Committee (Project-1413207.1). Quantification of immunohistochemical staining was performed as described previously [177]. Data is presented 
as mean ± SEM (n = 3 control mice, n = 3 xenografts from mice treated with paclitaxel, groups 1 and 2). Magnification 20×, scale bar = 100 μm. 
Significance is indicated by ***p < 0.001; ****p < 0.0001



Page 16 of 21Wesley et al. Cell Commun Signal           (2021) 19:55 

in the ascites-derived tumour cells from patients with 
chemotherapy-treatment associated recurrence were 
significantly lower than plakins (PPL, DSP, EVPL, 
PLEC) in chemonaive ascites-derived tumour cells 
(Fig.  3). Our current in  vivo data in a mouse model 
indicates significantly enhanced expression of plakins 

(PPL, PLEC and EVPL) in recurrent mice xenografts 
that were previously reduced in size with paclitaxel 
treatment but underwent regrowth after stopping pacli-
taxel treatments, suggesting an association of plakins 
with chemoresistance and recurrence in ovarian cancer 
(Fig. 4).

Fig. 5  Metastatic dissemination of ovarian cancer requires dynamic and reversible changes of plakin expression in the peritoneal 
microenvironment as the cancer progresses from primary tumour to floating multicellular spheroids and invasion onto peritoneal lining. The 
model includes potential involvement of DSP and PPL in STICs, the EMT process at (A) primary tumour, (B) multicellular aggregate form, (C) 
post-chemotherapy ascites-derived tumour cells and (D) tumour invasion of peritoneum and omentum sites where invading tumours trigger MMT 
and other changes in the surrounding mesothelium
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Given the known role of DSP and PPL in EMT, and 
the complexity of EMT-mediated metastatic process 
in ovarian cancer, plakin biology is expected to play an 
important role in each facet of ovarian cancer progres-
sion, including progression at the primary site, shed-
ding of tumour cells in the ascites, clustering of tumour 
cells as spheroids and colonization at metastatic 
niches. Moreover, detection of PPL and PLEC levels 
in the serum and ascites of chemonaive and recurrent 
patients can be undertaken. This may facilitate better 
understanding of plakin biology in ovarian cancer and 
may aid in developing a potential role of plakins as bio-
markers for early-stage detection as well as monitoring 
chemoresistance-associated recurrence in patients. Fig-
ure 5 describes the potential role of DSP and PPL in dif-
ferent progression phases of ovarian cancer.
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