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Abstract

Toxicity is a major contributor to high attrition rates of new chemical entities in drug discoveries. In this study, an order-
classifier was built to predict a series of toxic effects based on data concerning chemical-chemical interactions under the
assumption that interactive compounds are more likely to share similar toxicity profiles. According to their interaction
confidence scores, the order from the most likely toxicity to the least was obtained for each compound. Ten test groups,
each of them containing one training dataset and one test dataset, were constructed from a benchmark dataset consisting
of 17,233 compounds. By a Jackknife test on each of these test groups, the 1st order prediction accuracies of the training
dataset and the test dataset were all approximately 79.50%, substantially higher than the rate of 25.43% achieved by
random guesses. Encouraged by the promising results, we expect that our method will become a useful tool in screening
out drugs with high toxicity.
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Introduction

Toxicity is a key cause of late-stage failures in drug discovery.

Even some approved drugs such as Phenacetin [1] and

Troglitazone [2] have been withdrawn from the market because

of unexpected toxicities that were not detected during Phase III

clinical trials. Thus, early toxicology data on compounds are

needed to reduce R&D costs. Evaluating toxicity and assessing

risks of diverse chemicals require comprehensive experimental

testing against a broad spectrum of toxicity end points. These tests

can cost millions of dollars, involving several thousand animals,

and take many years to complete. As a result, very few chemicals

have undergone the degree of testing needed to support accurate

health risk assessments or meet regulatory requirements for drug

approval. In recent years, the number of synthetic compounds has

surged with the advance of combinatorial chemistry, and

accordingly large quantities of toxicity data are urgently demand-

ed.

Recently, particular interest has been raised to apply fast and

cost-effective in silico toxicological models to supplement those

in vitro and in vivo testing. These models require high quality

toxicity data for a large set of structurally diverse drug candidates.

Accelrys Toxicity is a database of toxicity information compiled

from the open scientific literature [3] and containing toxicological

data for approximately 0.17 million chemicals. This database is of

great value for investigating the pharmacokinetic properties,

metabolism and potential toxicities of compounds. Six types of

toxicity data are collected in the database: (1) Acute Toxicity; (2)

Mutagenicity; (3) Tumorigenicity; (4) Skin and Eye Irritation; (5)

Reproductive Effects; and (6) Multiple Dose Effects. It should be

noted that these categories have multiple and overlapping

mechanisms of toxic action and each category represents only

specific types of experiments. The combination of these experi-

mental results may help define the overall safety profile of a

compound. However, this kind of databases only provides

toxicological information for recorded compounds, not for new

ones. It would be valuable to accurately predict toxicities of a new

compound based on the information available for recorded

compounds. In order to meet the demand, there is a drive to

develop quick, reliable, and non-animal-involved prediction

methods, e.g. using structure-activity relationships (SARs) to

predict drugs toxicities.

Currently, most toxicological SAR models belong to binary

classifiers, which only predict compounds to be toxic or non-toxic

within a single toxicity class [4,5]. It is desired to modify the

strategy to predict a series of toxicity effects. In this study, we chose

to build a multiclass model [6,7] to predict six categories of toxicity

using the Accelrys Toxicity database instead of only one or two

toxicity endpoints. However, the quadratic optimization problem
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in multiclass models is difficult to solve. Thus, many previous

multiclass approaches tended to decompose a multiclass problem

into multiple independent binary classifications. Investigators built

a set of binary classifiers, such as the model of Dietterich et al [7],

each classifier distinguishing only one of the classes from the

others. Although this greatly simplifies the problem, such an

approach cannot provide order prediction information for the

query compounds. That is, it can only predict whether the query

compound has some toxicity end points, but cannot determine

which is the most likely toxicity, or even the order of toxicity end

points by toxicity likelihoods.

In recent years, the assessment of protein-protein interactions

has been widely used to predict many attributes of proteins

[8,9,10,11]. Furthermore, multiclass predictions of protein attri-

butes have become more common [12,13,14]. These methods and

their results show that interactive proteins tend to share the same

functions with higher probability than do non-interactive ones.

Likewise, it is reasonable to expect that interactive compounds are

also more likely to share common functions as indicated by some

pioneer studies [15,16]. Thus, toxicity, as part of the biological

functions of compounds, should follow the same rule. Moreover,

based on a previous work on the Anatomical Therapeutic

Chemical (ATC) classification of drugs [16], compared to the

SAR models based on physicochemical descriptors or structural

alerts, a model based on chemical-chemical interactions can rank

the order of the predictions more easily and yield better prediction

results. In our study, we attempt to quantify chemical-chemical

interactions for each pair of interactive compounds, and obtain the

confidence scores of the interactions by which the toxicity end

points were ordered. Briefly, compounds of seven categories

including six categories of toxicity plus non-toxicity were collected.

The interactive compounds of each query compound were

identified utilizing STITCH (Search tool for interactions of

chemicals) [17,18]. Then, the score of each class of the query

compound was obtained from the confidence scores of interactions

between the query compound and its interactive compounds using

the toxicity profile of the interactive compounds. Finally, the

prediction quality of the model was evaluated using the Jackknife

test through ten test groups. Each of these was constructed from

the benchmark dataset and contained one training dataset and one

external test dataset. Details are described in the following

sections.

Materials and Methods

Benchmark Dataset
We obtained a total of 171,266 compounds from the Accelrys

Toxicity Database 2011.4 [19], which had at least one toxicity

effect belonging to the following six categories: (1) Acute Toxicity;

(2) Mutagenicity; (3) Tumorigenicity; (4) Skin and Eye Irritation;

(5) Reproductive Effects; (6) Multiple Dose Effects. Based on

compound toxicity, these compounds are allocated to the 6

Table 1. Distribution of compounds in each category of
compound toxicity.

Tag Toxicity Total

T1 Acute Toxicity 12,633

T2 Mutagenicity 6,110

T3 Tumorigenicity 2,293

T4 Skin and Eye Irritation 2,353

T5 Reproductive Effects 2,501

T6 Multiple Dose Effects 4,198

T7 Non-toxicity 646

Total – 30,734

doi:10.1371/journal.pone.0056517.t001

Figure 1. The number of compounds plotted against the number of categories in the benchmark dataset.
doi:10.1371/journal.pone.0056517.g001
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categories, allowing multiple assignments. In addition, 2,871 ‘‘non-

toxic’’ compounds including FDA-approved drugs from DrugBank

[20] and endogenic metabolites from the Human Metabolome

database (HMDB) [21] were collected and labeled as a negative

class. For convenience, the ‘non-toxic set’ is regarded as the 7th

category of compound toxicity. Due to lack of chemical-chemical

interaction information in STITCH [17,18], some compounds

cannot be investigated by this approach. After excluding these

compounds, a benchmark dataset S consisting of 17,233

compounds was retrieved, of which 16,587 were toxic and 646

were non-toxic. These compounds are classified into 7 categories

of compound toxicity. Shown in Table 1 is the distribution of

compounds in each category. The codes of 17,233 compounds and

their toxicity information can be found in Table S1.

It is observed from Table 1 that the sum of the number of

compounds in all the 7 categories is much larger than the number

of compounds, indicating that some compounds are allocated to

more than one category of toxicity. Of the 17,233 compounds in

the benchmark dataset, 10,151 compounds belong to only one

category of toxicity, 3,475 compounds belong to two categories of

toxicity, while others belong to 3–5 categories of toxicity and no

compounds belong to more than five categories of toxicity - refer

to Figure 1 for a plot of the number of compounds against the

number of categories of toxicity. Thus, prediction of compound

toxicity is a multi-label classification problem. Like the case of

processing proteins or compounds with multiple attributes

[15,16,22], the proposed method would provide a series of

candidate toxicities, ranging from the most to the least likely,

instead of presenting only the most likely one.

To sufficiently evaluate the prediction method described in the

following section, we constructed 10 test groups, denoted by

TG1,TG2, . . . ,TG10, respectively. In each test group

TGi(1ƒiƒ10), there is one training dataset S(i)
tr and one test

dataset S(i)
te , i.e., TGi~SS(i)

tr ,S(i)
te T, where the test dataset consisted

of 1,723 compounds which were randomly selected from S, while

the training dataset contained the remaining 15,510 samples in S,

i.e., S~S(i)
tr |S(i)

te for each 1ƒiƒ10. It is necessary to point out

that, in each test group, the portion of the data in each class of the

test dataset is roughly the same as that of the training dataset.

Shown in Table 2 is the distribution of compounds in training

and test datasets of each test group.

Chemical-chemical Interactions
It is known that two proteins that can interact with each other

are more likely to share common biological functions than non-

interactive ones [8,9,10,11]. Likewise, two interactive compounds

are also more likely to share similar biological functions [15,16].

Since toxicity is one of a compound’s properties and functions,

utilizing chemical-chemical interactions to identify compound

toxicity is deemed to be feasible.

The data for chemical-chemical interactions were retrieved

from STITCH (chemical_chemical.links.detailed.v3.0.tsv.gz,

http://stitch.embl.de/cgi/show_download_page.) [17], a well-

known database including known and predicted interactions of

chemicals and proteins collected from experiments, literature or

other reliable sources. In the obtained file, the interaction unit

contains two compounds and five kinds of scores with titles

‘‘Similarity’’, ‘‘Experimental’’, ‘‘Database’’, ‘‘Textmining’’ and

‘‘Combined_score’’. The last kind of score was used here to

indicate the interactivity of two compounds, i.e., two compounds

with ‘‘Combined_score’’ greater than zero were deemed interac-

tive compounds, because the last kind of score integrates the

information of the other kinds of scores. Thus, the considered

interactive compounds in this study contain the following three

categories: (1) those participating in the same reactions; (2) those

sharing similar structures or activities and (3) those with literature

associations [17]. It is known that these categories correspond to

the following three facts: (I) compounds involved in the same

reactions occupy the same biological pathways; (II) compounds

with similar structures or activities are likely to share similar

functions, thereby occupying the same pathways with high

probability; (III) the co-occurrence of two compounds, as noted

in many studies, indicates some direct or indirect relationships,

suggesting that they have the potential to share the same pathways.

On the other hand, compounds in the same biological pathways

always induce similar side effects, thereby having similar toxicity

effects. Accordingly, it is reasonable to suppose that interactive

compounds tend to have similar toxicity effects.

The value of the ‘‘Combined_score’’ of two interactive

compounds indicates the likelihood that they can interact, i.e.,

two interactive compounds with high ‘‘Combined_score’’ can

interact with high probability. Thus, this score is also termed a

confidence score in this study. For two compounds c1 and c2, let us

denote the confidence score of an interaction between them by

Q(c1,c2). Specifically, if there is no interaction information between

c1 and c2 based on the current records in STITCH, their

interaction confidence score is assigned zero, i.e., Q(c1,c2) = 0. In

this study, 323,432 interaction units, i.e., 323,432 pairs of

compounds with confidence scores greater than 0, were used to

predict compound toxicity. The detailed information on these

interaction units can be found in Table S2.

Prediction Method
As is mentioned in the above section, interactive compounds are

more likely to have common toxicity. Accordingly, the toxicities of

a query compound can be identified according to its interactive

compounds.

For convenience, let T1, T2, …, T7 denote the seven categories

of toxicity, where T1 denotes ‘‘Acute Toxicity’’, T2 ‘‘Mutagenic-

ity’’, and so forth (see column 1 and 2 of Table 1). Suppose that

there are n compounds in the training dataset, that is c1, c2, …, cn,

the toxicity of a compound ci in the training dataset is formulated

as

T(ci)~½ti,1,ti,2, . . . ,ti,7�(i~1,2, . . . ,n) ð1Þ

where

ti,j~
1 If ci has toxicity Tj

0 Otherwise

�
ð2Þ

Given a query compound cq, its toxicity is predicted not only by its

interactive compounds but also by the confidence scores of their

interactions. The score indicating that the query compound cq has

toxicity Tj is calculated by

H(cq.Tj)~
Xn

i~1

Q(ci,cq):ti,j j~1,2,3,4,5,6,7 ð3Þ

The high score H(cq.Tj) means that there are many

interactive compounds of cq in the training dataset that have

toxicity Tj or some interactions between cq and its interactive

compounds having toxicity Tj are labeled by high confidence

Chemical Toxicity Order Prediction
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scores. In view of this, the greater the score H(cq.Tj), the more

likely that the compound cq has toxicity Tj. In particular, if

H(cq.Tj) for some j, it is indicated that the probability that the

query cq having the j-th category of toxicity is zero because there

are no interactive compounds of cq in the training dataset that have

toxicity Tj.

Since this is a multi-label classification problem, i.e., some

compounds have more than one category of toxicity. A prediction

method only providing the most likely toxicity is not an optimal

choice. Thus, our method is valuable in that it can provide a series

of candidate toxicities for a query compound, ranging from the

most likely to the least likely. For example, if the results obtained

from Eq. 3 are

H(cq.T3)§H(cq.T1)§H(cq.T6)w0 ð4Þ

it can be interpreted to mean that there are three candidate

toxicities for the query compound cq, and the most likely toxicity

for cq is T3 (‘‘Tumorigenicity’’, cf. Table 1), followed by T1

(‘‘Acute Toxicity’’) and T6 (‘‘Multiple Dose Effects’’). In addition,

T3 is called the 1st order prediction, T1 the 2nd order prediction,

and so forth.

Jackknife Test
The Jackknife test [16] is often used to examine the

performance of various predictors, because it can always provide

a unique prediction result for a given dataset. It has been widely

used by investigators to evaluate their predictors

[23,24,25,26,27,28,29,30,31,32,33]. During the test, each sample

in the training dataset is singled out one-by-one and tested by the

predictor trained by the other samples. Thus, each sample is tested

exactly once.

Accuracy Measurement
The j-th order prediction accuracy is calculated by the following

formula [15,16]:

Cj~
CTj

N
j~1,2,3,4,5,6,7 ð5Þ

where CTj denotes the number of compounds whose j-th order

prediction is one of its true toxicities, and N denotes the total

number of compounds in the dataset. If a prediction method can

obtain high Cj with small j and low Cj with large j, it implies that

the method arranges the candidate toxicities well. Among them,

the 1st order prediction accuracy is the most important indicator of

good or bad performance.

Although the seven prediction accuracies can be obtained by

Eq. 5, none of them provides the overall prediction accuracy. In

view of this, we employ another measurement that calculates the

proportion of true toxicities of the first m predictions. It can be

calculated as follows [16]:

Dm~

PN
i~1

Si,m

PN
i~1

Ni

ð6Þ

where Si,m represents the number of the correct predictions of the

i-th compound among its first m predictions, and Ni represents the

number of toxicities that the i-th compound has. Since different

compounds may have different numbers of toxicities, the

parameter m in Eq. 6 is usually taken as the smallest integer no

less than the average number of toxicities in the dataset, which can

Table 2. Distribution of compounds in training and test datasets of each test group.

TG1 TG2 TG3 TG4 TG5

Tag

T1 11,382 1,251 11,387 1,246 11,351 1,282 11,364 1,269 11,385 1,248

T2 5,475 635 5,476 634 5,529 581 5,492 618 5,491 619

T3 2,065 228 2,065 228 2,063 230 2,063 230 2,056 237

T4 2,102 251 2,102 251 2,115 238 2,112 241 2,093 260

T5 2,235 266 2,235 266 2,260 241 2,255 246 2,235 266

T6 3,747 451 3,749 449 3,777 421 3,784 414 3,799 399

T7 582 64 577 69 586 60 582 64 583 63

Total 27,588 3,146 27,591 3,143 27,681 3,053 27,652 3,082 27,642 3,092

TG6 TG7 TG8 TG9 TG10

Tag

T1 11,367 1,266 11,395 1,238 11,369 1,264 11,374 1,259 11,353 1,280

T2 5,489 621 5,500 610 5,492 618 5,497 613 5,506 604

T3 2,075 218 2,067 226 2,070 223 2,043 250 2,070 223

T4 2,123 230 2,125 228 2,135 218 2,102 251 2,133 220

T5 2,244 257 2,243 258 2,236 265 2,258 243 2,234 267

T6 3,762 436 3,750 448 3,772 426 3,777 421 3,755 443

T7 583 63 587 59 579 67 569 77 584 62

Total 27,643 3,091 27,667 3,067 27,653 3,081 27,620 3,114 27,635 3,099

doi:10.1371/journal.pone.0056517.t002
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be computed by

M~

PN
i~1

Ni

N
ð7Þ

where m~qMr. Obviously, a larger Dm implies better prediction

performance by the method for the identification of compound

toxicity.

Results

As described in the Section ‘‘Benchmark dataset’’, 10 test

groups were constructed to evaluate the method described in

Section ‘‘Prediction method’’. In each test group, there were one

training dataset consisting of 15,510 compounds and one test

dataset containing 1,723 compounds. The predicted results for

each test group obtained by the proposed method are as follows.

Performance of the Method on the Training Dataset
For the 15,510 compounds in each training dataset

S(i)
tr (1ƒiƒ10), we conducted the prediction and evaluated its

performance by the Jackknife test. Listed in the column with title

S(i)
tr of Table 3 are seven prediction accuracies, calculated by Eq.

5, for training dataset S(i)
tr , from which we can see that the 1st order

prediction accuracies were all around 79.50%, where the

maximum was 79.57%, while the minimum was 79.23%; the

2nd order ones were all around 37.30%. It is indicated that the

proposed method is very stable. It is also observed from the

corresponding columns of Table 3 that the accuracies followed a

descending trend when increasing the order number, indicating

that the method sorted the candidate toxicities quite well for the

compounds in each training dataset S(i)
tr (1ƒiƒ10). The average

Table 3. Prediction accuracies obtained by the method as applied to training and test datasets of each test group.

TG1 TG2 TG3 TG4 TG5

Prediction Order

1 79.40% 79.69% 79.45% 79.28% 79.23% 80.62% 79.28% 79.45% 79.30% 79.34%

2 37.16% 38.42% 37.14% 38.24% 37.54% 37.20% 37.17% 38.31% 37.40% 36.16%

3 22.18% 23.16% 22.20% 22.87% 22.32% 21.65% 22.29% 22.63% 22.53% 22.87%

4 15.45% 16.66% 15.49% 16.77% 16.35% 14.86% 15.46% 16.13% 15.41% 15.55%

5 11.06% 11.61% 11.04% 11.49% 11.00% 10.85% 10.88% 10.16% 10.95% 11.20%

6 6.92% 7.25% 6.84% 7.89% 7.23% 5.86% 6.99% 6.56% 6.85% 7.84%

7 1.21% 1.33% 1.22% 1.04% 1.27% 1.51% 1.39% 1.45% 1.26% 1.68%

TG6 TG7 TG8 TG9 TG10

Prediction Order S(6)
tr S(6)

te S(7)
tr S(7)

te S(8)
tr S(8)

te S(9)
tr S(9)

te S(10)
tr S(10)

te

1 79.57% 80.15% 79.36% 79.98% 79.45% 79.05% 79.52% 79.80% 79.46% 79.34%

2 37.11% 37.72% 37.57% 36.10% 37.21% 38.65% 37.32% 35.98% 37.44% 37.20%

3 22.57% 22.29% 22.30% 23.39% 22.23% 24.03% 22.46% 23.33% 22.42% 22.93%

4 15.31% 15.90% 15.36% 15.55% 15.52% 14.74% 15.40% 16.25% 15.36% 16.37%

5 10.93% 10.45% 10.95% 11.55% 11.08% 10.10% 10.74% 11.55% 10.87% 10.74%

6 7.00% 6.56% 7.00% 6.62% 7.16% 5.86% 6.76% 7.78% 6.97% 7.25%

7 1.25% 1.57% 1.32% 0.99% 1.32% 1.45% 1.27% 1.57% 1.30% 1.33%

doi:10.1371/journal.pone.0056517.t003

Table 4. Proportions of true toxicities covered by the first
two predictions for training and test datasets of each test
group.

Test group Training dataset Test dataset

TG1 65.52% 64.69%

TG2 65.54% 64.52%

TG3 65.43% 66.49%

TG4 65.32% 65.83%

TG5 65.48% 64.36%

TG6 65.46% 65.71%

TG7 65.55% 65.21%

TG8 65.43% 65.82%

TG9 65.61% 64.07%

TG10 65.61% 64.79%

doi:10.1371/journal.pone.0056517.t004

Figure 2. The structures of the alkyl N-nitroso group and the
primary aromatic amine group.
doi:10.1371/journal.pone.0056517.g002
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numbers of toxicities for compounds in each training dataset S(i)
tr

were about 1.78 according to Eq. 7, i.e., M = 1.78. It is noteworthy

that if one predicts compound toxicity by random guesses, the

average success rate would be only 25.43% (1.78/7), which is

much lower than each of the 1st order prediction accuracies by our

method. To evaluate the prediction accuracy by the method more

thoroughly, Eq. 6 was calculated by taking m = 2, i.e., we

considered the first two predictions for each compound in

S(i)
tr (1ƒiƒ10) to see the proportions of true toxicities covered

by these predictions. These proportions are shown in column 2 of

Table 4, from which we can see that they were all about 65.50%,

where the maximum was 65.61% while the minimum was

65.32%. Thus, it is indicated once again that our method is

reliable.

Performance of the Method on the Test Dataset
For the 1,723 compounds in each test dataset S(i)

te (1ƒiƒ10),
the toxicities of these compounds were predicted by the proposed

method described in Section ‘‘Prediction method’’ based on the

compounds in the training dataset S(i)
tr . After processing by Eq. 5,

seven prediction accuracies for each test dataset S(i)
te were obtained

and were listed in the column with title S(i)
te of Table 3. It is

observed that the 1st order prediction accuracies were all about

79.50%. Similar to the seven prediction accuracies for each

training dataset S(i)
tr , those of test dataset S(i)

te also followed a

descending trend with the increase of the order number, implying

that our method also arranged the candidate toxicities of samples

in each test dataset quite well. According to Eq. 7, the average

numbers of toxicities for the compounds in each test dataset were

about 1.80. Thus, we still considered the first two predictions of

each sample in S(i)
te (1ƒiƒ10) to calculate the proportions of true

toxicities covered by these predictions, i.e., computing Eq. 6 by

taking m = 2. Listed in column 3 of Table 4 are ten proportions

for ten test datasets, each yielding a probability of approximately

65%.

Discussion

Understanding of the Toxicity Prediction Results
It is observed from Table 3 that the performance of the method

on ten test groups is similar. Thus, the first test group (i.e., TG1) is

used as an example to show how to interpret the toxicity predicting

results in detail.

Our multiclass model achieved a quite promising performance

using the chemical-chemical interactions data on test group TG1

(see Table 3 for details). For example, the compound 4-(N-

methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (CID000047289,

NNK) shows positive results for five toxicity endpoints: T1, T2, T3,

T5, and T6. Our model accurately predicted these five kinds of

endpoints, and provided the order predictions as T3. T2.

T1.T6. T5. T4.T7. The 7th label representing ‘non-toxic’ was

ranked as the last, suggesting that this compound is very likely to

have toxic effects. As stated in the Section ‘‘Chemical-chemical

interactions’’, the interactive compounds derived from STITCH

tend to have the same toxicity categories. 4-(Methylnitrosamino)-

1-(3-pyridyl)-1-butanol (CID000104856, NNAL), an interactive

compound of NNK, has toxicities T2 and T3, which are also

shared by NNK. The alkyl N-nitroso group (see Figure 2) of these

two compounds associates with the formation of DNA adducts,

and induces lung cancer in laboratory animals [34,35,36]. Another

example is trimethoprim (CID000005578), which is positive for

five toxicity endpoints: T1, T2, T4, T5, and T6. The prediction

order of our model was T1. T6. T2.T5. T4. T3.T7. This

compound was considered to be a carcinogen according to

chemical-chemical interactions, but the Accelrys Toxicity database

[19] labeled this compound only as a mutagen. However, it is

reasonable to assume this compound as a carcinogen because it

has a genotoxic toxicophore-aromatic amine (see Figure 2)

[5,37,38]. Typically, mutation is one of the first steps in the

development of cancer [39].

Table 5. Details of Tasosartan’s interactive compounds in the training dataset.

Compound ID Tag of toxicity class Its interactive compound ID Tag of toxicity class Confidence score

CID000060919 T7 CID000003749 T7 679

CID000060919 T7 CID000002541 T7 670

CID000060919 T7 CID000060921 T7 669

CID000060919 T7 CID000003961 T7 667

CID000060919 T7 CID000060846 T7 658

CID000060919 T7 CID000065999 T1, T6 643

CID000060919 T7 CID000054738 T1, T2 172

doi:10.1371/journal.pone.0056517.t005

Table 6. The details of common compounds belonging to
two categories.

Tag of
toxicity
class T1 T2 T3 T4 T5 T6

T1 12,633a 3,483
(22.8%)b

1,485
(11.0%)

2,027
(15.6%)

2,075
(15.9%)

3,446
(25.7%)

T2 6110 1,720
(25.7%)

1,213
(16.7%)

1,336
(18.4%)

1,723
(20.1%)

T3 2293 570
(14.0%)

753
(18.6%)

781
(13.7%)

T4 2353 731
(17.7%)

897
(15.9%)

T5 2501 1,409
(26.6%)

T6 4,198

aThe number of common compounds belonging to two categories.
bThe number in parenthesis means the ratio of the number of common
compounds to the number of non-overlapping compounds of the two
categories.
doi:10.1371/journal.pone.0056517.t006
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Tasosartan (CID000060919) is an angiotensin II (AngII)

receptor blocker [40], which is labeled as a relatively ‘‘non-toxic’’

compound in the dataset. Using our model, the order prediction of

this compound was T7. T1. T6. T2. The 1st order prediction is

‘‘non-toxic’’, consistent with the experimental data available.

Among seven interactive compounds in the training dataset

retrieved from STITCH (see Table 5), the top five interactive

compounds are ‘‘non-toxic’’, and their confidence scores are

relatively high. However, the latter two interactive compounds are

toxic, so tasosartan is predicted to have some toxicity effects in our

model. However, the possibility of its possessing these toxicities is

less than that of its not possessing toxicity (i.e., ‘‘non-toxic’’).

The predictions for NNK, trimethoprim, and tasosartan and the

prediction accuracies of the method indicate that interactive

compounds can share common toxicity with high probability,

which assessment conforms to the results of predicting other

attributes of compounds [15,16]. The confidence scores of

chemical-chemical interactions contribute significantly to the

prediction of compound toxicity. As shown in Table 5, the

interactive compounds of tasosartan with high confidence scores

dominantly have the same toxicity as tasosartan. On the other

hand, the predicted results for NNK, trimethoprim, and tasosartan

reflect a limitation of our model: the judgment of ‘‘toxic’’ or ‘‘non-

toxic’’ is based on a collective set of compounds with interactive

information. However, some compounds with low confidence

scores exist and they may contribute to the input of promiscuous

interaction information to the final classification model. To

address this issue, a future endeavor should introduce a threshold

to the interaction confidence score and exclude ‘‘noisy’’ informa-

tion to obtain a more accurate prediction.

Moreover, many more compounds are without chemical-

chemical interactions in the original Accelrys Toxicity database.

It is expected that the problem of predicting compound toxicity

can be solved more favorably by the method as increasing

amounts of chemical-chemical interaction information become

available.

Analysis of the Relationship between Different Chemical
Toxicity Effects

In the Accelrys Toxicity Database, there are 3,607 compounds

with more than two types of toxicity effects and 3,475 compounds

with exact two effects (refer to Figure 1). We analyzed the

number of common compounds belonging to two categories, and

the ratio of the number of common compounds to the number of

non-overlapping compounds of the two categories (see Table 6).

It can be found that the intersection of T5 (‘‘Reproductive Effects’’,

cf. Table 1) and T6 (‘‘Multiple Dose Effects’’) is the largest,

sharing 26.6% of common compounds. The overlapping com-

pounds suggest that there may be a causal relationship between

the two categories. Specifically, the reproductive effects may cause

multiple dose effects, i.e., reproductive toxicities may be cumula-

tive, and hence be regarded as showing multiple dose effects in the

meantime. The followed instances of correspondence between two

categories are T2 (‘‘Mutagenicity’’) vs. T3 (‘‘Tumorigenicity’’) and

T1 (‘‘Acute Toxicity’’) vs. T6 (‘‘Multiple Dose Effects’’). Since, in

many cases, mutation is one of the first steps in the development of

cancer [39], we took T2 (‘‘Mutagenicity’’) vs. T3 (‘‘Tumorigenic-

ity’’) as an example to study the relationship between the two toxic

categories.

From the viewpoint of mechanism of action, carcinogens can be

classified into genotoxic or epigenetic carcinogens. Genotoxic

carcinogens can bind covalently to DNA, and many known

mutagens belong to this category. In the dataset, there are 1,720

common compounds with simultaneous toxicity T2 (‘‘Mutagenic-

ity’’) and T3 (‘‘Tumorigenicity’’). The Structural alerts (SAs)

provided by Benigni [37], which are molecular functional groups

associated with a specific toxicity end point [38], were used here to

gain insights into the correspondence of the two toxic effects. As

summarized in Table S3, we illustrated a few examples for each

of the matched SAs.

As previously mentioned, not all of the mutagens are

carcinogens. For example, a,b-unsaturated carbonyl compounds

can interact with DNA by Michael addition, then lead to

mutagenic and carcinogenic responses [37], e.g. acrylamide

(CID000006579) and 2-butenal (CID000447466). However, if an

Figure 3. Nongeneric SAs (Benigni) and some carcinogens matching these SAs.
doi:10.1371/journal.pone.0056517.g003
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a,b-unsaturated carbonyl compound has conformational con-

straints or alkyl groups at the site of nucleophilic attack, the

compound would be prone to reaction via Schiff base formation

[41]. This change may only generate the DNA-adducts, but not

undergo the following carcinogenic process [37]. This means that

this kind of compound has no carcinogenicity, e.g. (E)-2-methyl-2-

butenal (CID005321950) and 2-propylacrolein (CID000070609).

Epigenetic carcinogens do not usually bind directly to DNA, but

have a large variety of different and specific mechanisms, and

behave negatively in the standard mutagenicity assay [42]. Thus,

some compounds that can match nongeneric SAs [37] are only

carcinogens, not mutagens (see Figure 3).

Conclusions
In this study, a multi-classifier for six toxicity effects was built

based on 17,233 compounds with their experimental toxicity

information available and 323,432 pairs of mapped chemical-

chemical interaction information extracted from the STITCH

database. A new chemical entity can have multiple toxicity effects,

so a multiclass toxicity prediction tool may prove to be practically

more valuable to chemists than a traditional binary classification

model. It can provide a better toxicity profile for a compound

rather than merely indicating whether the compound has a

specific toxic action or potential. The outstanding performance of

our approach suggests that the multi-classification scheme is

feasible and effective for in silico chemical toxicity prediction.
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