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Introduction

In recent years, circadian rhythm (CR)-related genes 
(CRRGs) have become a hot topic in cancer research. Many 
studies have shown that CRRGs regulate cell proliferation, 
malignant tumor cell apoptosis, and neuroendocrine and 

immune function. The CRRGs are expressed in many 
behaviors and physiological processes, including tumor 
occurrence and development (1). Disruption to the 
CR plays a key role in tumorigenesis and promotes the 
establishment of cancer features. Moreover, tumorigenesis 
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impairs the CR directly (2). In recent years, researchers 
have given increasing attention to the effects of the CR in 
the human body. For example, its role in tumorigenesis, 
cancer characteristics, treatment options, and how CRRGs 
work are becoming interesting topics for future research 
(3,4). There are strong links between cancer and CR 
disorders. For example, transcription of core CRRGs affects 
the efficacy of treatment and the prognosis of a variety of 
cancers (5-7). However, the mechanisms regulating the 
effects of CRRGs on clinical prognosis remain unclear. 

A previous study showed that disruption of the CR can 
promote the development of lung tumors (8). Lung cancer 
is the leading cause of cancer death, accounting for 18.4% 
of all cancer deaths, and has the highest incidence of all 
types of cancer worldwide (11.6%) (9). Non-small cell 
lung cancer (NSCLC) is the most common type of lung 
cancer, accounting for approximately 85% of cases. Lung 
adenocarcinoma (LUAD) is the most common type of 
NSCLC, and its incidence is increasing annually. Therefore, 
it is necessary to identify key molecules and to establish 
an effective prediction model with good stability that can 
be used to implement precise treatment and improve the 
prognosis of patients with LUAD.

In this study, we investigated the relationship between 
LUAD prognosis and CRRGs and established a CR scoring 
system (CRscore) to predict the prognosis of patients with 
LUAD and guide treatment selection. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-1112/rc).

Methods

Data source and pre-processing

The data and clinical information of patients with LUAD 
and somatic mutation data were obtained from The Cancer 
Genome Atlas (TCGA). The download gene expression 
profiles met the following conditions: (I) the disease type 
were “adenomas and adenocarcinomas”; (II) the primary site 
was “bronchus and lung”; (III) the program was “TCGA”; 
(IV) the project ID was “TCGA-LUAD”; (V) the data 
category was “transcriptome profiling”; (VI) the data type 
was “Gene Expression Quantification”; (VII) the workflow 
type was“HTSeq-FPKM”. In addition, another set of files 
(GSE37745) was downloaded from the Gene Expression 
Omnibus (GEO) database to ensure the adequacy of the 
sample size. Subsequently, in UCSC Xena (http://xena.

ucsc), we downloaded the copy number data of LUAD (10).  
Using the limma package in R (The R Foundation for 
Statistical Computing, Vienna, Austria), the standard 
human gene expression matrix of each independent sample 
was converted from the TCGA gene expression profile, 
and transcripts per million (TPM) data were converted 
from fragments per kilobase million (FPKM) data (11). 
The standard human gene names were converted from 
two GEO files in Perl, as was the clinical information 
obtained from the GEO. The batch effects of the data were 
corrected using the sva package of R (12). We combined 
the statistical data of TCGA-LUAD and GSE37745 as the 
combined queue. We used R (version 4.1.1) and Strawberry 
Perl (version 5.32.1; https://strawberryperl.com/) to process 
the data. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Differential expression of CRRGs

This study examined 10 genes (AANAT, NPAS2, ARNTL, 
CRY1, PER3, CLOCK, CRY2, CSNK1E, NR1D2, and 
BHLHE40). First, the copy numbers of the CRRGs were 
extracted from TCGA-LUAD using Perl software, and 
histograms were intuitively constructed using R software. 
The R Circos package was used to map the change in 
10 CRRGs on 23 pairs of chromosomes to investigate 
the relationships between CRRG copy number and 
chromosome. The differential expression of these CRRGs 
in TCGA-LUAD was compared using the Wilcoxon 
rank-sum test in the limma package, which provides a 
comprehensive solution for microarray and RNA-Seq 
differential analyses (13). A waterfall plot was created using 
the maftools package of R to determine the mutation rate of 
CRRGs in patients with LUAD. A boxplot was constructed 
using the ggpubr package of R, and a heatmap was drawn 
using the pheatmap package. A P value of <0.05 was 
considered statistically significant.

CR regulator analysis

CR clustering
To determine the value of CRRGs, we used an unsupervised 
cluster analysis to organize the amalgamated dataset 
according to the expression of CRRGs. The samples were 
clustered using the ConsensusClusterPlus package according 
to the expression of CRRGs. All samples were divided 
into K=[2–9] groups, and the most suitable CR regulator 
cluster was obtained according to three conditions after 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-1112/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-1112/rc
http://xena.ucsc
http://xena.ucsc
https://strawberryperl.com/
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the cycle, including a close connection within types and an 
unclose connection between types, the number of samples 
in each cluster was not short, and no significant increase 
in the cumulative distribution curve area. According to the 
correlations between the CRRG clusters and the survival 
status, the survminer package was used to determine the 
cut-off points of each subgroup of data, and all possible 
cut-off points were tested to identify the maximum rank 
statistics. Based on the log-rank statistics, patients were 
divided into high, medium, and low expression groups. The 
Kaplan-Meier method and the survminer package were used 
to generate survival curves for the predictive analysis. The 
log-rank test was used to identify significant differences. A 
P value of <0.05 was considered statistically significant.

Single-sample gene set enrichment analysis (GSEA) 
and gene set variation analysis (GSVA)
GSVA is a non-parametric, unsupervised method for 
estimating path changes and changes in the activity of 
biological processes in samples in an experimental dataset (14). 
Based on differences in CRRGs, we revealed the biological 
pathways between different CRRG clusters. For the GSEA, 
we download “C2.CP.KEGG.7.5.1.symbols”. The scores of 
different paths in each sample were calculated using the GSA 
package of R, and the path differences were analyzed using 
the limma package. A P value of <0.05 indicated differential 
expression of pathways in pathway regulation (15,16). 
Heatmaps were drawn using the pheatmap package in R. 
We used the single-sample GSEA and the gene enrichment 
score to inspect the relative abundance of immune cell 
infiltration to obtain the immune score (17). We obtained the 
gene sets of every type of tumor microenvironment (TME)-
infiltrating immune cell from a previous study (18), including 
activated dendritic cells, CD8+ T cells, regulatory T cells, and 
macrophages. The pertinence of CRRG clusters and immune 
scores was explored using the limma package, and the ggpubr 
package was used to draw the box graph. A P value of <0.05 
was considered statistically significant.

Differential analysis
To identify differentially expressed genes (DEGs) related 
to CR, we used the limma and VennDiagram packages to 
identify DEGs between CRRG clusters. The DEGs with an 
adjusted P<0.001 were reserved (19). Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were used to examine the pathways and functions 
of DEGs. We used P values and Q values of <0.05 to 
identify the potential pathways and biological functions of 

these DEGs. According to the number of enriched CRRGs, 
we chose the top 30 KEGG pathways and GO pathways.

CRRG clusters

To identify the CRRGs there were associated with prognosis 
(P<0.05), univariate Cox regression analysis was used to 
analyze the DEGs using the survminer package. The 
ConsensusClusterPlus package was used to cluster the 
samples according to the expression of prognostic CRRGs 
to determine the CRRG clusters that should be further 
analyzed. First, we performed a survival analysis to evaluate 
the prognostic value of the CRRG clusters using the 
survminer package. Then, the patients were divided into 
three groups: A, B, and C. The Kaplan-Meier method was 
used to draw the survival curves of the three groups, and the 
difference between the three groups was significant (P<0.001) 
according to the log-rank test. After collecting the clinical 
data (LUAD stage, age, gender, and alive/deceased status), 
the pheatmap package of R was used to draw a heatmap 
of the correlations between clinical features and CRRG 
clusters. The boxplot was drawn using the ggpubr package.

CR score

To quantify the expression of CRRGs in patients with 
LUAD, we constructed a CR scoring system (CRscore) 
based on the CRRGs associated with prognosis. Then, we 
used the principal component analysis (PCA) to construct 
the CRscore. The PCA can effectually identify the most 
significant portions and structures in the data, eliminate 
redundancy and noise, reduce the dimension of primitive 
intricate data, and uncover the simple structure hidden 
behind the convoluted data.

We used the following calculation to construct the 
CRscore, mainly using the PCA:

1 2CR score PC i PC i = + 	 [1]

where i represents the expression of prognostic DEGs. 

Correlations between the CR score and patients’ clinical 
characteristics

We divided the patients into a high CR score group 
and a low CR score group for further analysis using the 
CRscore. First, the survival analysis was used to assess 
the prognostic value of the CRRG clusters using the 
same method as described above. Then, we analyzed the 
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relationships between the CRscore and patients’ clinical 
features, including age, gender, survival status, and LUAD 
stage, to identify the relationship between the CR score 
and survival in the context of the different individual 
clinical characteristics using the univariate and multivariate 
Cox regression analyses. Patients with the same clinical 
characteristics were analyzed respectively to exclude the 
influence of clinical characteristics on the conclusion. Then, 
the correlations between CR clusters, gene clusters, CR 
grouping, and clinical data (LUAD stage, age, gender, alive/
deceased status) were measured using the ggalluvial package 
for Mulberry plots. In addition, differences in the CR score 
were calculated for the different clinical characteristics 
(stage, age, and gender). The plyr and ggpubr packages 
were used to construct percentage plots and box-line plots, 
respectively. The CR score and CR stage were compared 
using the limma package. The log-rank test was used to 
identify statistically significant differences, and the Kaplan–
Meier method was used to analyze each clinical feature 
based on the CR score.

Correlations between the CR score and the tumor mutation 
burden (TMB)

The TMB is the sum of somatic gene-coding errors, gene 
insertions, deletion errors, and base substitutions per million 
bases. First, using Perl software, the TMB was calculated 
for each sample. A correlation diagram and boxplot of 
the relationship between the TMB and CR grouping was 
constructed using the ggpubr package of R. Then, the 
survminer package was used to perform the survival analysis. 
According to the TMB, all samples were divided into two 
groups: the low expression group and the high expression 
group. We also used the Kaplan-Meier method to plot the 
survival curves based on the TMB and the TMB combined 
with the CR score. A P value of <0.05 was considered 
statistically significant with the log-rank test.

Analysis of immune checkpoint genes

First, the corrplot package was applied to contrast the 
correlation between the immune score and the CR score. 
Then, the samples (by CR group) were crossed with the 
clinical information samples (survival status), and the data 
were combined using R software. Immunotherapy score files 
were acquired from The Cancer Immunome Atlas (TCIA) 
website (https://tcia.at/home). A violin plot was created to 
observe the relationship between immune checkpoint genes 

and groups with high and low CR scores using the ggpubr 
package. We analyzed the relationships between the CR 
score and the expression of common immune checkpoints 
(PD-L1, PD-L2, PD-1, CTLA4) using the limma package.

Prognostic treatment of LUAD based on the CR score

The immunophenotypic scores (IPSs) of TCGA-LUAD 
patients were obtained from the TCIA database (20).  
The difference in the IPS between the high CR score 
group and the low CR score group was analyzed to 
comprehend the immunogenicity of the two groups 
of patients. We used the pRRophetic package of R to 
predict the half-maximum inhibitory concentration of 
five chemotherapeutic agents for the treatment of LUAD, 
including cisplatin, gemcitabine, paclitaxel, vinorelbine, 
and methotrexate (21). These five kinds of chemotherapy 
drugs in LUAD patients with the sensitivity of the forecast 
are based on the cancer drug sensitivity genomics (GDSC; 
https://www.cancerrxgene.org/).

Statistical analysis 

The Kruskal-Wallis test was used to compare three or 
more groups. Using the Surv-Cutpoint function in the 
survminer package of R, the patients were divided into two 
groups: the high CR score group and the low CR score 
group. Spearman’s and distance correlation analyses were 
used to calculate the correlation coefficients between the 
TME-infiltrated immune cells and CRRG expression. 
We used Pearson’s correlation to calculate the correlation 
coefficients between CRRGs. A P value of <0.001 was 
considered statistically significant. The univariate Cox 
regression analysis was used to calculate the hazards ratios 
of the CRRGs and DEGs. The cor.mtest function was used 
to calculate the relationship between the CR score and 
immune cell infiltration, and the corrplot package of R was 
used to visualize this relationship. Spearman’s correlation 
analysis was used to obtain the correlation coefficient 
between the TMB and the CR score. The R Circos 
package was used to show the change in copy number on  
23 chromosomes based on the CRRGs identified from 
TCGA-LUAD (22). The maftools package was used to 
construct a waterfall plot to show the mutation status of 
TCGA-LUAD. All data were analyzed using R (version 
4.1.1) or Perl (version 5.32.1) software (23). The R packages 
used in this study and their functions are available from the 
Bioconductor website (https://www.bioconductor.org/). 

https://tcia.at/home
https://www.cancerrxgene.org/
https://www.bioconductor.org/
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Clinical validation of CRRGs

Quantitative reverse transcription polymerase chain 
reaction (PCR)
We extracted total RNA from freshly isolated tissues 
utilizing TRIZOL reagent (#15596026; Thermo Fischer 
Scientific, Waltham, MA, USA). Complementary DNA was 
synthesized from whole RNA using random primers. The 
PCR primer sequences of NPAS2 were designed as follows: 
forward: 5'-CGTGTTGGAAAAGGTCATCGG-3'; 
reverse:  5'-TCCAGTCTTGCTGAATGTCAC-3'. 
Reverse transcription was performed at 42 ℃  for  
30 minutes, followed by 85 ℃ for 5 minutes. The PCR 
conditions included initial denaturation for 10 minutes at  
95 ℃, followed by 40 cycles of 95 ℃ for 20 seconds, 55 ℃ 
for 30 seconds, 72 ℃ for 30 seconds, 95 ℃ for 1 minute, 
and 55 ℃ for 30 seconds. The messenger RNA (mRNA) of 
NPAS2 was quantified by quantitative reverse transcription 
(qRT)-PCR with SYBR Premix ExTaq (Applied Takara 
Bio, Shiga, Japan; Baori Medical Biotechnology, Beijing, 
China) and normalized to glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) as the reference gene.

Western blot
Total protein was extracted from tissue, and the protein 
concentration was determined using the bicinchoninic 
acid assay (#23225). Then, 20 μg protein was loaded 
into each well and separated by polyacrylamide gel 
electrophoresis (PAGE). The protein was then transferred 
to a polyvinylidene fluoride (PVDF) membrane using the 
wet transfer method and blocked with 5% skimmed milk at 
room temperature for 2 hours. Rabbit anti-human NPAS2 
(1:2,000, PHR3777) and rabbit anti-human GAPDH were 
incubated overnight at 4 ℃. After washing, horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit secondary 
antibody (1:10,000, #7076) was incubated at 37 ℃ for 
2 hours. The membrane was prepared with enhanced 
chemiluminescence reagent. The average band strength 
was measured using Image J software (National Institutes 
of Health, Bethesda, MD, USA). The gray value of the 
target protein was divided by the gray value of GAPDH to 
calculate the relative protein expression of the target. All 
antibodies were purchased from Abmart (Shanghai, China).

Results

Epigenetic analysis of CR in LUAD samples

A total of 10 CRRGs were examined in this study. As shown 

in the waterfall figure, 33 of 561 (5.88%) samples had 
mutations (Figure 1A). The mutation rates of PER3, CRY2, 
NPAS2, CRY1, CLOCK, ARNTL, and CSNK1E were 1%, 
and the mutation rates of BHLHE40, NR1D2, and AANAT 
were 0%. The copy number variation (CNV) analysis 
showed a significant increase in the copy numbers of 
AANAT, NPAS2, ARNTL, CRY1, PER3, CLOCK, and CRY2, 
and there was a marked decrease in the copy numbers of 
CSNK1E, NR1D2, and BHLHE40 (Figure 1B). The circle 
diagram shows the chromosomal locations with CNVs in 
CRRGs (Figure 1C). The LUAD tissues and healthy tissues 
can be identified by CNVs in chromosomes. To identify 
the relationship between regulatory factors and epigenetics, 
we analyzed the expression of CRRGs (Figure 1D,1E). The 
genes NR1D2, AANAT, CRY1, NPAS2, CSNK1E, PER3, and 
CRY2 were significantly differentially expressed between 
LUAD tissues and healthy tissues (P<0.05) Changes in the 
expression of CRRGs may vary with copy number. The 
CRRGs demonstrated specific epigenetic changes in tumor 
tissues and adjacent non-cancerous tissues. Therefore, seven 
CRRGs with obvious differences in expression (NR1D2, 
AANAT, CRY1, NPAS2, CSNK1E, PER3, and CRY2) were 
studied further.

Unsupervised clustering based on CR

We introduced a new cohort (merged cohort), which 
consisted of TCGA-LUAD data and GEO data (GSE37745). 
Unsupervised clustering was used to separate the tumor 
samples according to the expression of the seven CRRGs 
mentioned above. According to the cumulative distribution 
function value, the optimal quantitative cluster was 
determined as 3 (K=3). Thus, the tumor samples were divided 
into three groups (Figure 2A): CRcluster A, CRcluster B, and 
CRcluster C. There were significant differences among the 
three clusters according to the results of the PCA (Figure 2B). 
Specifically, CRcluster C had the greatest survival advantage 
(Figure 2C). The heatmap shows differences in CRRG 
expression among the different clusters, and the expression of 
CRRGs was highest in CRcluster B (Figure 2D).

Differences in immune cell infiltration and function 
between the CR clusters

To explore the potential biological functions of the 
three CRRG clusters, the GSVA analysis was performed  
(Figure 3A-3C). CRcluster A and CRcluster B were mainly 
related to CR in mammals, such as transforming growth 
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Figure 1 Differences in circadian rhythm genes between LUAD patients and normal patients. (A) CRRGs waterfall: The number on the 
right represents the mutation frequency of CRRGs in LUAD patients, and the bar chart represents the proportion of mutations per base. (B) 
CNV mutation frequency of CRRGs in LUAD: the height of the column represents the mutation frequency. Green dots represent deletions 
and red dots represent amplifications. (C) The change of CNV’s position of circadian rhythm genes was in 23 pairs of chromosomes. (D) 
Heatmap: To clarify the difference expression of circadian rhythm genes between the tumor group and the normal group. (E) The difference 
expression of circadian rhythm genes between normal group and tumor group through boxplot (asterisk indicates statistical P value). 
*P<0.05; ***P<0.001. LUAD, lung adenocarcinoma; CRRGs, circadian rhythm-related genes; CNV, copy number variation.

factor-beta (TGF-beta), the cellular response to TGF-
beta, and regulation of the TGF-beta receptor. CRcluster 
C was related to protein expression, such as the mitogen-
activated protein kinase (MAPK) signaling pathway and 

neurodegeneration. There were significant differences 
in immune cell infiltration among the three clusters 
based on the results of the GSEA analysis (Figure 4A). 
We found that CRcluster C had a mass of infiltrating 
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Figure 2 CRRGs of unsupervised cluster analysis. (A) CRRGs uses the method of unsupervised cluster analysis to find that K=3 is the 
optimal number of clusters. (B) PCA: significant differences in the transcriptome of the three CRclusters. (C) Survival analysis of LUAD 
patients in three different CRclusters. (D) Seven CRRGs (NR1D2, AANAT, CRY1, NPAS2, CSNK1E, PER3, CRY2) combined with different 
clinical characteristics of CRcluster heatmap. LUAD, lung adenocarcinoma; CRRG, circadian rhythm-related genes; PCA, principal 
component analysis; CDF, cumulative distribution function.

immune cells, including CD4+ T cells and CD8+ T cells, 
which are involved in specific immunity. CRcluster A 
included dendritic cells, macrophages, and monocytes, 
which participate in the non-specific immune response. 

CRcluster B included eosinophils, immature dendritic 
cells, myeloid-derived suppressor cells, macrophages, mast 
cells, and plasmacytoid dendritic cells (P<0.05). Patients in 
CRcluster C revealed a favorable survival status (Figure 2C).  
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Figure 3 GSVA analysis: the activation status of biological pathway of each CRcluster was observed in pairs in 3 groups of CRclusters: (A) 
cluster A-cluster B, (B) cluster A-cluster C, (C) cluster B-cluster C. TCGA, The Cancer Genome Atlas; GSVA, gene set variation analysis. 

In combination with the results of the GSVA analysis, we 
predicted that immune cell infiltration may play a major 
anti-tumor role (21).

Identification of DEGs related to CR

Based on the three CR clusters, we conducted a differential 

analysis of the amalgamated cohort to identify DEGs 
related to CR. There were 5,230 DEGs between CRcluster 
A and CRcluster B; 3,653 DEGs between CRcluster A and 
CRcluster C; and 7,865 DEGs between CRcluster B and 
CRcluster C (Figure 4B). A total of 579 DEGs related to CR 
with adjusted P values of <0.001 were selected based on the 
co-intersection of the CR typing differential genes. These 
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Figure 4 Functional analysis of DEGs. (A) The abundance of each immune-infiltrating cell in the three CRclusters, the boxline of the 
boxplot represents the median, the dot outside the box represents the outlier, and the asterisk represents the P value (ns, P>0.05; *P<0.05; 
**P<0.01; ***P<0.001). (B) The Venn diagram shows 579 DEGs of circadian rhythm-related genes in the three CRclusters. (C) GO 
enrichment analysis of 579 DEGs intersected in three CRclusters. (D) KEGG enrichment analysis of 579 DEGs intersected in three 
CRclusters. BP, biological process; CC, cellular component; MF, molecular function; DEGs, differentially expressed genes; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

genes were analyzed using GO and KEGG enrichment 
analyses to identify their functions (Figure 4C,4D). We 
identified 151 GO terms and 49 KEGG pathways (P<0.05, 
Q<0.05). The top 30 GO terms and KEGG pathways with 

the greatest number of genes were screened. The results 
showed that the GO terms and KEGG pathways above 
were mainly involved in the MAPK signaling pathway, the 
cellular response to environmental stimuli, the cellular 
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response to abiotic stimuli, protein serine or threonine 
kinase activity, and melanogenesis. We then performed the 
univariate Cox regression analysis on the 579 DEGs related 
to CR and identified 110 DEGs (P<0.05). We identified 
16 prognosis-related DEGs (Figure 5A), which showed 
a significant ability to predict patient survival (P<0.05). 
Coincidentally, the patients were still divided into three 
clusters using the unsupervised cluster analysis of the  
110 CRRGs (Figure 5B). Patients with gene cluster B had 
the greatest survival rate in the survival analysis (Figure 5C). 
We found that the proportion of patients with LUAD stage 
I–II was particularly large, and these patients were mainly 
concentrated in gene cluster B (Figure 6A). Subsequently, 
on the basis of the three gene clusters, we analyzed the 
differential expression of the seven CRRGs in the merged 
cohort using the limma package. As expected, there were 
remarkable differences in CRRG expression among the 
three gene clusters (Figure 6B). The regulatory mechanism 
of CRRGs was verified based on the above results.

Relationship between the CR score and traits of each subtype 

We established a scoring system (CRscore) to quantify the 
expression of the 110 DEGs related to CR as prognostic 
predictors. The survival rate of patients with a high CR 
score was significantly higher than the survival rate of 
patients with a low CR score according to the survival 
analysis (Figure 6C). Changes in the clinical characteristics 
(LUAD stage, age, gender, alive/deceased status) and 
subgroups of patients are shown in the Sankey diagram 
(Figure 6D). Most immune cells were negatively correlated 
with the CR score (Figure 7A), and the infiltrating immune 
cells were significantly negatively correlated with the 
CRscore (Figure 7B). In other words, the lower the CR 
score, the stronger the immunity. The Kruskal-Wallis test 
showed a significant difference in the CR score between 
the CR clusters and the gene clusters. CRcluster A had the 
lowest score, while CRcluster C had the highest score. As 
a result, we hypothesized that patients with high and low 
C Rscores were more inclined to suppress and develop 
tumors, respectively. This is well supported by the survival 
curves of the high and low CR score groups (Figure 6B). In 
terms of the gene clusters, the CR score sequence was gene 
cluster C > gene cluster B > gene cluster A (Figure 8A). The 
same was true for the CR clusters (CRcluster C > Crcluster 
B > Crcluster A) (Figure 8B). 

We also analyzed the relationship between the TMB 
of LUAD and the CR score to explore the relationship 

between the CR score and tumor occurrence and 
development. Tumors with a high CR score showed a 
high TMB (Figure 8C). In other words, the CR score 
was positively correlated with the TMB (P<0.05; r=0.17) 
(Figure 8D). The survival curves of the TMB and CR score 
show that there was no significant difference in survival 
between the high and low TMB groups (Figure 8E),  
but the TMB combined with the CR score predicted a 
significant difference in survival (Figure 8F). Patients with 
a high TMB and a high CR score had a longer survival 
time. It can be speculated that combining the CR score 
with the TMB can enhance the sensitivity of TMB to 
forecast the effectiveness of immunotherapy in patients 
with LUAD.

The CR score as a prognostic biomarker

There were no significant differences in the clinical features 
(except for LUAD stage) and CR score (Figure 9A-9H). 
Stage I−II LUAD accounted for 82% and 73% of samples 
in the high and low CR score groups, respectively, and stage 
III−IV LUAD accounted for 18% and 27% of samples in 
the high and low CR score groups, respectively (Figure 9A). 
The quantitative analysis showed that the CR score was 
significantly different between stage I−II LUAD and stage 
III−IV LUAD (P<0.05) (Figure 9E). Female patients who 
were deceased and ≤65 years of age accounted for a large 
proportion of the high CR score group, and male patients 
who survived and were >65 years of age accounted for a 
large proportion of the low CR score group (Figure 9B-9D).  
According to the quantitative analysis, the CR score of 
patients with stage I−II LUAD was higher than that of 
patients with stage III−IV LUAD (Figure 9A). The survival 
status of patients in the high and low CR score groups with 
the same clinical characteristics was analyzed to evaluate 
the universality of the CRscore tool. By comparing the 
survival status of the two groups for each clinical feature, 
we identified that patients with higher CR scores had 
better survival (Figure 10A-10H). Although the P value of 
patients with stage III–IV LUAD was >0.05, the usefulness 
of the CRscore tool in predicting prognosis should not 
be underestimated (Figure 10H). Next, the univariate and 
multivariate Cox regression analyses were performed for 
the CR score and clinical characteristics (LUAD stage, 
gender, and age). Both the univariate (Figure 11A) and 
multivariate (Figure 11B) analyses showed that age, stage, 
and CR score were independent prognostic factors in this 
study.
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Figure 5 The characteristics of DEGs. (A) Forest map: the top 16 genes in the prognostic DEGs. P<0.001. (B)Unsupervised cluster analysis 
was used for prognostic genes in DEGs to determine that K=3 is the optimal cluster number. (C) Comparison of the overall survival of the 
three CRclusters. CDF, cumulative distribution function; DEGs, differentially expressed genes.

GAPDH 
CBX7 
GJB3 

NPAS2 
SLCO4A1 

HSPE1 
KRT16  
PLCD3 

TNS4 
MAFK 

MRPL13 
MYO1E 
TRIM7 

TRIM29 
CD109 
FOSL2

P value

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Hazard ratio (95% CI)

1.486 (1.266–1.744) 
0.757 (0.654–0.875) 
1.180 (1.106–1.258) 
1.353 (1.192–1.536) 
1.160 (1.062–1.267) 
1.374 (1.146–1.646) 
1.104 (1.047–1.164) 
1.330 (1.178–1.503) 
1.152 (1.083–1.224) 
1.239 (1.091–1.406) 
1.327 (1.130–1.558) 
1.339 (1.156–1.552) 
1.278 (1.124–1.453) 
1.125 (1.059–1.194) 
1.175 (1.080–1.279) 
1.269 (1.106–1.457)

0.0           0.5         1.0          1.5          2.0

Hazard ratio

A

1.0

0.8

0.6

0.4

0.2

0.0

C
D

F

Consensus CDF

0.0  0.2  0.4  0.6  0.8  1.0
Consensus index

2
3
4
5
6
7
8
9

B Consensus matrix K=3

1
2
3

0.4

0.3

0.2

0.1

0.0R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r 
C

D
F 

cu
rv

e

Delta area

2   3   4   5   6   7   8   9
k

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

P<0.001

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
Time, years

geneCluster
A
B
C

C

A
B
C

Number at risk

Time, years

200 132  75  49 33 28  22  18  15   9    8    7    6    5    4    0    0    0    0    0    0
303 232 115 86 63 52  41  37  28  21 16  13  12    8    2    2    1    1    1    0    0
187 153  99  66 50 39  26  17  13  12 10    6    5    3    2    2    2    2    1    0    0

ge
ne

C
lu

st
er

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20



Journal of Thoracic Disease, Vol 14, No 10 October 2022 3945

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(10):3934-3954 | https://dx.doi.org/10.21037/jtd-22-1112

Figure 6 Unsupervised cluster analysis of prognostic associated DEGs. (A) CRcluster heatmap: 110 CRRGs associated with prognosis 
combined with different clinical characteristics. (B) Differences in the expression levels of seven CRRGs in the three CRclusters, ***, 
P<0.001. (C) Comparison of overall survival of high and low CRscore based on circadian rhythm genes. (D) The Sankey diagram shows the 
correlation among CRscore and genecluster, CRcluster, fustat, age, gender, stage. TCGA, The Cancer Genome Atlas; DEGs, differentially 
expressed genes; CRRGs, circadian rhythm-related genes.
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Figure 7 The correlation between CRscore and immune-infiltrating cells. (A) The Correlation between CRscore and immune-infiltrating 
cells was detected in seven different softwares. The Correlation coefficient greater than 0 was positive, and the correlation coefficient less 
than 0 was negative. (B) Immune correlation analysis between CRscore and immune-infiltrating cells. *, P<0.05.
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Immunotherapy for LUAD based on the CR score

Based on the CR score, we evaluated the differences in the 
expression of four common immune checkpoint proteins 
(PD-1, PD-L1, PD-L2, and CTLA-4). The expression 

of immune checkpoint proteins was inversely related to 
high and low CR scores. In other words, the expression 
of immune checkpoint proteins was low in patients with 
high CR scores and high in patients with low CR scores 
(Figure 12A-12D). On the basis of the CR score, the IPS 

Figure 8 The correlation between CRscore and TMB. (A) Kruskal-Wallis test was used to analyze the statistical differences between 
CRscore and the three CRclusters. (B) Statistical differences between CRscore and the three Genecluster (Kruskal-Wallis test analysis, 
P<0.001). (C) Difference between high and low CRscores and TMB (P<0.05). (D) The relationship between high and low CRscores and 
TMB: Scatter plot showed that TMB was positively correlated with CRscore (R=0.17, P<0.001). (E) TMB survival analysis: Kaplan-Meier 
curve was used to describe survival rates of high and low TMB patients. (F) CRscore combined with TMB survival analysis: Kaplan-Meier 
curves were used to depict the survival rates of patients with high and low TMB and high and low CRscore. TMB, tumor mutation burden. 
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Figure 9 The relationship between CRscore and clinical features. (A-D) The abscissa represents CRscore type and the ordinate 
represents survival rate [the red areas represent phases (A) stage I–II, (B) female, (C) age ≤65, (D) dead and the blue areas represent 
phases (A) stage III–IV, (B) male, (C) age >65, (D) alive]. (E-H) The ordinate represents CRscore and the ordinate represents (E) 
stage, (F) gender, (G) age, (H) Fustat. 
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Figure 10 The relationship between CRscore and survival of clinical features. (A-H) Kaplan-Meier curve was used to describe the difference 
in survival between groups with different clinical characteristics of high and low CRscore. The horizontal axis is survival time, and the 
vertical axis is (A) age >65, (B) alive, (C) female, (D) stage I–II, (E) age ≤65, (F) dead, (G) male, (H) stage III–IV.
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Figure 11 Univariate analyses and multivariate analyses: (A) Univariate analyses of stage, age, gender, and CRscore. (B) Multivariate 
analyses of stage, age, gender, and CRscore.
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of LUAD was analyzed to predict its immunogenicity. 
Patients with high CR scores had higher IPS and IPS-
CTLA4 scores (Figure 12E-12H). These results suggest 
that patients with LUAD with high CR scores may have 
a good response to CTLA4 immunotherapy (24). We 
analyzed the relationship between the CR score and the 
sensitivity of chemotherapy agents, which are used to 
treat LUAD, including cisplatin, gemcitabine, paclitaxel, 
vinorelbine, and methotrexate. Patients with high CR 
scores were sensitive to cisplatin, gemcitabine, paclitaxel, 
and vinorelbine (P<0.05) (Figure 13A-13D), and patients 
with low CR scores were sensitive to methotrexate (P<0.05) 
(Figure 13E). These results suggest that the CRscore 
tool is a dependable biological index of prognostic 
immunotherapy and clinical efficacy. 

Clinical validation of CRRGs

To validate the accuracy of our CRscore tool and the 
strictness of the conclusions, we conducted a clinical trial 
on NPAS2, which was one of the CRRGs under scrutiny. 
We compared the expression of NPAS2 protein in LUAD 
tissues. As expected, western blot showed that NPAS2 
was significantly elevated in LUAD tissues compared 
with healthy lung tissues (P<0.05) (Figure 14A,14B). 
Furthermore, we compared the expression of NPAS2 
mRNA in LUAD tissues. It was more highly expressed in 
LUAD tissues compared with healthy lung tissues according 
to qRT-PCR (P<0.05) (Figure 14C). 

Discussion

There are many good prognostic markers such as runt-
related transcription factor 3 (RUNX3), estrogen receptor 

and chemokine receptor. Meanwhile, Kruppel-like factor 
6 (KLF6) and histone deacetylases (HDACs) have been 
demonstrated as poor prognostic markers (19). Although 
many genetic targets for predicting LUAD have been 
found, the prognosis of LUAD is still not optimistic, with 
the mortality rate as high as 18.4%. Therefore, it is very 
necessary to find specific targets and markers for LUAD.

The CR is a natural internal homeostatic mechanism 
that regulates the physiological light-dark cycle. Disruption 
of systemic and tissue-specific circadian mechanisms 
leads to changes in cell function, such as metabolism and 
cell division, both of which are highly associated with  
cancer (25). Pharmacological regulation of core CRRGs 
is a new approach for cancer treatment, and integrating 
circadian biology into cancer research offers new options for 
more effective cancer prevention, diagnosis, and treatment. 
Therefore, CRRGs may be a potential prognostic marker 
for LUAD.

In this study, we found that the expression of CRRGs 
in samples from patients with LUAD was high under 
our preliminary exploration of the TCGA database. 
We speculate that CRRGs play an essential role in the 
occurrence and development of LUAD. We conducted 
an in-depth analysis of CRRDs in LUAD samples and 
established a CR scoring system (CRscore). We combined 
the CRscore tool with the expression of CRRGs, clinical 
features, TMB, and immune cell infiltration. As expected, 
the CR score was markedly associated with tumor 
mutations, immune cell infiltration, LUAD stage, and 
gender. Moreover, we showed that patients with higher CR 
scores had better survival. Encouragingly, the results were 
also tenable when we analyzed patients who have clinical 
characteristics uniformly to reduce the influence of other 
factors. The CR score was an independent prognostic factor 
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Figure 12 The relationship between CRscore and immunotherapy. (A-D) Relationship between CRscore and immune checkpoints. The 
abscissa is CRscore, and the ordinate is the immune checkpoints (A) CTLA-4, (B) PD-1, (C) PD-L1, (D) PD-L2. (E-H) Relationship 
between immunophenotypic score and high and low CRscore group. The abscissa is CRscore, and the ordinates are (E) ips_ctla4_neg_pd1_
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Zhang et al. Circadian rhythm-related genes and lung adenocarcinoma3952

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(10):3934-3954 | https://dx.doi.org/10.21037/jtd-22-1112

Figure 13 The relationship between CRscore and sensitivity to commonly used chemotherapeutic drugs. The abscissa is CRscore, and the 
ordinate is the sensitivity of chemotherapy drugs: (A) gemcitabine, (B) cisplatin, (C) vinorelbine, (D) paclitaxel, (E) methotrexate. 

Figure 14 Clinical sample validation. (A) Western blot analysis of the influence of LUAD patients and normal patients on the expression 
level of NPAS2 protein. (B) Gray scanning quantitative analysis of protein. The mean of three independent groups was ± SD. The level of 
NPAS2 protein in LUAD patients was significantly different from that in normal patients (**P<0.01). (C) Differential expression of NPAS2 
at the RNA level between tumor patients and normal patients (*P<0.05). LUAD, lung adenocarcinoma; SD, standard deviation.
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according to the results of the univariate and multivariate 
Cox regression analyses.

Seven genes (NR1D2, AANAT, CRY1, NPAS2, CSNK1E, 
PER3, and CRY2) were significantly different between 
the LUAD group and the healthy group (P<0.001). In 
the subsequent genotyping group of prognosis-associated 
CRRGs, the expression of these seven CRRGs was also 
significantly different among the three groups (P<0.05). 
Therefore, we speculate that CRRGs play an essential role 
in the occurrence and development of LUAD. During the 
CR cluster analysis, the order of survival was CRcluster 
C > CRcluster B > CRcluster A. Coincidentally, the same 
conclusion was drawn among each CR gene cluster, as 
follows: gene cluster C > gene cluster B > gene cluster A. 
We hypothesized that the CR score was inextricably related 
to patient survival. This conjecture was confirmed in the 
subsequent analysis. As can be seen from the relationship 
between the CR score and the TMB, the CR score was 
positively correlated with the TMB. We speculated that 
high and low CR scores would reveal an anti-tumor process 
and tumor cell proliferation, respectively. A series of 
analyses on the gene population confirmed this speculation. 

As can be seen from the survival analysis, the lower the 
CR score, the poorer the survival and the higher the tumor 
malignancy. Further, we detected four common immune 
checkpoint proteins and predicted their immunogenicity. 
We suggest that CTLA-4 immunotherapy is more suitable 
for patients with high CR scores. The sensitivity analysis 
of common chemotherapeutic drugs showed that most 
chemotherapeutic drugs were more effective in patients 
with high CR scores. From another perspective, we also 
know that the higher the CR score, the better the prognosis.

Although the CR score is a prognostic guide and a 
positive predictor of prognosis in patients with LUAD, some 
limitations of this study still need to be considered. First, the 
samples were obtained from public databases, which may 
have led to selection bias. Second, CRRGs in the database 
were transcribed from tumor tissues, making it improbable 
to recognize where the CRRGs identified in this study came 
from. Finally, not all patients with high CR scores will gain 
greater immunotherapy benefits, so more clinical factors need 
to be added to the prediction model to improve its accuracy.

In conclusion, we elucidated the significance of 
CRRGs in clinical practice, immune infiltration, and 
immunotherapy and gained several important insights. Our 
findings may guide the selection of combination strategies 
or lead to the manufacture of new immunotherapy drugs in 
the future. Our results provide new ideas for improving the 

clinical response of patients to immunotherapy, exploring 
new therapeutic targets, and promoting personalized cancer 
immunotherapy in the future.
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