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Abstract: This article deals with the elaboration and the characterization of an innovative 100%
plant-based green composite made solely of beet pulp (BP) and potato starch (S). Using this type of
material in insulation applications seems a good solution to reduce the CO; gas emissions in building.
The influence of the starch amount on composite characteristics was studied. Four mixtures were
considered with different S/BP mass ratios (0.1, 0.2, 0.3 and 0.4). The physical properties of these
materials were studied in terms of porosity, apparent and absolute densities, thermal conductivity,
and hygric properties. The influence of humidity content on acoustical properties was studied as a
function of frequency. Test results show a real impact of both starch and humidity contents on the
hygrothermal and acoustical properties of the studied material due to the porosity. The composite
with the lowest amount of starch (S5/BP = 0.1) seems to be the optimal composition in terms of the
hygrothermal and acoustical behaviors.

Keywords: bio-based composite; starch—beet pulp; porosity; thermal conductivity; hygrothermal
performance; acoustical performance

1. Introduction

The building sector is responsible for approximately 50% of the total energy consumption and
11% of CO, gas emissions. Therefore, it has become crucial to turn to renewable energy and resources
as well as eco-friendly and sustainable materials especially in building applications in order to reduce
both environmental impacts and primary energy use. The recent use of bio-based composites in
construction appears to be an innovative solution while maintaining high indoor comfort [1-6].

Several studies have been already published on the use of crop by-products for buildings such as
wheat straw, which was used in sustainable building [7]. Hemp concrete is the most studied among
different composite materials [8-12]. Hemp-starch composite presents a porous structure providing a
good thermal insulation with a thermal conductivity ranging from 0.06 W-m 1K1 to 0.1 W-m 1K~ 1.
It is also classified as an excellent humidity regulator. The moisture buffering value (MBV) measured
ranges from 2.6 g-m~2 % RH ™! to 2.7 g-m~2-% RH~!. The impacts of both particle size and starch
content were also studied [8]. The water vapor permeability of the hemp-lime concrete obtained by
Collet et al. [4] is quite high (1.7 x 1071 kg-m~1.s71.Pa~1).
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The porosity of several bio-based composites as well as the influence of both porosity and water
content on the composite properties was investigated [2,8,13]. The results show that the hygrothermal
properties of composite increase with its porosity. In another study, the hygric properties such as
sorption isotherm, water vapor permeability, and MBV of bio-based materials (for example, hemp
concrete, flax concrete and rape straw concrete) were investigated [14]. The results showed that these
materials have a low thermal conductivity but a high MBV, which provides a good hygrothermal
insulating capacity.

Many studies have investigated the acoustical performance of hemp-starch composites [11,15-17].
The hemp-starch composite is a good acoustical insulator due to its porous structure; it can absorb 70%
of the sound waves for medium and high frequencies. The sound absorption coefficient is independent
of the composite porosity. In this paper, the authors deal with the study of starch—beet pulp (S-BP)
composite for building applications.

Sugar beet (Beta vulgaris) is widely grown in France (33.8 million tons in 2016) and used in sugar
factory to produce the white sugar [18,19]. Sugar beet pulp is a by-product and mainly used to feed
livestock due to the high nutritional value [18,19]. It is mechanically compressed using an extrusion
machine to obtain the extruded beet pulp (BP), which has been used in this article to produce the
S-BP composite. The dominant size of the dried extruded beet pulp lies between 2 mm and 4 mm
(Figure 1) and it presents a rough surface, which provides a good adhesion with starch binder. BP is
lightweight and a porous material (Table 1) (Absolute density, o = 1073.4 kg-m~3), it is lighter than
hemp shiv (o, = 1443 kg-m~3) [20]. The porosity of BP was measured using a cyclohexane method
(paragraph 1.4). BP contains mainly pectin, hemicellulose, and cellulose and it is an important source
of pectin, which has been evaluated in many studies [21-23]. It is used in food, cosmetics industries,
and as a bio-adsorbent for the removal of heavy metals [24]. Monreal et al. [25] studied cement-beet
pulp concrete, where an important dimensional deformation was observed. Many physico-chemical
treatments were carried out for the beet pulp to reduce its hydrophilic nature. The linseed oil treatment
was the optimal treatment, which reduces the ability of aggregates to absorb water and swell.
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Figure 1. Grain size distribution curve of BP.

Starch is a polysaccharide that is converted to sugar as a result of hydrolysis and contains two
polymers with different primary structure, Amylose (linear chain) where glucose units are joined by &
1-4 glycosidic bonds and amylopectin (branched chain) where the glucose chains are branched onto «
1-6 positions [26]. Starch is a hydrophilic material and exists in many plants such as cereals (30% to
70%), tubers (60% to 90%) and legumes (25% to 50%) [27-29]. It is used in paper factory, textile and
food factories via the beverage, and confectionery and baked goods industries [30,31]. It can be also
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used to produce bio-ethanol and pharmaceutical products by fermentation process [32]. The present
work aims to elaborate a bio-sourced material made of BP and potato starch designed to be used in
the building sector for walls and ceiling insulation applications. The hygrothermal and acoustical
characteristics of this material are determined and fitted analytically.

Table 1. Porosity and densities of BP.

Aggregates Papp (kg:m™3) Pabs (kg-m~3) Porosity (%)
Fresh beet pulp 134 +£ 6.7 911.6 £45.6 85.3
Extruded beet pulp 194 +79 1073.4 £ 53.7 81.9

2. Materials and Methods

2.1. Extruded Beet Pulp (BP)

The 8-10 mm diameter extruded BP pellets (18% humidity) (Figure 2) were provided by Cristal
Union factory (Pomacle, France). To ensure proper conservation in the laboratory, the pulps were kept
at —20 °C until use. Before use, the extruded BP was immersed in water for two hours and then dried
at 50 °C for two days (Figure 3).

Figure 2. (a) Sugar beet fruit; (b) fresh sugar beet pulp; (c) extruded beet pulp pellets and (d) dried
extruded beet pulp.

() (b)

Figure 3. (a) Powder of potato starch; (b) potato starch grains seen by optical microscopy.
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2.2. Potato Starch

Potato starch was purchased from Roquette, Lestrem, France. Potato starch (Figure 3a) has a high
polymerization degree, which gives a viscous binder and provides a good mechanical property for the
S-BP composite. Starch was used as a binder to make several bio-composites, such as hemp-starch and
palm date fibers-starch [8,10,11,33]. It can stick the particles together and ensure the transmission of
shear forces between the fibers. The starch grains can permeate the BP pores because of their smaller
size (Figure 3b) and thus provide a good adhesion between the components.

2.3. Composite Formulations

Starch and sugar beet pulps are hydrophilic materials, due to their great ability to store water
molecules in their structures. This imposes a competition between these two components to absorb
water from the mixture resulting in a binder with undissolved starch grains and a mixture of wet
pulps. Several studies have proposed to prepare the binder separately, with optimum dynamic
viscosity and surface tension [11,17]. In the present study, this solution was not effective enough,
due to the hydrophilic behavior of the pulps that causes a significant water gradient all around the
sample during drying, and consequently results in dimensional deformations. For this reason, a new
preparation method was used that does not require any water addition. To avoid the water competition
between beet pulps and starch grains, the extruded pulps were soaked in distilled water to ensure
saturation with a water/BP mass ratio of 2.5 [25]. The wet BP is then mixed with starch powder.
The mixture was kept in an autoclave to dissolve the starch under water vapor pressure. After that,
the samples were compacted using the traction machine INSTRON 8801 (INSTRON, Norwood, MA,
USA) at 44 kPa. Finally, the mixture was frozen and dried using a freeze dryer (Alpha 1/2-4 CHRIST,
GROSSERON, Coueron, France), then put in a climatic chamber at 50 °C and 10% RH to continue the
drying procedure.

Four formulations with four different S/BP mass ratios (0.1, 0.2, 0.3 and 0.4) were prepared to
study the influence of starch amount on the composite behavior (Figure 4).

(b)

(d)

Figure 4. Composite specimens obtained from the four formulations. (a) Cylindrical samples;

(b) Cubical samples; (c,d) Samples for acoustical test.
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2.4. Density and Porosity

The absolute density of S-BP composite was determined using the pycnometer method [2,8].
The pycnometer was filled with a given mass of dried pulp and half of its volume with cyclohexane,
which is a non-polar solvent and does not affect the composition and mass of the pulp. The system
underwent six cycles of boiling (30 min) and cooling (10 min); during these cycles, air escaped from
the pulp leaving its pores, and cyclohexane occupied the pore spaces; and during the sixth cycle,
the system was kept under an argon atmosphere to avoid humidity. At room temperature (20 °C),
the pycnometer was filled to the end and plugged with the stopper. The system was then weighed
with an accuracy of 103 g. The absolute density was calculated using Equation (1):

M x Peye
abs — 1
Pots = My — (M — My) W

where p,; is the absolute density (kg:m™3), peyc is the density of cyclohexane (kg-m~3), Mj is the dry
mass of aggregates, M, is mass of the pycnometer filled with cyclohexane and saturated aggregates,
and M3 is the mass of pycnometer and cyclohexane.

Precautions were taken to avoid the residual moisture accumulation in the reflux system.
Each measurement was performed at least three times to be considered representative.

The porosity and pore structure of the composite was measured using mercury intrusion
porosimetry (MIP) using a 140 series Pascal Thermo Scientific Porosimeter (France Scientifique, Saint
Genis Laval, France) [10,34]. The pore access diameter ranged from 3.8 pm to 1000 pm.

2.5. Sound Absorption Coefficient

The Kundt tube type BK 4206 (BK 4206, BKSV, Neerum, Denmark) (tube with two fixed
microphones) was used to measure the sound absorption coefficient «. This device consists of a
cylindrical tube with two quarter inch BK type 4187 microphones, a BK 2706 power amplifier and an
OROS analyzer (38, Oros, Meylan, France). For the sound absorption measurements, two tubes of
varied sizes were used to change the frequency ranges (Figure 5).

Figure 5. Kundt tube used to measure the sound absorption coefficient for (a) low frequencies and

(b) high frequencies.

The Kundt tube is able to measure the acoustic absorption as well as the surface impedance
according to the NF EN ISO 10534-2 standard [35]. The device used for this test contains two
microphones spaced a variable distance depending on the tube, a loudspeaker attached to an extremity
of the tube, and the sample placed on the other extremity. By using the analyzer generator (38, OROS,
Meylan, France) and power amplifier (BK 2706, BKSV, Neerum, Denmark), the speaker was excited
with white noise. Both microphones detect reflected and incident sound pressures. The principle of
the measurement of sound absorption is therefore based on the study of the transfer function between
two signals picked up by two microphones.
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2.6. Thermal Conductivity

The thermal conductivity of S-BP composite was measured using ISOMET 2114 Applied Precision
(Isomet 2114, Aventech, Buc, France) [36]. The heat flow was generated by heating an electrical resistor
inserted into the sample hole to ensure a direct heat contact with the sample. The thermal conductivity
evaluation is based on the temperature measurements taken periodically as a function of time. The tested
cubical samples (Figure 4) were dried using a climatic chamber (MKF 720 Binder, Labo and Co, Marolles En
Brie, France) at 50 °C and 10% RH. Before the measurement, the dried samples were cooled and stabilized at
23 °C and 10% RH. The samples were covered during the test to avoid the humidity absorption (Figure 6).

| Heater

AN -
—— resistor
ISOMET 2114 | \
Applied
Precision

Figure 6. Thermal conductivity measurement of S-BP composite.

Regarding the theoretical thermal conductivity for the agro-materials solid phase, it was evaluated
at 20 °C using the representation of Collet [37] and Rahim [14] shown in Figure 7. The effective thermal
conductivity, A4 was determined as a function of the thermal conductivities of the solid phase and the
air, using Equation (2), where 7 is the total porosity, A, is the air thermal conductivity, and As is the
solid phase thermal conductivity.

n

Aepr = As x (1+ ) 2)

(5 + o

A

Rsolid’ }“so]id

Raip }\'air

T

}\‘eff

Figure 7. Agro-material geometry considered as a two-phase medium in a homogeneous equivalent medium.
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The heat capacity of the S-BP composite was measured using a C80 Calvet calorimeter from
Setaram Instrumentation (FRANCE). In the calorimetric detector, the sample and the cell reference
were completely surrounded by an array of thermocouple detectors for the heat transfer measurements
including radiation, convection, and conduction.

2.7. Permeability

Water vapor permeability d, (kg-m~1-s~1.Pa~!) represents the capacity of water vapor to pass
through the material under steam flow pressure. The measurement was carried out according to the
NF EN ISO 12571, using the dry cup method [2,11]. The samples were dried in a climatic chamber
at 50 °C and 10% RH (Figure 8a). The sample was sealed at the top of the cup, which contained the
silica gel at its bottom, providing a 0% RH (Figure 8b). The sample assembly was placed in a climatic
chamber set to 50% RH at 23 °C. The water vapor resistance factor u and 4§, are respectively given in
Equations (3) and (4), where G is the mass rate (kg-s~1), AP, is the vapor pressure gradient, ¢ is the
thickness of the sample, A is the exposed surface area (m?), and &, is the air water vapor permeability.

Gxe

%= AP, x4 ®
_

Figure 8. (a) Samples in climatic chamber at 50 °C and 10% RH; (b) dry cup method for vapor

permeability measurements.

2.8. Sorption Isotherm

The sorption isotherm tests were carried out in accordance with NF EN ISO standard 12572
(2001) [2,10]. They allow plot the sorption curve representing the variation of the water content as a
function of relative humidity of ambient air at a constant temperature of 23 °C. The sorption isotherm
shows, in other terms, the equilibrium between water content in the composite and relative humidity [38].

Four cylindrical samples of 10 cm diameter and 4 cm thickness per mixture were prepared
(Figure 4). They were dried for seven days at 50 °C and 10% RH until they reached the dry state.
Then they were placed in a climatic chamber at 23 °C and at various RH levels: 20, 40, 60, 80 and 92%.
At each humidity level, the measurements were carried out until the variation for three successive mass
readings became less than 0.1% of the total mass. The experimental results were then fitted with three
analytical models: GAB (Guggenheim-Anderson-de Boer) [39], Merakeb [40] and Van Genuchten [41].

Experimental data were correlated with the least squares method. To estimate the variability
attributed to each model, the correlation coefficient (R?) was calculated. The mean deviation E and
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root mean square error (RMSE) were also evaluated. These criteria allowed judge the quality of
the adjustment of experimental results with respect to the model. They are respectively defined in
Equations (5) and (6).

100 ., ‘m; —

E:szlzl

i ©)
me

. .\ 2
zy (i — i)
RMSE = S ©)

where m, is the experimental measure, m, is the value computed using the model and N is the

total number of experimental values. The adjustment between experimental and analytical values is
considered correct when the mean relative deviation does not exceed 10%. The adjustment quality is
inversely proportional to E and RMSE values.

2.9. Moisture Buffer Value (MBV)

MBYV represents the capacity of the composite to regulate the relative humidity of a medium.
The Nordtest protocol defines cyclic step-changes in relative humidity after stabilization, between high
(75%) and low (33%) values for 8 h and 16 h, respectively [8-10,12,42].

Four 10 cm diameter and 4 cm thick cylindrical samples were tested for each formula. The edges
and back-sides of the samples were sealed with duct tape to obtain a one-dimensional moisture flow.
The samples were stabilized at 23 °C and 50% RH in a climatic chamber and weighed until they reached
equilibrium. During the periodic exposure, the samples were weighed five times during adsorption
phase and twice during desorption phase. When the mass variation between three consecutive days
became below 5%, the experiment was stopped and the MBV was calculated using Equation (7):

A
MBV = m @)

A X (RHhigh - RHlow)

with A (m?) is the sample area that is in contact with air. RHyign and RHjy, respectively represents high
relative humidity (75% RH) and low relative humidity (33% RH), and Am represents the mass change
during the adsorption/desorption phase (g).

3. Results and Discussions

3.1. Porosity Analysis

Figure 9 shows the apparent density variation of the fully dried composite material in the climatic
chamber at 50 °C and 10% RH, as a function of the S/BP mass ratio. It can be observed that the
density increases linearly with the S/BP mass ratio. The apparent density varies from 271.4 kg-m 3
to 360 kg-m 3. It should be noted that the average apparent density of beet pulp—cement concrete
is between 570 and 770 kg-m~3 [25]. The apparent density (o) of the samples can be expressed as a

function of the S/BP mass ratio between 0.1 and 0.4 by Equation (8).

0 =295.42 x (BSP> +242.8 (8)
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Figure 9. Apparent density evolution with S/BP mass ratio.

The density and porosity results are shown in Figure 10. The absolute and apparent densities
increased with the S/BP ratio. However, the porosity of the composite decreased logarithmically.
Therefore, the sample with the lowest amount of starch (5/PB = 0.1) has the highest porosity (79.75%)
and the lowest absolute density (0,5 = 1222 kg-m~3). The total porosity was between 70.60% and
79.75% and the decrease in the S/BP ratio increased the total porosity. The hemp-starch composite
shows a higher porosity than the beet-starch composite. It can be explained by the fact that the hemp
shiv size is greater than that of the beet pulp [8]. The influence of starch is in agreement with the
results obtained by Rahim et al. [14] and Bourdot et al. [8]. The presence of starch aerogel increases the
apparent density and decreases the total porosity by filling the inter-particle space between the pulp
particles sealing the pores. Therefore, the composite would contain closed pores as well as more or
less accessible open pores.

1465 79
1265 - . i \ - 77
y \ \
& 1065 A \ \ \ - 75~
g \ N \ X
2 865 \ \ \ - 73 o
\ 37
2 665 - \ \ \ - 71 €
Z N \ \ s
[ 03 \ \
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\ N \:
265 - \ \ \ - 67
\ N N
65 N = 65
0.1 0.2 0.3 0.4
S/BP
ESS3 Absolute density
EZZIBulk density
eldm= Porosity

Figure 10. Density and porosity of S-BP composite measured by cyclohexane method.
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Bourdot et al. studied the density and porosity of hemp particles of two different sizes 0-5 mm
and 0-20 mm, the results showed that the small particles have a density (1266 kg-m~%) and a porosity
(89.3%) smaller than those (1271 kg-m 2 and 91.3%, respectively) of the large particles [8]. The absolute
density and porosity of the hemp-starch agro-materials were similar (approximately 1240 kg-m 3
and 89%, respectively) whatever the composition. However, the absolute density increases slightly
with the hemp/starch ratio (H/S) and the proportion of 0-20 mm hemp [4,10]. The presence of potato
starch gel increases the apparent density and decreases the total porosity by filling the pore spaces
between aggregates. This can be explained by the creation of closed pores between the aggregates and
the gel. It can thus be noted that the agro-materials are composed of closed and more or less accessible
open pores. The MIP (mercury intrusion porosimetry) method was used to determine the accessible
porosity, which influences the agro-material properties, in particular the hygroscopic properties.

Mercury porosimetry allowed us to study the influence of the S/BP mass ratio. The mercury
first filled the small pores and then the large pores. Figure 11 shows the analysis of the measurement
of porosity under mercury pressure. It should be noted that the accessible porosity of the starch-BP
material is bonded to the binder due to the porous nature of the starch gel as deduced from the results
obtained with the pycnometer method. The sample with a mass ratio of S/BP = 0.1 was the most
porous with a total porosity of 66%. The porosity of the composite decreased with the increase in the
S/BP mass ratio to reach a value around 60%. The pore distribution of each composition shows that
the volume of the pores (350-1000 um) decreased with the increase in the binder content, which can
be explained that the starch binder fills the pores and reduces their volume. Thus, the existence of
the macro-pores in the range (350-1000 um) is entirely due to the morphology of the aggregate and
the starch content. The volume of the pores in the range of diameters lower than 350 um increased
with the starch amount. In fact, during the drying step, water escapes from the sample and creates
capillary voids between the matrix and the starch—the binder continues to plug these composite
voids. The porosity measured by the pycnometer method decreased linearly from 77.79% to 72.16%
and the absolute density increased from 1222.18 kg-m 3 to 1293.42 kg-m 3 when the S/BP mass ratio
increased from 0.1 to 0.4. The absolute mass of the potato starch which is around 1451.19 kg-m~3
explains the increase in the absolute mass of the composite.

1000
900 -
800 -
700 A
600 -
500 -
400 -
300 -
200 A
100 -

0 T T T
1 10 100 1000

Pore size(um)

—S/BP =0.1 S/BP=0.2 —S/BP=0.4

dV/dLogD (mL/kg)

Figure 11. Pore size distribution in S-BP composites with different S/BP ratios.
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3.2. Sound Absorption Coefficient

The sound absorption coefficient of the bio-composite depends on the pore distribution,
the connectivity between the various porous networks, and the type of the binder [15,33].

In the present study, four formulations with different S/BP mass ratios were analyzed to
investigate the influence of starch amount and humidity content. Figure 12 shows the results obtained
using Kundt tube. For medium and high frequencies, the sound absorption coefficient decreased when
the S/BP mass ratio increased from 0.1 to 0.4. It suggests that the starch binder fills the pores and
decreases the composite ability to dissipate the sound waves.

The highest sound absorption coefficient recorded for the S-BP composite achieved was about
0.72 at 4000 Hz with the S/BP mass ratio equal to 0.1. For the medium frequencies, the sound absorption
coefficient of the composite was 0.6. At the same frequency, the sound absorption coefficient of the
hemp-starch and cork composites was found as 0.4 and 0.28, respectively [13,15,33].

0.80
0.70 1
0.60 1
0.50 A
0.40
0.30
0.20
0.10

0.00 -
Q" O D VN HF N I VN DN OO DL ®
Q O AR I NN NN N \)
RN AR S ST SRS RSN SPOSNGIN
Frequency Hz
S/BP=04 MWMS/BP=03 M®S/BP=0.2 MmS/BP=0.1

Sound absorption coefficient

Figure 12. Sound absorption coefficient as a function of frequency.

The apparent histogram in Figure 13 represents the variation of the acoustic absorption coefficient
« for a composite having a S/BP mass ratio of 0.3, as a function of different relative humidity of the
climatic chamber (10, 50 and 75% RH) in which the composite was stabilized at a constant temperature
of 23 °C. It is noticeable that the sound absorption coefficient decreased for the frequency range of
1000—4000 Hz when the relative humidity increased from 10% to 75%. This is because the moisture
content in the composite increases due to the increased relative humidity in the climatic chamber; the
water molecules clog the micropores, resulting in a reduced porosity, thus reducing the ability of the
composite to absorb or dampen the incident sound signals with small wavelength (high frequencies).
For medium frequencies, the composite subjected to 50% RH showed a better acoustic performance,
which means that the S-BP pulp composite works better at ambient conditions than in other conditions.
At low frequencies, the acoustic behavior of the composite was reversed, the sound absorption
coefficient increased with the relative humidity. This suggests that at a high humidity (75% RH)
the binder existing in the macro pores is plasticized and able to dampen sound waves with long
wavelength (low frequencies).
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Figure 13. Sound absorption coefficient of S-BP composite as a function of relative humidity.

3.3. Thermal Conductivity, Diffusivity and Effusivity

The thermal properties of S-BP composites for different S/BP mass ratios are shown in Table 2.
The results show that the thermal conductivity A increased linearly from 0.069 W-m~1.K~! to
0.075 W-m~1.K~! when the S/BP mass ratio increased from 0.1 to 0.4. The increase of the starch amount
in S-BP composite decreases the composite porosity by filling the micropores, therefore the thermal
conductivity increases. The thermal conductivity A can be expressed as a function of the S/BP mass ratio
according to Equation (9).

S
A =0.0197 x =5 +0.0673 )

The thermal diffusivity a is a physical quantity that characterizes the ability of a continuous material
to transmit a temperature signal from one point to another point of the material. It is calculated using
Equation (10), where pgp is the apparent density (kg'm ) and Cp is the heat capacity (- K~ -kg™1).

A

Lo (10)
Papp X Cp

a

The thermal effusivity (J-K~1-m~2-s71/2) b represents the ability of the composite to exchange
thermal energy with its environment. It is given by Equation (11):

b= /A X papp X Cp (11)

The thermal effusivity and diffusivity are strongly related to the binder content (starch).
Increasing the binder content in the composite promotes the thermal effusivity and decreases the
thermal diffusivity. Thus, the starch content increases the composite ability to store heat.

The thermal conductivity of S-BP composite is comparable to that of hemp-starch composite
(between 0.063 W-m~1.K~! and 0.100 W-m~1.K~1) [2,8]. However, it is greater than that of the other
composites such as hemp—clay and cork concrete [9,12]. Thus, S-BP composite leads to a better thermal
inertia compared to hemp-starch composite [2,8,9].

Table 2. Thermal properties of S-BP composites at 23 °C.

S/BP Mass Ratio A (W-m~1.K~1) a (m2.s~1) b (J-K1.m—2.s7172)
0.1 0.069 + 0.0006 1.76 + 0.058 x 10~7 165.5 4 3.6
0.2 0.071 £ 0.0005 1.66 + 0.0713 x 10~7 1752 + 3.8
0.3 0.072 £ 0.0003 1.50 + 0.052 x 10~7 186.8 £ 3.5

0.4 0.075 £ 0.0002 1.47 £ 0.042 x 1077 +5.7
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The self-consistent scheme was applied to estimate the beet pulp and solid thermal conductivities
As in agro-composites with a two phase model from the thermal conductivities measured by the
Isomet method and the absolute densities and total porosities measured by the cyclohexane method.
The results are shown in Table 3. The solid thermal conductivities of the composites varied between
0.26 W-m~1-K~! and 0.30 W-m~!-K~! whereas that of the beet pulp was 0.3151 W-m~!-K~! which is
greater than that of the starch gel (A; = 0.2314 W-m~1.K~!). Therefore, the increase of the composite
thermal conductivity is due to the increase in the starch amount and the decrease of the composite
porosity results from the filling of the macro pores.

Table 3. Thermal conductivities of apparent agro-materials A¢y, and solid particles As at 23 °C according
to the self-consistent scheme.

Samples Aexp W-m—1.K-1) n As

S/BP 0.1 0.069 0.7779 0.299
S/BP 0.2 0.071 0.7559 0.283
S/BP 0.3 0.072 0.7413 0.272
S/BP 0.4 0.075 0.7216 0.267
Beet pulp 0.062 0.8193  0.315
Starch gel 0.1396 0.3857  0.2411

3.4. Permeability

The water vapor permeability results are shown in Table 4. The increase in binder amount
decreased the water vapor permeability of the S-BP composite. The permeability of the composites
depends mainly on the porosity [2]. The sample with the S/BP mass ratio of 0.1 contains higher
macro-pores than the other samples. Therefore, it had the higher water vapor permeability than the
others. Moreover, the water vapor permeability of S-BP composites (8.90 x 10712 kg:m~!.s1.Pa~1)
is lower than that of hemp-starch composites (1.7-6.2 x 107! kg:m~!.s~1.Pa~!) [4] and Typha-clay
composites (2.83-6.15 x 10711 kg-m~!-s~1.Pa~1) [2]. This is credited to the small size of the beet pulp
(2-4 mm), which provides a composite more homogenous and less porous than the others.

Table 4. Permeability and resistance to water vapor of S-BP composites.

Mass Ratio (S/BP) 6, x 107 1% (kg-m~1.s~1.Pa~1) "
0.1 8.90 £0.211 22.48 £0.54
0.2 7.77 £+ 0.169 25.72 £0.55
0.3 7.35 + 0.154 27.20 £ 0.58
0.4 6.86 + 0.236 29.12 £1.01

3.5. Sorption Isotherm

Figure 14a shows the sorption isotherm curves of different samples of the four studied
formulations. These curves describe the equilibrium between the relative humidity and the humidity
content of the samples at 23 °C and have a typical curve shape of cellulosic materials [43,44].
The samples show the same behavior independently of the S/BP mass ratio. This is attributed
to the water sorption which depends on two parameters: the porosity and the starch amount.
Increasing the S/BP mass ratio means that the starch amount increases, and the porosity decreases.
These parameters balance the water sorption of the composites especially that starch is a hydrophilic
material. The sorption results are comparable with those of Bourdot et al. [8].

Figure 14b—d shows the experimental values fitting according to GAB [39], Merakeb [40] and Van
Genuchten [41] models. Among these models, the Van Genuchten seems to be the least close to the
experimental values.
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Table 5 shows the model parameters used to fit the sorption isotherm at 23 °C for the different
formulations. For GAB and Merakeb models, the E values are lower than 10 and the correlation coefficients
for all models used are close to 1. Thus, GAB and Merakeb models are considered appropriate [45].
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Figure 14. (a) Sorption isotherms of S-BP composites for the four formulations and the comparison of
the experimental data with Merakeb (b), GAB (c), and Van Genuchten (d) models.

Table 5. Parameter values for the sorption isotherm models.

Models Parameters Samples S/BP = 0.1
a 1.5425
b 0.2410
Us 0.2211
Merakeb E (%) 1.1689
R? 0.9998
RMSE 0.1114
Wi 2.2848
Cg 0.0938
K 0.4024
GAB E (%) 5.5864
R? 0.9994
RMSE 0.2484
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Table 5. Cont.

Models Parameters Samples S/BP = 0.1
Us 0.1921
nr 2.2379
ar 0.0002
Van Genuchten (VG) E (%) 10.4050
R? 0.9982
RMSE 0.3936

a, b: intrinsic thermodynamic parameters for the Merakeb model, us: saturation moisture content by mass, Cg and
K: dimensionless parameters for the GAB model related to heat of sorption in the monolayer and multilayer region,
respectively, # and ar: characteristic constants of VG model.

3.6. Moisture Buffer Value

Figure 15 presents the moisture content u of S-BP composites during variations of relative humidity
between 33% and 75% at 23 °C, where m;, is the absorbed or released water mass and iy is the initial
mass of the sample. This figure also shows the ability of the composite to absorb moisture at 75% RH
and to release moisture at 33% RH. For the last three cycles, the mass variation of the samples appears
to have the stabilized condition.

The results presented in Table 6 clearly show that the composite can be classified as an excellent
regulator of the relative humidity of the environment (MBV > 2 g-m~2 % RH™!) according to the
classification proposed by Rode [42]. The samples present the MBV values between 2.6 and 2.8 g-m 2
% RH~!, which are comparable with the MBV values of hemp-starch composites [8].

It can be observed that the variation in MBV as a function of the S/BP mass ratio is linear and can be
presented by Equation (12). Table 6 shows that increasing the mass of starch tends to increase the MBV
value, because of the high moisture buffering of starch. The samples with more starch have the highest
MBV value, around 2.80 g-m~2 % RH!. These results apply to the uncoated S-BP composites and are
expected to decrease when the coatings are used in order to enhance the durability of the composites.

S
MBV = 0.62 x (BP) +2.55 (12)

% RH, Temperature (°C)

Time (Hour)
==S/BP=0.1 —=<S/BP=02 =e=S/BP=0.3
—o=S/BP =04 % RH =T °C

Figure 15. Moisture uptake and release of S-BP concrete during cyclic relative humidity variation in

climatic chamber.
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Table 6. Moisture buffer values of S-BP composites.

Sample S/BP MBV (g:m~2 % RH™1) SD
0.1 2.62 0.060
0.2 2.68 0.065
0.3 2.72 0.080
0.4 2.80 0.090

4. Conclusions

The hygrothermal and acoustical properties of S-BP composites were analyzed in this paper.
Four formulations were studied with different S/BP mass ratios (0.1, 0.2, 0.3 and 0.4) to investigate the
influence of the starch amount and the porosity on composite characterizations. The sound absorption
coefficient of the composite varied depending on the humidity amount and the porosity. The better
acoustical performance was obtained under ambient conditions (50% RH and 23 °C) and with a lower
starch amount (S/BP = 0.1).

The thermal conductivity, thermal diffusivity, and effusivity results showed that the S-BP
composite can be used as a good thermal insulator. This composite showed the same thermal
conductivity of several insulating materials [46]. The increase of starch amount tends to increase
the thermal conductivity of the composites.

The results showed that the water vapor permeability depends on the porosity and the sorption
isotherm is independent of the S/BP mass ratio.

The MBV values increased linearly from 2.6 g'm~2 % RH™! to 2.8 g-m~2 % RH~! when the
mass ratio S/BP increased from 0.1 to 0.4, thus indicating that the S-BP composite can be an excellent
moisture regulator when it is uncoated.
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