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Abstract: (1) To explore the potential impact of an AI dual-energy CT (DECT) prototype on de-
cision making and workflows by investigating its capabilities to differentiate COVID-19 from
immunotherapy-related pneumonitis. (2) Methods: From 3 April 2020 to 12 February 2021, DECT
from biometrically matching patients with COVID-19, pneumonitis, and inconspicuous findings
were selected from our clinical routine. Three blinded readers independently scored each pulmonary
lobe analogous to CO-RADS. Inter-rater agreement was determined with an intraclass correlation
coefficient (ICC). Averaged perfusion metrics per lobe (iodine uptake in mg, volume without vessels
in ml, iodine concentration in mg/mL) were extracted using manual segmentation and an AI DECT
prototype. A generalized linear mixed model was used to investigate metric validity and potential
distinctions at equal CO-RADS scores. Multinomial regression measured the contribution “Reader”,
“CO-RADS score”, and “perfusion metrics” to diagnosis. The time to diagnosis was measured for
manual vs. AI segmentation. (3) Results: We included 105 patients (62 ± 13 years, mean BMI
27 ± 2). There were no significant differences between manually and AI-extracted perfusion metrics
(p = 0.999). Regardless of the CO-RADS score, iodine uptake and concentration per lobe were sig-
nificantly higher in COVID-19 than in pneumonitis (p < 0.001). In regression, iodine uptake had a
greater contribution to diagnosis than CO-RADS scoring (Odds Ratio (OR) = 1.82 [95%CI 1.10–2.99] vs.
OR = 0.20 [95%CI 0.14–0.29]). The AI prototype extracted the relevant perfusion metrics significantly
faster than radiologists (10 ± 1 vs. 15 ± 2 min, p < 0.001). (4) Conclusions: The investigated AI
prototype positively impacts decision making and workflows by extracting perfusion metrics that
differentiate COVID-19 from visually similar pneumonitis significantly faster than radiologists.

Keywords: COVID-19; dual energy; tomography; X-ray computed; artificial intelligence

1. Introduction

COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), was declared a global emergency by the WHO in January 2020 [1]. More
than 20 months after the initial outbreak, COVID-19 is still one of the major healthcare
burdens worldwide, with over 254,492,345 confirmed cases and a global death toll of
over 5,117,529 [2]. Computed tomography (CT) has always played an essential role in
this pandemic, not only for diagnosis but also for follow-up after the acute phase of the
disease [3,4]. Ground-glass opacities, consolidations, and septal thickenings have been
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described as typical findings for COVID-19 [5]. The COVID-19 Reporting and Data System
(CO-RADS), an established assessment scheme based on evaluating these findings, is
reported to have a substantial interobserver agreement in the categories of the highest
and lowest likelihood for the presence of COVID-19 [6]. As the above-described findings
are rather unspecific for COVID-19 pneumonia, differentiating COVID-19 from other
diseases with a comparable visual impression may prove challenging in unclear cases [7].
Other inflammatory pulmonary diseases like immunotherapy-related pneumonitis may
mimic the visual impressions of COVID-19 [8]. For patients undergoing immunotherapy,
distinguishing these two entities is time-critical, as both require fast but significantly
different therapeutic approaches [9,10]. Even outside this setting, though, false-negative
reverse transcription polymerase chain reaction (rt-PCR) tests may delay proper care and
even put other patients at risk of infection [11]. Besides the established scoring systems,
prominent methods to facilitate COVID-specific diagnoses based on radiological imaging
have included artificial intelligence (AI) tools [12,13]. In medical imaging, convolutional
neural networks (CNN) have shown great potential to facilitate radiological workflows
due to their high classification capabilities [14]. Furthermore, dual-energy CT (DECT)
has been shown to outperform the diagnostic capabilities of single-energy CT because of
its superior exploitation of spectral information and its inherent material decomposition
capabilities [15]. Via DECT-generated iodine quantification maps, it was previously shown
that COVID-19 is associated with pulmonary perfusion disorders [16]. Therefore, we
aimed to combine these approaches and investigate the performance of an AI-based DECT
lung perfusion analysis in differentiating COVID-19 findings from immunotherapy-related
pneumonitis [17]. We hypothesize that the AI prototype extracts valid perfusion metrics,
that DECT perfusion metric analysis can help differentiate entities, and that implementation
of the AI prototype may be beneficial to radiological workflows.

2. Materials and Methods
2.1. Study Design and Population

The institutional review board approved retrospective image data collection for this
single-center study’s purpose with a waiver for the need for informed consent (609/202BO).
From 3 April 2020 to 12 February 2021, whole-body DECT to rule out foci of infec-
tion from patients with symptomatic COVID-19, melanoma patients with symptomatic
immunotherapy-related pneumonitis (checkpoint inhibitors: anti-CTLA-4, anti-PD1, or a
combination of both), and patients with inconspicuous pulmonary findings were selected
from our clinical routine. We collected the patients’ age, sex, height, and weight. The pa-
tients’ BMI was computed, as obesity is a known risk factor in patients with COVID-19 [18].
As inclusion criteria for further analyses, we chose non-intubated patients from all three
groups with exactly matching biometric profiles (same age, same sex, same BMI). As exclu-
sion criteria, we chose factors that might limit pulmonary perfusion other than infection
(e.g., heart failure, pulmonary effusion, embolisms, malignant lesions). If COVID-19 and
pneumonitis patients had more than one examination in the given timeframe, we selected
the examination closest to the clinical diagnosis.

2.2. Image Acquisition and Reconstruction Parameters

All DECT were contrast-enhanced (Imeron 400, Bracco, Milan, Italy) whole-body
examinations and performed on the same 3rd generation dual-source CT scanner (SO-
MATOM Force; Siemens Healthineers, Erlangen, Germany). Contrast agent (patients’
bodyweight in kg + 15 = contrast agent in mL) as well as a subsequent saline flush (40 mL)
were administered through a peripheral vein cannula by a double syringe power injector
(Medrad; Bayer, Leverkusen, Germany) at a flow rate of 2.5 mL/s. Image acquisition took
place in a portal venous phase (90 s after the application). Attenuation-based tube current
modulation (CARE Dose4D, reference mAs 190) was activated for the examination. Tube
voltage was set to 100/Sn150 (tube A 100 kV, tube B tin-filtered 150 kV). Collimation was set
to 0.6 × 192/128 mm, pitch was 0.6, and gantry rotation time 0.5 s. A quantitative medium-
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soft kernel without overshoots (Qr40d) was used with iterative beam hardening correction
(IBHC) set to iodine for image reconstruction. The CT datasets were reconstructed in axial
orientation with a slice thickness and an increment of 1 mm.

2.3. Subjective Reading and CO-RADS Scoring

The datasets were anonymized and randomized by a member of our group, who was
not associated with subjective reading. Three fully trained radiologists with experience
ranging from 1 to 8 years independently performed readings and CO-RADS scoring [6].
We expected perfusion metrics to differ due to the Euler-Liljestrand effect. Therefore, we
decided to additionally score each side and each pulmonary lobe individually, resulting in
a total of 840 (3 × 35 × 8) scores per reader.

2.4. Lung Segmentation and Perfusion Analysis

We measured mean iodine uptake in mg, mean lung volume (without vessels) in ml,
and mean iodine concentration in mg/mL for each pulmonary lobe individually, the whole
left/right side, and the whole lung. These DECT metrics were acquired for each patient
by manual segmentation using syngo.CT DE Lung Analysis (syngo.via VB40, Siemens
Healthineers, Erlangen, Germany) performed by our senior radiologist who is proficient
with the software. Subsequently, each patient was again analyzed employing a previously
described AI prototype that applies a convolutional neural network to the DECT volumes
for fissure segmentation and the automated extraction of quantitative perfusion metrics
using binary lung lobe masks (eXamine DE Lung Isolation prototype, Siemens Healthineers,
Erlangen, Germany) [19]. The time to diagnosis (until the DECT metric extraction was
finished) was measured for both methods.

2.5. Statistical Analysis

Figures and Graphs were created using GraphPad Prism version 9.0.2 for Windows
(GraphPad Software, San Diego, CA, USA). We used IBM® SPSS® Statistics Version 27 for
Windows (Armonk, NY, USA) for the statistical analysis of patient data. Data distribution
was tested using the Shapiro–Wilk test. Normally distributed variables were expressed
as mean ± standard deviation and non-normally distributed variables as median and
interquartile range (IQR). Data analysis ensued using a generalized linear mixed model
(GLMM). The Greenhouse–Geisser correction was used in case of violation of sphericity.
The Bonferroni correction was used for multiple comparisons to counteract Type 1 error
increase. A p-value ≤ 0.05 indicated statistical significance. As we limited patient inclusion
to biometrically matched pairs in three groups, a post hoc sensitivity analysis was added us-
ing G*Power (ver. 3.1.9.7) to quantify the minimal detectable effect size in our setup [20,21].
To measure the inter-rater agreement of CO-RADS scores, we used an intraclass correlation
coefficient (ICC, absolute agreement, average measures) [22]. ICC values of 0–0.2 were
considered as slight, 0.21–0.4 as fair, 0.41–0.6 as moderate, 0.61–0.8 as substantial, and
0.81–1.00 as almost perfect levels of agreement. A multinomial regression analysis [23,24]
was utilized to investigate the contribution of the items “Reader” (R1, R2, R3), “CO-RADS
Score” (CO-RADS 1,2,3,4,5), and three DECT metrics: “iodine uptake” (mean ± SD per pul-
monary lobe), “volume (without vessels)” (mean ± SD per pulmonary lobe), and “iodine
concentration” (mean ± SD per pulmonary lobe) to the differentiation of inconspicuous
findings from COVID-19 and from immunotherapy-related pneumonitis. Goodness-of-fit
was tested using a χ2 likelihood-ratio test (LRT), Pearson χ2, and Nagelkerke Pseudo-R2.

3. Results
3.1. Study Population and CO-RADS Score

The initial database search revealed 75 patients with COVID-19, 138 patients with
immunotherapy-related pneumonitis, and 395 patients without pulmonary pathologies.
From these, we excluded 503 patients not meeting our inclusion criteria and selected a
total of 105 patients (35 patients for each subgroup) for further analyses. With an α of 0.05
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and a power (1-β) of 0.95, power analysis showed the minimal detectable effect size for
significant differences in our setup (105 patients, 3 matched groups, 24 repeated measures)
to be small (f = 0.11), verifying the validity of our results. Figure 1 illustrates patient
inclusion and the study workflow. Table 1 gives an overview of the patient characteristics
in the respective subgroups.
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Table 1. Patient characteristics.

Parameter Female Male Total

Patient Population
Absolute (n) 54 51 105

Reference 18 17 35
Pneumonitis 18 17 35
COVID-19 18 17 35

Mean age (y) 62 ± 13 63 ± 14 62 ± 13
Mean BMI 26 ± 1 27 ± 2 27 ± 2

The inter-rater agreement for lobe-wise CO-RADS scoring was almost perfect (ICC = 0.86;
p ≤ 0.001). The number of pulmonary lobes classified in the specific CO-RADS score groups
is shown in Table 2.

Table 2. Number of lobe-wise CO-RADS scores for all patients.

CO-RADS Score and Level of Suspicion Reference Pneumonitis COVID-19 Total (n)

Level of Suspicion

1 Very low Normal or noninfectious 175 22 13 210

2 Low Infectious abnormalities other
than COVID-19 82 11 93

3 Indeterminate Unclear whether
COVID-19 is present 59 33 92

4 High Infectious abnormalities suspicious
for COVID-19 12 49 61

5 Very high Infectious abnormalities typical
for COVID-19 69 69
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3.2. Dual-Energy CT Metric Comparison
3.2.1. Method Validation and Time to Diagnosis

There were no significant differences (p > 0.999) in pairwise comparisons between the
DECT metrics extracted by manual segmentation and the metrics automatically extracted
by the AI prototype. However, at 10 ± 1 min, the time to diagnosis was significantly
shorter when using the AI prototype than at 15 ± 2 min when using manual segmentation
(p < 0.001). See Figure 2 for further details.
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Figure 2. Comparison of extracted DECT metrics and time to diagnosis.

3.2.2. Analysis of AI-Based Lung Segmentation

For each item (iodine uptake, volume, and iodine concentration per pulmonary
lobe), GLMM showed significant variance between the subgroups (F (1258, 4279) = 558.0,
ηp

2 = 0.419, p ≤ 0.001). At equal visual CO-RADS score levels, post hoc tests showed
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COVID-19 to have a significantly higher iodine uptake per pulmonary lobe and a signifi-
cantly higher iodine concentration per pulmonary lobe than pneumonitis (p < 0.001). See
Figure 3 for further details about average iodine uptake, average volume, and average
iodine concentration per pulmonary lobe. Of special interest are the subanalyses of CO-
RADS scores 2–4, where clinical routine shows substantial visual overlap. Figure 4 is an
example of AI DECT lung segmentation and perfusion analysis in three patients.
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In multinomial regression, statistical analysis showed a good model fit (LRT:
χ2 (10) ≥ 568.34, p ≤ 0.001; Pearson χ2 (624) ≥ 1307.81, p ≥ 0.275; Nagelkerke
Pseudo-R2 ≥ 0.67). The combination of the items “Reader” (R1, R2, R3), “CO-RADS Score”
(CO-RADS 1,2,3,4,5), “Iodine Uptake”, “Volume”, and “Iodine Concentration” accounted
for a significant amount of variance in the outcome (p < 0.001). The item “Reader” did
not contribute to the model (p = 0.109). CO-RADS scores were a significant contributor
towards infiltrate differentiation (B = −0.88, std. error (SE) = 0.02, p ≤ 0.001). However,
pulmonary lobes with COVID-19 only had a slightly elevated likelihood of having higher
CO-RADS scores (Odds Ratio (Exp. B) = 0.92 [95%CI 0.88–0.95]) than pulmonary lobes with
pneumonitis. The DECT metric “Iodine Uptake” was not only a significant contributor
towards differentiating infiltrates (B = 0.6, std. error (SE) = 0.25, p = 0.019), the likelihood
of correct classification by iodine uptake was higher (Odds Ratio (Exp. B) = 1.82 [95%CI
1.10–2.99]) than by visual classification (Odds Ratio (Exp. B) = 0.20 [95%CI 0.14–0.29]). See
Table 3 for further details.

Table 3. Multinomial regression results, COVID-19 = reference category.

Estimate (B) SE Wald χ2 p Odds Ratio
Exp (B) 95% CI

Differentiation
from

COVID-19

Pneumonitis

Reader 0.24 0.15 2.57 0.109 1.3 0.95–1.70
CO-RADS score −1.60 0.19 71.40 <0.001 0.20 0.14–0.29
Iodine Uptake 0.60 0.25 5.52 0.019 1.82 1.10–2.99

Volume 0.47 0.25 3.47 0.062 1.60 0.98–2.62
Iodine Concentration 0.41 0.25 2.75 0.097 1.51 0.93–2.46

Reference

Reader 0.29 0.15 3.69 0.06 1.3 0.99–1.79
CO-RADS score −0.11 0.02 25.10 <0.000 0.9 0.86–0.94
Iodine Uptake 1.40 0.31 20.42 <0.000 4.07 1.03–3.42

Volume 0.63 0.30 4.29 0.038 1.88 1.03–3.42
Iodine Concentration 0.86 0.28 9.31 0.002 2.37 1.36–4.13

B = regression coefficient; SE = standard error, Exp (B) = Odds Ratio based on exponentiation of B,
CI = Confidence Interval.

4. Discussion

The purpose of this study was a threefold evaluation of an AI-based dual-energy CT
lung segmentation and analysis prototype: First, to validate the perfusion metrics extracted
by the prototype. Second, to investigate the capabilities of automatically extracted perfu-
sion metrics to differentiate COVID-19 infiltrates from visually similar immunotherapy-
related pneumonitis findings and compare the metrics’ relative significance to that of
visual CO-RADS scoring. Third, to analyze potential benefits which the implementation
of the prototype has on radiological workflows. For this purpose, we retrospectively com-
pared DECT datasets of 35 patients with proven and symptomatic COVID-19 infection
to visually similar findings of 35 patients with proven and symptomatic pneumonitis. In
addition, as a reference group, we included 35 patients with matching biometric profiles
who had no pulmonary pathologies. DECT analysis showed perfusion metrics with a
high discriminatory power between COVID-19 and visually similar pneumonitis findings,
emphasizing the capabilities of DECT in visualizing biological and pathophysiological
processes. Furthermore, we found no differences between the DECT perfusion metrics
extracted by manual segmentation and those extracted by the AI prototype. However, the
time to diagnosis was significantly shorter when using the AI prototype than when using
manual segmentation. CO-RADS is a categorial CT assessment scheme to evaluate the
likelihood of the presence of COVID-19. As discussed by Prokop et al., the scores for the
almost certain absence/presence of COVID-19 had a substantial inter-reader agreement [6].
In unclear or rather unlikely cases however, they reported only moderate agreement levels.
Bai et al. further pointed out the low specificity of the typical COVID-19 findings in chest
CT, especially in synopsis with the low sensitivity of reverse-transcription polymerase
chain reaction (rt-PCR) testing in earlier disease stages [25]. Our data is concordant to the
results of these two studies, as COVID-19 patients had only a slightly elevated likelihood
of having higher CO-RADS scores than patients with pneumonitis. Since there was no
significant contribution in CO-RADS by single readers to determinate disease entity, and
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scores were given with almost perfect agreement levels, we need to reiterate the need for
more sophisticated diagnosis methods than visual assessment alone. Other studies have
investigated the role of DECT lung perfusion analysis in patients with COVID-19. Oudkerk
et al. showed severely impaired lung perfusion in COVID-19 patients with thromboembolic
complications [26]. Perfusion deficits in patients with COVID-19 are, however, described
even without any complications whatsoever. Grillet et al. reported lower pulmonary
iodine levels even in visually inconspicuous parenchyma, giving evidence for microvas-
cular disease [27,28]. The damaging effect of SARS-CoV-2 spike proteins on endothelial
function is confirmed in newer studies [29]. Concordantly, patients with COVID-19 gen-
erally had significantly higher pulmonary iodine uptake at lower average lobe volumes
than patients with pneumonitis and patients without pulmonary pathologies. Lang et al.
described mosaic perfusions in patients with COVID-19 that were unlikely caused by
airway disease [30]. Afat et al. reiterated these findings and described mismatches of
perfusion deficits and ground-glass opacities in patients with COVID-19 [16]. We found
the AI prototype to introduce a clear workflow benefit by significantly shortening the time
to diagnosis. This is in line with other recent studies that pointed out the potential benefits
of integrating AI into radiological routine by lending the radiologist useful additional
capacities to conquer workload regardless of individual experience level [31]. Our experi-
ences while conducting the study mirrored this result; as opposed to manual segmentation,
the AI prototype worked autonomously. In summary, our results imply AI-based DECT
lung perfusion analysis introduce a considerably higher discriminatory power than visual
assessment alone to differentiate entities at a significant workflow benefit. Especially in
the setting of immunotherapy, and when considering the threat of false-negative rt-PCR
test results, the implications of our study are highly relevant for clinical decision making
and patient management. This study has several limitations. First, the design of this
study was retrospective, and with 35 patients per group, our population was relatively
small. Nonetheless, a post hoc sensitivity analysis verified the validity of our results in this
setup. A prospective approach with larger sample sizes might still be helpful to confirm
the implications of our results for clinical decision making. Additionally, we focused on
distinguishing COVID-19 from immunotherapy-related pneumonitis, as there have been
extensive reports about significant visual overlaps between these two entities. Therefore,
a follow-up study to investigate the discriminative power of dual-energy CT regarding
other pulmonary pathologies is merited. Moreover, image acquisition took place in a portal
venous phase. As perfusion is highly susceptible to age, sex, body weight, and cardiac
function, this issue can also be seen as a strength due to the compensation of possible
early perfusion inhomogeneities. Nevertheless, the extracted perfusion metrics are most
likely specific to our methodology, and further studies may be needed to investigate the
reproducibility in other phases. Furthermore, the time to diagnosis was only measured
for our senior radiologist, who is proficient with manual lung segmentation. Measuring
time to diagnosis for readers without experience in manual lung segmentation might have
further set manual segmentation apart from AI segmentation. Lastly, we need to address
that this study was performed utilizing a high-end 3rd generation dual source scanner that
is not readily available at every site. Our results might therefore be specific to this setup.

5. Conclusions

The investigated AI prototype positively impacts decision making and workflows by
extracting perfusion metrics that differentiate COVID-19 from visually similar pneumonitis
significantly faster than radiologists.
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