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A B S T R A C T   

Computer Tomography (CT) detection can effectively overcome the problems of traditional detection of Corona 
Virus Disease 2019 (COVID-19), such as lagging detection results and wrong diagnosis results, which lead to the 
increase of disease infection rate and prevalence rate. The novel coronavirus pneumonia is a significant differ-
ence between the positive and negative patients with asymptomatic infections. To effectively improve the ac-
curacy of doctors’ manual judgment of positive and negative COVID-19, this paper proposes a deep classification 
network model of the novel coronavirus pneumonia based on convolution and deconvolution local enhancement. 
Through convolution and deconvolution operation, the contrast between the local lesion region and the 
abdominal cavity of COVID-19 is enhanced. Besides, the middle-level features that can effectively distinguish the 
image types are obtained. By transforming the novel coronavirus detection problem into the region of interest 
(ROI) feature classification problem, it can effectively determine whether the feature vector in each feature 
channel contains the image features of COVID-19. This paper uses an open-source COVID-CT dataset provided by 
Petuum researchers from the University of California, San Diego, which is collected from 143 novel coronavirus 
pneumonia patients and the corresponding features are preserved. The complete dataset (including original 
image and enhanced image) contains 1460 images. Among them, 1022 (70%) and 438 (30%) are used to train 
and test the performance of the proposed model, respectively. The proposed model verifies the classification 
precision in different convolution layers and learning rates. Besides, it is compared with most state-of-the-art 
models. It is found that the proposed algorithm has good classification performance. The corresponding sensi-
tivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and precision are 0.98, 0.96, 
0.98, and 0.97, respectively.   

1. Introduction 

Corona Virus Disease 2019 (COVID-19) [1,2], which broke out in 
December 2019, is the seventh known coronavirus that can infect 
human beings. The International Committee on Taxonomy of viruses has 
been named severe acute respiratory syndrome coronavirus 2 (SAR-
S-COV-2). As of May 2021, Beijing time, there are more than 157.5 
million confirmed cases and 3.2 million deaths worldwide, as shown in 
Fig. 1(a) [3,4]. 

Due to the short-term shortage of nucleic acid detection kits, the 
positive result of novel coronavirus detection lag behind, which makes 
some patients with COVID-19 do not receive timely treatment. It not 
only causes relatively typical lung lesions, but also increases the infec-
tion rate of novel coronavirus pneumonia [5,6]. As a faster and more 
convenient means of examination, imaging examination [7–9] can 

effectively reduce the impact of patients that infected with COVID-19 
and plays an important role in the treatment of novel coronavirus. At 
present, X-ray [10–12] and Computer Tomography (CT) [13–15] images 
are the main screening ways. The X-ray image is formed based on 
different X-rays absorbed by different tissues of the human body. Narin 
A et al. [10], Hemdan E E D et al. [11], and Parnian Afshar et al. [12] 
detect the infection status of COVID-19 on the X-ray image, which can 
help the diagnosis of novel pneumonia to some extent. However, due to 
the overlapping of tissue structures in an X-ray image, it is difficult to 
distinguish the negative and positive of COVID-19. 

The horizontal lung CT image can effectively solve this problem. It 
can effectively judge the tumor region of the chest wall and bronchial 
cartilage calcification according to the image structure of bilateral lung 
middle bronchus and chest, as shown in Fig. 1(b) [16]. Here, lung 
consolidation shadow is a process in which the alveoli are filled with 
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Fig. 1. The COVID-19 CT images from multi-angles. (a) The process of COVID-19 infection; (b) The CT image from multi-angles.  
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exudate. Central local consolidation is the feature overlap of the old lung 
lesions and the COVID-19. Ground glass shadow refers to the thin 
cloud-like shadow with slightly increased density in chest CT scan, 
which can grow diffusely or only locally. Actually, the diagnosis of 
COVID-19 is mainly judged by ground glass shadow. It can not only 
overcome the limitations of nucleic acid detection technology that may 
cause a false-negative result, but also implement better treatment for 
asymptomatic or negative CT image of patients infected with COVID-19. 
Chua F et al. [17] systematically introduce the related symptoms of 
infection with COVID-19. Through the comparison of data and infor-
mation, it concludes that the use of CT image to judge the status of 
COVID-19 meets the needs of current disease diagnosis. Fang Y et al. 
[18] and Bernheim A et al. [19] find that the severity of the disease 
gradually increased by analyzing extensive CT image. Therefore, how to 
realize the monitoring of COVID-19 infection has become an important 
way to control the spread of the epidemic effectively and efficiently. 

Effective measures can be taken to solve the problem of the high 
infection rate of novel coronavirus for patients that diagnosed with 
COVID-19 infection. Doctors usually make an artificial judgment ac-
cording to the CT image [20,21] of the lung and judge whether there is a 
substantial lesion by observing the exudation of coronavirus from 
granulocytes. However, there is a high demand for doctors’ theoretical 
knowledge and practical ability. In this case, machine learning plays a 
more and more important role [22–24]. Here, the deep neural network 
can obtain a diagnosis model with high precision, which can get the 
characteristics of the novel coronavirus infection through self-learning. 
The Deep network model [25–28] simulates the process of human brain 
neurons transmitting signals to obtain information, which can effec-
tively extract the image features. The convolutional neural network 
(CNN) has been widely used and has become a classic classification 
model. 

For example, Mohamed Loey et al. [29] propose an algorithm for 
classifying COVID-19 image using a deep transfer learning model. This 
method enhances CT image through deep revolutionary neural networks 
to generate more mixed data for training. On the basis, Gifani P et al. 
[30] propose an automatic learning method based on an integrated deep 
transfer learning system. This algorithm is used to diagnose the negative 
and positive results of COVID-19 by using the optimal combination of 
deep transfer learning outputs. Hall Lo et al. [31] propose a COVID-19 
classification algorithm based on Visual Geometry Group16 (VGG16) 
model. The proposed method changes the last layer of the VGG16 model 
into a trainable part. The final classification result is obtained through a 
fully connected layer composed of the global average pooling. The 
above-proposed algorithms [29–31] can get high performance at a low 
computational cost. However, the computational efficiency in the open 
dynamic environment is low, which can not meet the precision and 
strength required by the diagnosis of COVID-19. 

To solve the problem, Feng Shi et al. [32] propose a VB-Net algo-
rithm, which combines the V-Net model with the bottleneck layer. This 
method extracts the shrinking and expanding paths, which integrates 
the fine-grained COVID-19 image features. Thus, it can reduce the 
number of feature mapping channels and effectively increase the 
convolution speed. Eduardo Luz et al. [33] place the target class in the 
leaf node of the tree by setting up hierarchical classification. The in-
formation is transmitted by the classifier on the middle node and the 
classification task of COVID-19 is carried out at the root node of the tree. 
Similarly, Sanhita Basu et al. [34] propose a new extended transfer 
learning algorithm. The feature of the COVID-19 image is detected by 
grad cam and the final classification result is obtained. Singh D et al. 
[35] create a new CNN model to tune the initial parameters through 
multi-objective differential evolution. The classification precision of this 
algorithm is improved, but its efficiency is still slightly insufficient. To 
solve this problem, Polsinelli M et al. [36] propose a processing strategy 
to enable GPU acceleration in the nvidacuda core environment, which 
can further improve the performance. Besides, it reduces the re-
quirements of deep learning on equipment space and speed. He X et al. 

[37] combine contrast self-supervised learning with transfer learning 
cooperatively, which can learn powerful feature representation. On the 
basis, Zhao J et al. [38] develop a diagnosis method of COVID-19 based 
on multi task learning and self-supervised learning. Bai H X et al. [39] 
establish an artificial intelligence system to classify the negative and 
positive of COVID-19. To evaluate the performance of radiologists, a 
two-layer fully connected neural network is used to gather the slices 
together. 

For the above methods, the classification performance needs to be 
improved for a medical image dataset with a large sample distribution 
offset. When the learning depth deepens, the gradient dispersion phe-
nomenon will appear, which results in local convergence and the 
occurrence of the overfitting phenomenon. To effectively reduce the 
problem of gradient disappearance and information confusion caused by 
the similarity of multiple lesions, this paper proposes a novel classifi-
cation algorithm for COVID-19 lung CT image based on a deep con-
volutional network, which deepens the contrast by convolution and 
deconvolution operation. Besides, it can effectively detect novel coro-
navirus pneumonia and provide a new computer-aided method for 
epidemic diagnosis. Compared with the traditional CNN model, the 
proposed model has the following innovations:  

● The proposed model enhances the contrast between the local lesion 
region and the abdominal cavity of COVID-19 by convolution and 
deconvolution [40]. Thus, it can effectively overcome the problem of 
similar pixel values between the lesions and the normal background.  

● The proposed model transforms the novel coronavirus detection into 
a feature classification problem of the region of interest (ROI) [41], 
which can effectively determine whether the feature vector in each 
feature channel contains the image features of COVID-19.  

● The proposed algorithm obtains the stable expression of potential 
local COVID-19 features at all levels of the lung CT image. Thus, it 
can overcome gradient vanishing and realizes the reuse of feature 
information. 

The paper is organized as follows. In Section II, the ROI localization 
of lung CT image and the enhancement of COVID-19 feature information 
by convolution and deconvolution are introduced. Section III introduces 
the framework of the proposed deep convolution network model and the 
corresponding training process. Section IV introduces the experimental 
result and analysis. The proposed deep network is compared with the 
other state-of-art classification algorithms. Finally, the conclusion is 
given in Section V. 

2. Image preprocessing 

2.1. The CT image characteristics of COVID-19 patients 

For COVID-19, there are some problems such as alveolar swelling, 
thickening of the alveolar septum, and exudation of alveolar septal fluid 
[42,43]. Therefore, observing the suspected COVID-19 patients with 
lung CT image can effectively identify the status of virus infection. 

The CT image of COVID-19 patients shows single or multiple sub-
segmental or segmental speckle ground glass shadow at the early stage, 
as shown in Fig. 2(a). In the advanced stage, the novel coronavirus has 
spread along the alveoli, and the large strain spread from the center to 
the periphery by the bronchioles. Compared with the early stage of 
infection, the number of lesions increases, the scope of bacterial infec-
tion expands, and the virus accumulates in multiple lobes. There are 
coexisting phenomena of fireworks like ground glass shadow and 
consolidation shadow or stripe shadow, as shown in Fig. 2(b)(c). Be-
sides, a small number of patients are likely to be accompanied by 
fibrosis. Severe patients with diffuse lung lesions are often accompanied 
by large consolidation shadow, ground glass shadow, cord shadow, and 
air bronchogram. A few patients even have white lung, pleural effusion, 
and lymph node enlargement, as shown in Fig. 2(d). 
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Due to different field offsets caused by medical equipment and the 
patient’s own activities and breathing, there are some problems such as 
uneven gray and signal-to-noise ratio in the lung CT image. Besides, the 
image features between the novel coronavirus and other diseases are 
similar [44]. For the CT image of the acquired immune deficiency syn-
drome (AIDS), the image features also show that the boundary is fuzzy 
and the surrounding is accompanied by hazy ground glass shadow, as 
shown in Fig. 3. Considering the multiplicity and complexity that exist in 
COVID-19 diseases, it is necessary to preprocess the CT image and 
enhance the local feature contrast of the COVID-19 lesion region. 

2.2. The contrast enhancement of the lesion region 

To enhance the contrast between the normal background and the 
ROI of the lesion, it is necessary to recognize the region infected with 
COVID-19 of the lung CT image. According to a lot of statistics, the 

proportion of lung parenchyma in CT image is small, but the position of 
both lungs is relatively fixed. Besides, the distribution of the left and 
right lung parenchyma in the human thoracic cavity is relatively stable 
[45–47]. 

In this paper, the bilateral lung regions of 333 patients with COVID- 
19 and 397 normal people are analyzed, as shown in Fig. 4. For image 
size 227*227, the extracted regions [38, 31, 65, 156] and [125, 32, 70, 
158] in the left and right lungs can represent the effective distribution 
infected with COVID-19. The corresponding coverage ratio of the lesion 
region can reach 91% and 94% in the left and right lungs, respectively. 
Here, the first and last two numbers of the matrix represent the co-
ordinates of the upper left corner and the width (height) of the extracted 
region, respectively. Fig. 5 shows the result of ROI extraction from lung 
CT image [48], which contains more complete image features. 

For the COVID-19 CT image, the ground glass shadow may overlap 
with bronchial branches, bilateral pulmonary veins, and arteries. Be-
sides, the characteristics of the fireworks like glass shadow and capil-
laries in the CT image are also similar. Therefore, this paper proposes a 
deconvolution network model based on the ROI to enhance the infection 
characteristics of the novel coronaviruses [49,50]. 

The lung CT image I contains two ROI Ri(i= 1,2) to be enhanced 
[51,52], where R1 and R2 are the left and right lung regions, respec-
tively. H is the convolution kernel size of H × H (in this paper, H = 2 is 
set). Suppose that the ROI is composed of M feature channels C1,C2, ...,

CM. By finding the feature vector Tj(j= 1,2, ...,m) in each feature 
channel and the characteristic distribution kernel f , the convoluted 
image I′ is obtained 

I ′

=
∑m

j=1
Cj (1)  

where Cj = Tj ⊕ f and Tj = (CM + H − 1)2. 
Through the maximum convolution kernel, the stable expression of 

potential local features at all levels of the image is obtained, which can 
effectively divide the normal background and the lesion region. To 
obtain more complex feature information and enhance the virus image, 
the deconvolution network is also considered in this paper [53]. 

As shown in Fig. 6, the obtained 3 × 3 local feature region 
I′i(i= 1, 2, ...,M) is mapped to a 16 × 4 local sparse feature matrix I’C,i. 

Fig. 2. The CT image of COVID-19 patients at different stages. (a) Ground glass 
shadow; (b) Fireworks like ground glass shadow; (c) Consolidation shadow; (d) 
White lung. 

Fig. 3. Comparison of image features between the AIDS and COVID-19 diseases. (a) Image feature of AIDS; (b) Image feature of COVID-19; (c) Image feature of the 
coexistence of AIDS and COVID-19. 
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The local feature enhancement matrix with the same size as the original 
channel is obtained by multiplying it with the 4 × 1 deconvolution 
distribution kernel fC. Finally, the local deconvoluted image 
I′ ’i(i= 1, 2, ...,M) is obtained I′′ =

∑M
i=1I′ ’i. 

Due to the existence of singular sample in the dataset, the training 
time will be increased, which may cause the problem that the network 
cannot converge. In this paper, the ROI extraction operation is used to 
obtain the lung region containing the lesion. Besides, the abdominal 
background is compressed to 0.8 times of the original image by 
enhancement algorithm. Then, the statistical distribution of samples is 
unified by matrix normalization. The concrete computational process is 
as follows: 

I′′’m,n =
I ′ ’m,n

Max I′′
× Max I (2)  

where I′ ’m,n is the eigenvalue of row m and column n of I′ ’i(i = 1, 2,...,M), 
Max I′′ is the maximum eigenvalue of local deconvoluted eigenmatrix 
I′ ’i, Max I is the maximum eigenvalue of pre-trained convolution matrix, 
I′′’m,n is the local characteristic matrix after deconvolution normaliza-
tion. (In this paper, I is the original image, I′ is the convoluted image, I′′

is the deconvoluted image, and I′′′ is the matrix normalized image. i is the 
local characteristic channel, m and n are the matrix index.). 

While maintaining the original distribution features of ROI, the 
matrix normalization can effectively reduce the impact on smaller fea-
tures and achieve more accurate regional enhancement results, as shown 
in Fig. 7. Thus, the contrast between the background region of the 
abdominal cavity and lesion is enhanced, which effectively overcomes 
the problem of similar pixel values, i.e., between the lung ground glass 
shadow and the thoracic cavity. 

3. Deep learning network based on COVID-19 CT image 

3.1. Convolutional neural network (CNN) 

Inspired by the human visual nervous system, the CNN model 
[54–56] uses a convolution kernel to obtain feature information in the 
local receptive domain. It can reduce the amount of calculation and 
effectively maintain the hierarchical network structure, as shown in 
Fig. 8. The traditional neural model is composed of the input layer, 
hidden layer, and output layer. Based on the network, the CNN model 
adds convolution layer and pooling layer in front of the fully connected 
layer. 

The weight sharing in the CNN model can effectively reduce the 
complexity and the number of weights. By combining local sensing re-
gion and sampling operation, this model makes full use of the local 
features, which can ensure the translation invariance and rotation 
invariance to a certain extent. Because the CNN model has achieved a 
good result in the field of feature extraction and classification, this paper 
improves the structure of the traditional CNN. The proposed model is 
used to extract the features of the CT image to accurately classify 
whether the patients belong to the infection category. Thus, the classi-
fication of negative and positive patients with COVID-19 infection can 
be realized. 

3.2. The proposed model 

To effectively improve the detection efficiency of patients with 
COVID-19 and reduce the virus infection rate, it needs a scheme that can 
obtain diagnostic precision and reduce the nucleic acid detection cost. 
Lung CT image is one of the most common ways to diagnose whether a 
patient has COVID-19. This technique can analyze the lung tissue 
structure and lesion morphology of suspected COVID-19 patients. In this 
paper, the deep convolution neural network based on a lung CT image is 
used to judge the suspected COVID-19 patients [57,58]. 

Firstly, the determinant of the matrix is obtained by convolution, and 
the corresponding visual vector describing the features of the COVID-19 
image is obtained. Fig. 9 shows the positive and negative visual feature 
vectors of COVID-19, respectively. Here, feature differences of novel 
coronavirus pneumonia are extracted from the two categories (positive 
and negative) of visual vectors. Besides, their respective proportions are 
manually selected to balance the number of two categories. In this 
paper, 250 visual feature vectors are used to describe the image infor-
mation of COVID-19, which represents the characteristic frequencies 
that can correctly distinguish the negative and positive of COVID-19. 
The final classification model is obtained through the subsequent deep 
convolution network. The deep convolution network model can be used 
to effectively handle the image features of the lung CT image infected 
with COVID-19, and assist doctors to determine whether the patients are 
infected with the novel coronavirus. The deep convolution network 
model based on COVID-19 proposed in this paper is shown in Fig. 10. 

To effectively classify patients infected with and without COVID-19, 
the deep convolution network [59,60] includes seven convolution 
layers, three pooling layers, and three full connection layers. Among 
them, InputImage represents the input image layer, Con represents the 
convolution layer, MaxPool represents the maximum pooling layer, 
FullyConnected represents the full connection layer, FeatureMap repre-
sents the feature map, and Output represents the output result layer. 

Fig. 4. The coverage ratio of the effective distribution infected with COVID-19. 
(a) Left lung; (b) Right lung. 
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3.2.1. The convolution and pooling layer 
In this paper, three kernels 11 × 11, 5 × 5, and 3 × 3 are set in the 

convolution layer [61,62]. Fig. 11 shows the extracted feature map with 
different convolution kernels. Here, the convolution kernels 11 × 11 and 
5 × 5 are mainly used to obtain the same receptive domain. Then, a 
convolution kernel 3 × 3 is used to replace the single nonlinear acti-
vation layer, which increases the discrimination ability of the network 
model. For instance, three consecutive convolution operations 3 × 3 can 
achieve the feature extraction of the convolution kernel 7 × 7. Thus, it 
can decrease 7 × 7 × M − 3 × 3 × M = 22 × M times of calculation (M is 
the number of feature channels) and effectively reduce the amount of 
calculation by 45%. Similarly, two consecutive convolution operations 
3 × 3 are equivalent to the feature extraction of the convolution kernel 5 
× 5, which can effectively reduce the amount of computation by 28%. 

By using a smaller convolution kernel, a more discriminative map-
ping function in a deep convolution network can be obtained. Therefore, 
the proposed convolution layer can reduce the number of calculation 
parameters while maintaining the range of the receptive domain, so that 
a point on the feature map can correspond to the feature region on the 
input map efficiently. 

After convolution operation, the maximum pooling layer is used to 
reduce the size of the feature map, which can effectively reduce the 
training parameters and enhance the generalization ability of the model. 
In this paper, the size 2 × 2 of the pooling layer is set, which can obtain 
the stable expression of novel coronavirus pneumonia at all levels of the 
lung CT image. 

3.2.2. The activation and normalization layer 
Besides, both the convolution layer and the full connection layer 

contain an activation layer ReLU and a normalization layer 

NormalizationLayer. To overcome the slow convergence speed and 
“gradient explosion” of the neural network, the batch processing of the 
COVID-19 image is normalized. The proposed model can effectively 
enhance the training efficiency and reduce the sensitivity of the model to 
the initial weights. 

In this paper, ReLU is used to specify the modified linear elements 
and perform threshold calculation on the eigenmatrix, that is ReLU(x) =
{

x, x ≥ 0
0, x < 0 . Due to the highly nonlinear characteristics of the deep 

neural network, the insufficient average operation, and the regulariza-
tion, the over-fitting phenomenon is easy to occur. Besides, the model in 
different training sets will lead to sample misclassification. To solve this 
problem, this paper uses local response normalization 
NormalizationLayer. The normalized value is obtained by replacing it 
with the element A of the adjacent feature channel I1, I2, ..., IM in the 
normalization window. The calculation formula is as follows: 

A′

=
A

(

W +
α×sum(Ii)

2

s(Ii)

)β′
n1≤ i ≤ Mn (3)  

where W, α, and β are the super parameters of normalization operation 
[63], which set W to 2, α to 0.0001, β to 0.75. sum(Ii) is the sum of el-
ements of the feature channel Ii(1≤ i≤ M), s(Ii) is the size of the feature 
channel. By local response normalization NormalizationLayer, the linear 
characteristics of the model are obtained. Therefore, the proposed model 
can improve the anti-interference ability for the counter sample. 

3.2.3. The full connection layer 
Fig. 12 shows the kernel image of each layer using different 

Fig. 5. The ROI extraction. (a) The ROI of left lung; (b) The extracted region of the lung CT image; (c) The ROI of the right lung.  
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Fig. 6. The process chart of the contrast enhancement.  

Fig. 7. The contrast enhancement of the lesion region. (a) The original image; (b) The ROI enhanced image.  
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convolution layers. Fig. 12(a) shows the convolution kernel of different 
sizes in the proposed deep convolution network. Fig. 12(b) shows the 
characteristic map corresponding to three fully connected layers. 

By multiplying the weight matrix and adding the bias vector, the full 
connection layer combines all the local information in the negative and 

positive classification results. The last full connection layer (classifica-
tion layer) combines the novel coronavirus features to recognize the 
larger pattern of the COVID-19 dataset and realize the negative and 
positive classification function. 

The unit activation function of the classification layer is as follows: 

Fig. 8. The structure of the CNN model.  

Fig. 9. The visualization of the COVID-19 feature vector. (a) The COVID-19 positive image; (b) The COVID-19 negative image. (The first and the second columns 
represent the original image and the corresponding visual feature vector distribution, respectively.) 
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ar(A)= ln(P(AnH2)P(Hr)) ⋅ r={1, 2} (4)  

P(HresultnA)=
P(AnHresult)

P(AnH1)P(H1) + P(AnH2)P(H2)

=
exp(aresult(A))

exp(a1(A)) + exp(a2(A))

(5)  

where A is the matrix element, P(AnHresult) is the conditional probability 
and 0 ≤ P(HresultnA) ≤ 1 is the corresponding probability of the current 
class, P(H1) and P(H2) are the prior probabilities. 

To avoid the overfitting problem caused by too many training times, 
this paper compares the obtained eigenvalues with the input eigenvalues 
by the backpropagation algorithm. If the interpolation is larger than the 
set allowable error rate F, this paper sets F as 0.001. The proposed deep 
model combines the idea of ROI detection and image classification 
network and transforms the problem of COVID-19 detection into ROI 

feature classification. Thus, image features of the novel coronavirus 
pneumonia can be judged only if the feature vectors in each feature 
channel are contained. The dense network is used to connect the deep 
and shallow feature information effectively, which is to overcome the 
problem of gradient vanishing, realize the circulation, and enhance the 
reuse of feature information. 

4. Experimental results and analysis 

4.1. Data sources and evaluation indicators 

This paper uses an open-source COVID-CT dataset [64] provided by 
Petuum researchers from the University of California, San Diego, whose 
purpose is to help analyze CT image of COVID-19 patients. The dataset is 
collected from 143 novel coronavirus pneumonia patients and the cor-
responding features are preserved. The CT image of 333 cases with the 

Fig. 10. Deep convolution network model.  
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positive detection of COVID-19 and 397 cases with the positive detec-
tion is provided. The partial negative and positive images of COVID-19 
are shown in Fig. 13. The image sizes of these patients are different, the 
minimum height is 153, the maximum height is 1853, and the average is 
491. For fairness, the image size is set to 227 × 227 in this paper. 

As shown in Table 1, 70% of the local enhanced lung image and the 
original image mixed dataset are used to train the deep convolution 
network, and the remaining 30% is used to test. To effectively evaluate 

the proposed method, sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and precision are used as 
follows: 

sensitivity=

∑Tol

k=1
(yk = Yk) ∪ (yk = T)

∑Tol

k=1
(yk = Yk) ∪ (yk = T) +

∑Tol

k=1
(yk ∕= Yk) ∪ (yk = F)

× 100% (6) 

Fig. 11. The feature map with convolution kernels of different sizes.  

Fig. 12. The kernel image in different convolution layers. (a) Convolution kernels of different sizes; (b) Characteristic map of fully connected layers.  
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specificity=

∑Tol

k=1
(yk = Yk) ∪ (yk = F)

∑Tol

k=1
(yk = Yk) ∪ (yk = F) +

∑Tol

k=1
(yk ∕= Yk) ∪ (yk = T)

× 100% (7)  

PPV =

∑Tol

k=1
(yk = Yk) ∪ (yk = T)

∑Tol

k=1
(yk = Yk) ∪ (yk = T) +

∑Tol

k=1
(yk ∕= Yk) ∪ (yk = T)

× 100% (8)  

NPV =

∑Tol

k=1
(yk = Yk) ∪ (yk = F)

∑Tol

k=1
(yk = Yk) ∪ (yk = F) +

∑Tol

k=1
(yk ∕= Yk) ∪ (yk = F)

× 100% (9)  

precision=

∑Tol

k=1
(yk = Yk)

∑Tol

k=1
(yk = Yk) +

∑Tol

k=1
(yk ∕= Yk)

× 100% (10)  

where yk represents the output of the proposed model, Yk represents the 
correct classification label, Tol represents totals of the images in the 
dataset and k is the number of the input image, 

∑Tol
k=1(yk = Yk) and 

∑Tol
k=1(yk ∕= Yk) represent the number of the CT image whose results are 

the same as or different from the labels, respectively. T and F are positive 
and negative results, respectively. 

4.2. The process of the proposed method 

Considering the COVID-19 features in the lung CT image, seven 
convolution layers, three pooling layers, and three fully connected 

Fig. 13. The COVID-CT dataset. (a) COVID-19 positive image; (b) COVID-19 negative image.  

Table 1 
The statistics of the setting dataset in this paper.   

Positive COVID- 
19 

Negative COVID- 
19 

Total 
number 

Training set 466 556 1022 (70%) 
Testing set 200 238 438 (30%) 
Total number of CT 

image 
666 794 1460  
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layers are designed for the proposed model. The corresponding archi-
tecture of the deep convolution network is shown in Appendix A. The 
concrete process is as follows: 

Step 1. Obtain the region of interest (ROI) of both lungs and achieve 
the range containing the characteristic information of novel 
coronavirus; 

Step 2. Realize the contrast between the COVID-19 local lesion region 
and the abdominal cavity through convolution and deconvolution 
operation 

Step 3. Connect the deep and shallow information to determine 
whether the feature vector contains the COVID-19 information 

Step 4. Transform the novel coronavirus detection into ROI feature 

region classification problem, refer to Appendix A. 

Fig. 14(a) shows the precision (blue) and loss (Orange) of the pro-
posed model when the learning rate is set to 0.0001 (all training samples 
are trained for 200 times). It can be seen from the figure that when the 
number of iterations is 200 (the epoch is 30), the precision is close to 
100% and the loss is low. Therefore, this paper sets epoch 30 and the 
corresponding training process is shown in Fig. 14(b). 

Fig. 15 shows the indexes of sensitivity, specificity, PPV, NPV, and 
precision using different learning rates between 0.0001 and 0.0015. 
When the learning rate is less than 0.001, the network fitting speed is too 

Fig. 14. The training process of the deep convolution model. (a) The learning rate and loss curve of the proposed deep convolution model in the training process; (b) 
The corresponding parameters of the proposed model using different iterations. 

Fig. 15. Index values under different learning rates.  

Fig. 16. The confusion matrix of the proposed deep convolution network.  
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slow and it is easy to arrive local extreme. When the learning rate is set 
to be greater than 0.001, the network may not converge and it appears 
instability. Therefore, the proposed model uses 0.001 as the learning 
rate in the training process. 

Fig. 16 shows the classification result using the proposed deep 
convolution network. Here, each row represents the classification result 
of the real patient (Output Class), that is, the true attribution classifi-
cation of the novel coronavirus pneumonia image. Each column is to 
judge whether the result of the COVID-19 is positive or negative (Target 
Class), that is, the predicted classification result. In the confusion matrix, 
the green, orange, and gray blocks indicate the correct, wrong, and final 
classification result, respectively. The green and red numbers in the 
white and gray blocks indicate the proportion of samples with real tags 
correctly and wrongly classified, respectively. The experimental result 
shows that the precision of the proposed deep convolution model is up to 
about 97%. 

4.3. Analysis of the proposed method 

To enhance the image features of patients with positive COVID-19 in 
the lung CT, the contrast between the normal abdominal region and ROI 
is increased. As shown in Fig. 16, experiments show that the result of 

training the deep convolution model by mixing the enhanced CT image 
and the original image are better than those by using only one dataset. 
The precision can be up to 97%, as shown in Fig. 17(a). Since the size of 
the mixed dataset is twice that of the origin or enhanced one, the 
running time of the model is about twice that of the normal dataset, as 
shown in Fig. 17(b). 

To further verify the effect of different convolution layers in the 
proposed model, Fig. 18(a) shows the corresponding classification pre-
cision. Because the COVID-19 suspected patients may also be accom-
panied by other lung diseases, the lesions are similar in the image 

Fig. 17. The classification precision under the different datasets. (a) The pre-
cision of the model test under the different datasets; (b) The time required to 
test different datasets. 

Fig. 18. The result of the different convolution layers. (a) The Classification 
precision of the different convolution layers; (b) The classification precision; (c) 
The loss rate. 
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features. Therefore, to correctly distinguish the negative and positive 
images of COVID-19, more local receptive regions are needed to repre-
sent the features of the novel coronavirus. Because the spatial rela-
tionship between the image exists locally, it is necessary to set more 
neurons to obtain local feature information. Thus, the information of 
different local features will be combined in the high-level full connec-
tion layer to obtain the global perception. With the increase of convo-
lution network layers, more local feature information can be obtained 
and the corresponding classification precision increases. The classifica-
tion precision of the proposed model is up to 97%. With the increase of 
the iterations using different convolution layers, the changes in preci-
sion and loss rate are shown in Fig. 18(b)(c). Besides, with the increase 
of the number of layers, a more consistent feature map with the real 
information is obtained. 

During the experiment, the precision of the proposed deep convo-
lution model is different when setting different proportions of the 
training and test dataset, as shown in Fig. 19. It can be seen that the 
precision of the proposed classification model increases with the in-
crease of the proportion of the training dataset. This is because when 
there are fewer datasets for training, the existing image features learned 
by the deep convolution network can not achieve the classification ef-
fect. Besides, with the increase of the proportion of the training dataset, 
the model can obtain more and more COVID-19 features and the final 
classification precision is higher. When the dataset proportion is set to 
70%, the classification precision reaches the highest 97%. This is due to 
the fact that with the increase of the training dataset, the characteristics 
of novel coronavirus patients obtained are redundant, leading to the 
overfitting of feature information. Therefore, the training dataset of this 
paper accounts for 70% of the whole dataset. 

To further verify the effectiveness of the proposed model, Table 2 
describes other state-of-the-art methods used to determine the classifi-
cation result of the negative and positive COVID19 disease in the 
COVID-19 CT dataset. For fairness, all datasets and experimental 

environments are consistent. The convolution and deconvolution in the 
proposed method are used to enhance the contrast between the normal 
background and the COVID-19 lesion region. Therefore, the proposed 
deep convolution network has a higher classification precision. Thus, 
the proposed algorithm is dedicated to providing a highly robust auto-
matic segmentation tool for COVID-19 detection through the depth 
model, which will be considered to be applied to the actual negative and 
positive detection. 

5. Conclusion 

In this paper, the deep network model is proposed to effectively 
locate the specific region of bilateral lung infection. Firstly, convolution 
and deconvolution methods are used to enhance the image features of 
the localized ROI lesions, which is to preprocess the COVID-19 image. 
Then, the deep convolution network method is used to classify the 
negative and positive COVID19 disease. To effectively overcome the 
problem of the network degradation caused by simply stacking convo-
lution modules, this paper designs the self normalized convolution 
operation, which is used to suppress the network degradation through 
the residual module. Besides, to improve the ability of nonlinear trans-
formation and learning depth, multiple continuous 3 × 3 convolution 
kernels are used to replace the large kernel. The proposed model obtains 
a better classification precision compared with most state-of-the-art 
models. The corresponding sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and precision are 0.98, 
0.96, 0.98, and 0.97, respectively. It proves that the proposed method 
can effectively diagnose the novel coronavirus pneumonia infected by 
COVID-19 disease. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by the Natural Science Foundations of 
China under Grant 61801202.  

Appendix A. Deep Convolution Model  

1 ‘input’ Image Input 227x227x3 images with ‘zerocenter’ normalization Input layer 

2 ‘conv1′ Convolution 96 11x11x3 convolutions with stride [44] and padding [0 0 0 0] The 1st layer 
3 ‘relu1′ ReLU ReLU 
4 ‘norm1′ Cross Channel Normalization cross channel normalization with 5 channels per element 

(continued on next page) 

Fig. 19. The classification precision under different proportions of the 
training dataset. 

Table 2 
Comparison of the proposed deep convolution network with other models in the 
COVID-19 CT dataset.  

Method Sensitivity Specificity PPV NPV Precision 

CNN 0.87 0.875 0.882 0.862 0.872 
Loey M et al. [29] 0.78 0.88 – – 0.83 
Gifani P et al. [30] – – 0.85 0.86 0.86 
Polsinelli M et al. [36] 0.88 0.82 0.85 0.85 0.85 
Zhao J et al. [38] – – – – 0.89 
Singh D et al. [359] 0.91 0.89 0.90 0.91 0.90 
Parnian Afshar et al. 

[12] 
0.90 0.96 – – 0.96 

He X et al. [37] – – – – 0.96 
Bai H X et al. [39] 0.95 0.96 – – 0.96 
The proposed method 0.98 0.96 0.96 0.98 0.97  
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(continued ) 

1 ‘input’ Image Input 227x227x3 images with ‘zerocenter’ normalization Input layer 

5 ‘pool1′ Max Pooling 3x3 max pooling with stride [22] and padding [0 0 0 0] 
6 ‘conv’ Convolution 256 5x5x48 convolutions with stride [11] and padding [2 2 2 2] The 2nd layer 
7 ‘relu2′ ReLU ReLU 
8 ‘norm2′ Cross Channel Normalization cross channel normalization with 5 channels per element 
9 ‘pool2′ Max Pooling 3x3 max pooling with stride [22] and padding [0 0 0 0] 
10 ‘conv3′ Convolution 384 3x3x256 convolutions with stride [11] and padding [1 1 1 1] The 3rd layer 
11 ‘relu3′ ReLU ReLU 
12 ‘conv4′ Convolution 384 3x3x192 convolutions with stride [11] and padding [1 1 1 1] The 4th layer 
13 ‘relu4′ ReLU ReLU 
14 ‘conv5′ Convolution 256 3x3x192 convolutions with stride [11] and padding [1 1 1 1] The 5th layer 
15 ‘relu5′ ReLU ReLU 
16 ‘pool5′ Max Pooling 3x3 max pooling with stride [22] and padding [0 0 0 0] 
17 ‘conv6′ Convolution 512 3x3 convolutions with stride [11] and padding [1 1 1 1] The 6th layer 
18 ‘relu6′ ReLU ReLU 
19 ‘conv7′ Convolution 512 3x3 convolutions with stride [11] and padding [1 1 1 1] The 7th layer 
20 ‘relu7′ ReLU ReLU  
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