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Abstract

Novel coronavirus disease 2019 (COVID-19) is an emerging, rapidly evolving crisis, and the ability to predict prognosis for

individual COVID-19 patient is important for guiding treatment. Laboratory examinations were repeatedly measured during

hospitalization for COVID-19 patients, which provide the possibility for the individualized early prediction of prognosis.

However, previous studies mainly focused on risk prediction based on laboratory measurements at one time point, ignoring

disease progression and changes of biomarkers over time. By using historical regression trees (HTREEs), a novel machine

learning method, and joint modeling technique, we modeled the longitudinal trajectories of laboratory biomarkers and

made dynamically predictions on individual prognosis for 1997 COVID-19 patients. In the discovery phase, based on 358

COVID-19 patients admitted between 10 January and 18 February 2020 from Tongji Hospital, HTREE model identified a set of

important variables including 14 prognostic biomarkers. With the trajectories of those biomarkers through 5-day, 10-day

https://academic.oup.com/
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and 15-day, the joint model had a good performance in discriminating the survived and deceased COVID-19 patients (mean

AUCs of 88.81, 84.81 and 85.62% for the discovery set). The predictive model was successfully validated in two independent

datasets (mean AUCs of 87.61, 87.55 and 87.03% for validation the first dataset including 112 patients, 94.97, 95.78 and

94.63% for the second validation dataset including 1527 patients, respectively). In conclusion, our study identified important

biomarkers associated with the prognosis of COVID-19 patients, characterized the time-to-event process and obtained

dynamic predictions at the individual level.
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Introduction

The coronavirus disease 2019 (COVID-19), which emerged in

December 2019, has become a major worldwide public health

problem. As of 1 April 1 2021 severe acute respiratory syndrome

coronavirus 2, or SARS-CoV-2, has rapidly spread to approxi-

mately 218 countries, causing 130 163 234 cases and 2 839 661

deaths [1].

Because of the high mortality rate of the COVID-19, it is

important to identify prognostic factors and develop predictive

models to estimate survival probability and better individualize

treatments, especially for severe or critically ill COVID-19

patients. Demographic and clinical features have predictive

power and studies have also demonstrated the significance

of laboratory measurements, such as lactate dehydrogenase

(LDH), hypersensitive c-reactive protein (Hs-CRP), aspartate

aminotransferase (AST), creatine and d-dimer, in discrimi-

nating between COVID-19 patients who survived or deceased

[2].

Clinical and laboratory biomarkers are usually measured

at either regular or irregular intervals in COVID-19 patients

during hospitalization [3]. Previous studies mainly focused on

risk prediction based on laboratory measurements at a sin-

gle time point (at baseline or the last measure before death

or discharge from the hospital), ignoring the time course of

biomarkers varying over time [3–5]. However, disease progres-

sion is a dynamic process. Static prediction based on a single

time point may not provide sufficient information on how an

individual patient’s risk dynamically will update over time and

how the risk is influenced by time-varying predictors [6]. Thus,

it is attractive to make dynamic predictions by fully utilized

information from longitudinal data measured at multiple time

points, which may be beneficial for making timely and effective

individual treatment recommendations [7, 8]. As an example,

it is recognized that psychopathology is highly dynamic. Static

prediction based on single baseline assessments may fail to pro-

duce accuracy and replicability predictions, whereas analytical

methods built on the dynamic nature of psychopathology may

be more powerful for predicting which individual may change

from one clinical state to another and when this change will

happen [9].

In this study, we aimed to develop a dynamic risk prediction

model for COVID-19 prognosis based on the information of 1997

patients from Hubei Province, China, applying a random forest-

basedmachine learningmethod and a jointmodeling technique.

The predictive model was firstly developed based on a pub-

licly available dataset of 375 patients from Wuhan. In addition,

our study characterized the time-dependent effect of laboratory

biomarkers on prognosis. The model was further validated in

two independent cohorts, including a cohort of 112 patients from

Huangshi, Hubei and a cohort of 1527 patients from Wuhan

Huoshenshan Hospital.

Methods

Data sources

For the discovery set, data of 375 COVID-19 patients from Tongji

hospital collected between10 January and 18 February 2020 were

obtained from a recently published literature [4]. Details about

recruitment and inclusion/exclusion procedures have been

described before [4]. Briefly, the dataset includes 197 general,

27 severe, and 151 critically ill COVID-19 patients. For the 375

patients, the age distribution (mean ± standard deviation) was

58.83 ± 16.46 years, 59.7% were male and 201 (53.6%) recovered

from COVID-19 and were discharged from hospital. Period of

follow-up was defined as the duration from hospital admission

to death or discharge, and the maximal follow-up time was 35

days.

We validated the predictivemodel generated from the discov-

ery stage in two independent cohorts. The first dataset includes

112 severe or critically ill COVID-19 patients recruited from

three hospitals (Huangshi Central Hospital, Huangshi Hospital

of Traditional Chinese Medicine and Daye People’s Hospital)

during 21 January–6 March 2020. All three hospitals are located

in Huangshi City, Hubei Province, China. Detailed demographics

and clinical characteristics, including initial symptoms, comor-

bidities and disease severity, were recorded at admission. Labo-

ratory measurements, such as routine blood tests, lymphocyte

subsets and inflammatory biomarkers, were obtained at admis-

sion and during hospitalization. More details about the study

have been described previously [10]. The second validation set

includes laboratory test results of 1527 severe or critically ill

COVID-19 patients recruited between 4 February and 30 March

2020 from Wuhan Huoshenshan Hospital in China. Data on the

clinical characteristics and laboratory findings of all patients

were extracted from the hospital electronicmedical records, and

more information can be found in a previously published article

[11].

The discovery dataset used in our study had been published

and is publicly available, which was approved by the Tongji Hos-

pital Ethics Committee [4]. As for the first validation dataset, the

ethics committee of the hospitals (Huangshi Central Hospital,

Huangshi Hospital of Traditional Chinese Medicine, and Daye

People’s Hospital) waived the written informed consent from

patients with COVID-19, and all the procedures being performed

were part of the routine care [10]. Written informed consent of

Wuhan Huoshenshan Hospital was obtained from each patient,

and the study was approved by the Medical Ethical Committee

of Wuhan Huoshenshan Hospital and the Ethical Committee of

Nanjing Medical University [11].

Statistical analysis

Descriptive statistics were obtained for all study variables.

Continuous variables were summarized as means (± standard
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Figure 1. Strategy for incorporating longitudinal measurements to make dynamically predictions on individual prognosis for COVID-19 patients. First, baseline and

laboratory tests information during hospitalization were used in HTREEs, and the SWSFS was used to determine the number of important biomarkers, identifying a

set of important prognostic biomarkers. Then, joint modeling was applied to characterize the disease process and obtain dynamic predictions at the individual level

in COVID-19 patients.

deviations), and the characteristics of patients who survived

or died were compared using t-test or Mann–Whitney U test

for continuous variables depending on the data distributions.

Categorized variables were described by frequency (n) and

proportion (%) and compared using chi-square test. As longitu-

dinal biomarker measurements were only taken intermittently

during hospitalization, missing values are unavoidable. Missing

laboratory values were imputed using the “Mice” package in

R [12]. All concentrations of laboratory measures were loge

transformed for further statistical analysis.

Model development

Development of the predictive model consisted of two main

stages: (i) feature selection and (ii) dynamic characterization

of the longitudinal process and time-to-event outcome. Each

process was externally verified, and the analysis workflow is

shown in Figure 1.

Feature selection

We applied historical regression trees (HTREEs) to screen for

important biomarkers in COVID-19 patients by summarizing

variable importance with longitudinal measurements using the

R package “htree”.HTREE is an extension of the standard random

forest model appropriate for longitudinal data and a procedure

for non-parametric estimates of how the response depends on

all prior observations as well as that of any time-varying predic-

tor variables. To evaluate stability of the model and reliability

of the biomarkers, the prediction forest was evaluated by 3-

fold cross-validation and was further assessed in two external

validation datasets based on the candidate biomarkers.

In the discovery phase, all clinical characteristics during

follow-up, including demographics, were evaluated in HTREE

model. A sliding windows sequential forward feature selection

method (SWSFS) was used to determine the number of

“important” biomarkers. Briefly, the importance of each variable

was evaluated by the average mean squared error which was

first obtained by a HTREE analysis calculated via the varimp_hrf

function. Variables were then included one by one to the HTREE

model in the order of importance. We plotted the marginalized

error,whichmeasures the performance of eachmodel consisting

of different numbers of variables to identify a feature setwith the

lowest error rate. Finally, prognostic biomarkers and covariates

in the selected feature set were used as HTREE input to construct

a prediction forest model, which was further validated in two

external validation datasets.

Joint model construction

We applied the joint modeling technique to fully use the

repeated laboratory measurements and time-to-event data.

Joint modeling is a method that can simultaneously analyze the

longitudinally measured laboratory measurements and survival
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outcome [13]. It consists of two linked sub-models: a mixed

model specifying the time-course of biomarkers, and a survival

model using the Cox proportional hazardsmodel. For each of the

prognostic biomarkers in the selected feature set, we developed

a generalized linear mixed effect sub-model. The estimation

of regression parameters within the multivariate joint model

framework was performed using the R package “JMbayes” [13],

which fits joint model under a Bayesian approach using the

Markov Chain Monte Carlo algorithms [14]. For the survival

sub-model, a Cox proportional hazard model with a penalized-

spline-approximated baseline risk function was used [15]

(Details about joint model can be found in the Supplementary

Methods).

With the joint model, we were able to estimate the subject-

specific marker trajectories and predict conditional survival

probabilities for subject i, providing a set of longitudinal

measurementsyi(t)[13]. The conditional probability of surviving

to time u given that the patient has survived up to time t (u > t)

was

πi (u|t) = P
(

T∗
i ≥ u|T∗

i > t, yi(t)
)

.

An estimate of πi(t) was computed by resampling from poste-

rior distributions produced using the survfitJM function, assum-

ing that the patientwas event-free up to the time point of the last

measurements [13, 14]. We calculated 5-day, 10-day and 15-day

time-dependent areas under the receiver-operator characteristic

curve (AUC) to evaluate the predictive accuracy of the joint

model in both discovery and external validation datasets, as the

5th, 10th and 15th days after admission are critical time points at

which the physician can take action to improve survival chances

of the COVID-19 patients.

To investigate the potential nonlinear trend of biomarker

effects varying over time, we allowed a time-varying coefficient

to link longitudinal and survival processes using P-splines for

the logarithm of the baseline hazard, with the idea to include

interactions of biomarkers with an appropriate pre-defined

time function (see Supplementary Methods) [16]. For the case

of splines, baseline hazard was defined using P-splines with

seven internal knots placed at equally spaced percentiles of the

observed survival time t.

Statistical analyseswere performedusing R version 4.0.2 (The

R Foundation of Statistical Computing). P ≤ 0.05 was considered

statistically significant unless otherwise specified.

Results

Characteristics of the study population

In the discovery phase, we used a previously described cohort

that, after exclusion of 17 patients lacking more than 80%

laboratory test data (see Supplementary Table 1), consisted of

358 COVID-19 patients enrolled from Tongji Hospital in Wuhan,

Hubei Province, China [4]. The mean age of all 358 patients was

58.84 (16.51) years, and 210 (58.66%) were male. The median

follow-up time since admission was 10 days, and 148 (41.34%)

patients died in hospital. A comparison of baseline laboratory

measures of patients who survived and those who died is

presented in Table 1. In the validation phase, the first dataset

consists of 112 patients from three hospitals in Huangshi City,

Hubei Province, China. Themean age of these patients was 60.99

(14.87) years, and 73 (65.18%) were male. The median follow-up

time since admission was 11 days, and 31 (27.68%) died (see

Supplementary Table 2). For the second validation set including

hospital records of 1527 severe or critically ill COVID-19 patients

from Wuhan Huoshenshan Hospital in China, the mean age of

these patients was 61.81 (14.13) years, and 775 (50.75%) were

male. The median follow-up time since admission was 15 days,

and 57 (3.73%) died (see Supplementary Table 3).

Feature selection

In the discovery dataset, two covariates (age and gender) and

53 laboratory test markers (see Supplementary Figure 1) with

sufficient numbers of replicates and examined in at least 80%

of COVID-19 patients were included in the HTREE model. SWSFS

identified 14 top biomarkers: LDH,white blood cell (WBC) counts,

neutrophil (NEU), mean platelet volume (MPV), creatinine, lym-

phocyte (%), Hs-CRP, prothrombin time (PT), red blood cell dis-

tribution width (RDW), urea, AST, glucose, monocytes (%) and

procalcitonin (see Figure 1 and Supplementary Figure 2A).Three-

fold cross-validation using an internal validation dataset further

verified the importance of the candidate prognostic biomarkers.

All 14 selected biomarkers were ranked in the top 25, and 7

were in the top 10 in the internal validation dataset, as shown

in Supplementary Figure 2B. The mean AUC of this model was

98.32% [95% confidence interval (CI): 0.98–0.99] in the internal

training dataset, and 96.49% (95% CI: 0.93–1.00) in the internal

test dataset. Further, the predictive forest model was validated

in two external validation datasets. The AUCs in the external

validation datasets from Huangshi and Wuhan Huoshenshan

Hospital reached 99.76% (95% CI: 0.99–1.00) and 97.63% (95% CI:

0.97–0.98), respectively (Figure 2A and B), showing the stability

of the HTREE model and reliability of the predictive value of the

selected biomarkers.

Joint model construction and assessment

With the linear mixed effect model in the joint modeling

procedure, individualized prediction was made for longitudinal

covariates using mean posterior fixed and random effects. Each

participant would have predicted longitudinal measurements of

biomarkers from hospital admission up to death or censoring.

With the predicted biomarkers, we further made dynamic

predictions on the risk of death for each individual since

hospitalization. For example, the event-free probability curve

of Patient A (survived) showed no apparent changes, whereas

Patient B (died at the 32th day) showed considerable decline

in event-free probability, indicating that Patient B had a higher

risk of death, thus deserving frequent monitoring and close

watching (see Figure 3). Dynamic prediction results for Patient

B also indicated that long-term risk of death was higher in

early visits but declined in later visits, which is in agreement

with experiences obtained from medical practice. Predictive

performance of the multivariate joint model is presented in

Table 2. In particular, the time-dependent AUC is presented

assuming a different prediction interval (5, 10 or 15 days),

starting at a specific day (the 5th, 10th and 15th days after

admission, respectively). The mean 5-day AUC was 87.61%

(range: 83.43%–93.67%), mean 10-day AUC was 87.55% (range:

85.52%–88.95%) and mean 15-day AUC was 87.03% (range:

86.70%–87.29%) in the first validation dataset from Huangshi

City. Meanwhile, the mean 5-day, 10-day and 15-AUC were

94.97% (range: 91.00%–97.86%), 95.78% (range: 93.58%–97.02%)

and 94.63% (range: 93.48%–95.43%) in the second validation

dataset from Wuhan Huoshenshan Hospital.

The predicted longitudinal measurements of patient A and

patient B were characterized separately using smoothed curves

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
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Table 1. Demographics, baseline clinical laboratory test and mortality outcomes collected from medical records in the discovery dataset

Total (n = 358) Survived (n = 195) Dead (n = 163) P-value

Age 58.84 ± 16.51 50.39 ± 15.00 68.94 ± 11.94 <0.0001b

Gender, n (%) <0.0001c

Male 210 (58.66) 92 (43.80) 118 (56.19)

Female 148 (41.34) 103 (69.59) 45 (30.40)

Median follow-up (days) 10 14 6 <0.0001b

Laboratory tests (baseline)

LDH, U/L 440.24 ± 308.77 270.23 ± 102.86 649.66 ± 347.17 <0.0001b

WBC, 10
∧
9/L 9.66 ± 14.19 7.75 ± 16.64 12 ± 10.03 <0.0001b

NEU, 10
∧
9/L 6.34 ± 5.18 3.53 ± 2.17 9.78 ± 5.69 <0.0001b

Hs-CRP, mg/L 76.32 ± 75.49 35.23 ± 43.45 128.31 ± 75.46 <0.0001b

MPV, fL 10.86 ± 0.94 10.63 ± 0.87 11.16 ± 0.94 <0.0001a

Lymphocyte, % 17.17 ± 12.65 24.85 ± 11.25 7.71 ± 6.28 <0.0001b

Monocyte, % 7.01 ± 4.27 8.56 ± 3.52 5.11 ± 4.36 <0.0001b

Procalcitonin, ng/ml 0.7 ± 3.36 0.09 ± 0.3 1.39 ± 4.85 <0.0001b

Creatinine, umol/L 98 ± 126.81 90.02 ± 152.6 107.83 ± 84.41 <0.0001b

PT, S 15.19 ± 5.65 13.82 ± 0.91 16.87 ± 8.09 <0.0001b

RDW, % 12.81 ± 1.61 12.33 ± 0.99 13.38 ± 1.97 <0.0001b

Urea, nmol/L 7.53 ± 6.77 4.88 ± 4.2 10.8 ± 7.84 <0.0001b

Glucose, mmol/L 8.30 ± 4.26 6.91 ± 2.93 9.94 ± 4.95 <0.0001b

AST, U/L 42.63 ± 61.57 28.08 ± 19.82 60.56 ± 86.14 <0.0001b

Note: Continuous variables are presented as mean ± standard deviations; categorical variables are presented as frequency and proportion n (%).
aP-value was derived from Student’s t-test.
bP-value was derived from rank-sum test.
cP-value was derived from χ2 test.

Table 2. Joint model results showing the 5-day, 10-day and 15-day areas under the receiver-operator characteristic curve (AUC) by different start
follow-up time

Start day At-risk 5-day AUC (%) 10-day AUC (%) 15-day AUC (%)

Discovery

5 258 94.87 95.36 92.82

10 171 93.37 89.29 84.57

15 97 78.20 69.78 79.47

Mean 88.81 84.81 85.62

Validationa

5 92 83.43 85.52 87.11

10 80 85.73 88.19 87.29

15 49 93.67 88.95 86.70

Mean 87.61 87.55 87.03

Validationb

5 1431 91.00 93.58 93.48

10 1035 96.03 96.73 95.43

15 746 97.86 97.02 94.99

Mean 94.97 95.78 94.63

Note: AUC: the areas under the receiver-operator characteristic curve.

Validation a: the first validation dataset from Huangshi City.

Validation b: the second validation dataset from Wuhan Huoshenshan Hospital.

At-risk: the number of COVID-19 patients who were still at hospital.

(see Supplementary Figures 3). Biomarkers, excluding lympho-

cyte and monocytes, of Patient B were higher than those of

Patient A. By fitting the changing trajectories of biomarkers

over time for all patients, we found that patients who died and

those who survived showed distinct patterns (see Figure 4 for

the discovery dataset, Supplementary Figures 4 and 6 for the

validation datasets).

Figure 5 shows how the effects of prognostic biomarkers on

the event vary over time in the discovery dataset (see Supple-

mentary Figures 5 and 7 for the validation datasets). The risk

effects of NEU, Hs-CRP, MPV and urea gradually increased over

time,whereas the effects of procalcitonin, PT and RDWdeclined.

We observed relatively constant effects of LDH,WBC, creatinine,

glucose andAST.Only lymphocyte andmonocyte counts showed

protective effects.

Web-based predictive tool

We developed an online tool to facilitate the application of

our predictive model in practice (http://218.2.247.110:19040/CO

VID-19/Prediction). By inputting the values of prognostic factors

of a COVID-19 patient, the tool would produce the conditional

probability of death at specific time points.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab206#supplementary-data
http://218.2.247.110:19040/COVID-19/Prediction
http://218.2.247.110:19040/COVID-19/Prediction
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Figure 2. Performances of HTREE model and importance of 14 selected biomarkers. (A) Area under the receiver-operator characteristic curve (AUC) of the HTREE model

including the 14 candidate biomarkers in the first validation dataset from Huangshi City. (B) Area under the receiver-operator characteristic curve (AUC) of the HTREE

model including the 14 candidate biomarkers in the second validation dataset fromWuhan Huoshenshan Hospital. (C) Importance of the 14 selected biomarkers in the

final model based on the discovery dataset. (D) Area under the receiver-operator characteristic curve (AUC) of the HTREE model including the 14 candidate biomarkers

in discovery dataset and internal training and test sets using 3-fold cross-validation.

Discussion
Laboratory tests during the hospitalization of COVID-19 patients

are usually repeated at regular or irregular intervals. It is of

the clinicians’ interest to make predictions of future outcomes

based on all available information known up to a certain point of

time. However, there is little research on dynamically prediction

of COVID-19 prognosis based on repeated measurements and

trajectories of laboratory biomarkers. In our study, we used the

HTREE, an extension of random forests, to screen for biomarkers

to predict the outcome of COVID-19 patients, thus boosting effi-

ciency by incorporating information of longitudinal biomarker

profiles [17]. The accuracy of our model was clinically satisfac-

tory (98.37% of AUC in the discovery set, 99.76 and 97.63% of

AUCs in two external validation datasets). We also used mul-

tivariate joint model to characterize the time-to-event process

and obtain dynamic survival predictions at the individual level,

providing useful and practical information to support individu-

alized decisions for the treatment on COVID-19 patients. Also,

time-varying associations between survival status and longitu-

dinal biomarkers may be helpful for choosing timely treatment

strategy that could improve prognosis.

We identified 14 important biomarkers among 53 clinical

features, of which 12 were risk factors associated with the mor-

tality of COVID-19 patients. LDH had the highest importance for

predicting COVID-19 patient survival, consistent with previous

studies [4, 18]. Decreased LDH level was related to the elimina-

tion of viral messenger RNA and correlated with shorter hospital

stay, indicating better COVID-19 prognosis [19].

Like LDH,most of the remaining identified biomarkers (WBC,

NEU, Hs-CRP, MPV, procalcitonin, creatinine, urea, AST, PT, RDW

and glucose levels) are associated with poor COVID-19 prog-

nosis. Leukocytosis and neutrophilia are hallmarks of acute

infection [18, 20–22]. Hs-CRP and procalcitonin are commonly

used inflammatory markers in the clinic, the increase of which

may indicate poor prognosis in COVID-19 patients [23, 24]. It

has been reported that high MPV level, related to thrombotic
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Figure 3. Dynamic predictions on the risk of death for Patient A and Patient B since hospitalization in the discovery dataset. Patient A had a total of seven laboratory

test time windows and was discharged at the 35th day. The three graphs show survival probabilities of patient A at the follow-up visit 1th (day 0), visit 5th (day 10),

and visit 7th (day 22). Patient B had a total of nine laboratory test time windows and was dead at the 32th days. The graphs show survival probabilities of patient B at

follow-up visit 1th (day 1), visit 5th (day 11) and visit 8th (day 16).

events in COVID-19, is an independent risk factor for disease

progression [25, 26]. Further, concentrations of creatinine, urea

and AST, related to myocardial injury, were markedly higher in

COVID-19 patientswho died than in those patientswho survived

[23, 27, 28]. Elevated procalcitonin and PT levels were reported to

indicate the degree of severity for COVID-19 cases [29, 30]. RDW

is a readily available laboratory measure reflecting the extent of

anisocytosis, which is a proposed part of the routine panel of

laboratory tests offered for monitoring COVID-19 patients [31,

32]. Glucose level is an independent risk factor for severe or

critical COVID-19, and well-controlled blood glucose correlates

with improved prognosis [33]. On the other hand, monocytes

and lymphocyte, which play central roles in the maintenance of

immune system function of humans and in protecting the body

from virus infections, showed protective effects in our research

[34, 35]. In this study, the numbers ofmonocytes and lymphocyte

of the patients who survived were significantly higher than

those who died. Moreover, lower lymphocyte levels, platelet

counts, higher blood urea and neutrophils have been reported

to be associated with neurological disorders which has been a

public concern for COVID-19 survivors [36–38].

All beneficial and risk biomarkers identified in this study

have been previously reported to be associated with the progno-

sis of COVID-19 patients. Our study extends the findings to show

how the time-varying patterns of biomarkers can dynamically

predict individual outcome, as well as inform timely and precise

treatment recommendations. As an example, the clinician may

need to pay attention to LDH changes during the whole course

of treatment for its constant and strong risk effect, whereas it

may be significant to prevent high level of NEU in the late stage

of treatment. Our results provide the possibility for clinicians to

adapt appropriate treatment timely bymonitoring the change of

easily available biomarkers [39].

The analytical strategy we applied in this study, which is

a combination of machine learning method and joint model-

ing technique, provides insights on the comprehensive anal-

ysis on clinical data arising from personalized medicine and

real-world circumstances, in particular longitudinal measure-

ments provided by electronic health records [40]. Fully usage

of longitudinal measurements can inform the probability of an

outcome of interest occurring at a future time [41]. Specially,

joint modeling is able to account for measurement errors of the

biomarkers and model biomarkers’ trajectories over time. This

strategy also enables the identification of potential interactions

between nonlinear independent effects and time.

Our study has several strengths. Firstly, our study includes

1997 COVID-19 patients, which is one of the largest studies on

COVID-19 prognosis. Secondly, we used an advanced machine

learning technique, HTREEs, to identify important biomarkers.

This method makes full use of longitudinal biomarkers and

inherits the advantages of random forest algorithm, ensuring

good stability and accuracy for further prediction [42, 43]. We

also adopted multivariate joint model to characterize the time-

to-event process, obtain dynamic predictions at the individual

level and describe time-varying associations between the lon-

gitudinal biomarkers and the event. This facilitates the identi-

fication of critical time points and can alert the clinician when

to apply patient-tailored therapies [44]. The performance of our

final predictive model was also externally validated, achieving

satisfactory AUC results in two independent datasets. Further-

more, we developed an online tool for clinicians to facilitate the

application of our model.
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Figure 4. Fitting trajectory patterns of longitudinal biomarkers for patients who survived or deceased in the discovery dataset. Lines represent averaged trajectories of

patients who survived (blue) or deceased (red) during hospitalization using natural cubic splines with two degrees of freedom.

However, our study also has several limitations. First, some

patients had missing values for laboratory tests. Second, the

mechanism of time-varying dynamic effects requires further

investigation from a clinical perspective. Third, the prediction

model of this study was trained and validated using Chinese

population. Therefore, caution should be exercised when gen-

eralizing out findings to other race populations.

In conclusion, our study identified important biomarkers for

early prediction on the outcome of COVID-19 patients by using

a novel strategy suitable for dynamic risk prediction incorporat-
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Figure 5. Time-varying effects of the biomarkers in the discovery dataset.

ing longitudinal laboratory measurements. The well-performing

predictivemodel,with its accompanying online web application,

is of great importance for the clinician to identify patients under

high risk of death, as well as to characterize how the effects of

biomarkers vary over time.

Key Points

• Longitudinal data could provide more information on

disease progression and the possibility of the dynamic

prediction on probabilities of survival over time in

COVID-19 patients.
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• Fourteen important biomarkers, including lactate

dehydrogenase, white blood cell counts, neutrophil,

mean platelet volume, creatinine, lymphocyte (%),

hypersensitive c-reactive protein, prothrombin time,

red blood cell distribution width, urea, aspartate

aminotransferase, glucose, monocytes (%) and pro-

calcitonin, were identified to be associated with the

mortality of COVID-19 patients.
• This research characterized the time-to-event pro-

cess, obtained dynamic predictions at the individual

level and demonstrated the time-varying associations

between the candidate longitudinal biomarkers and

the mortality in COVID-19 patients.
• Our study provides a novel strategy suitable for

dynamic risk prediction incorporating repeated

measurements, which is very practical for clinical

research.
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